
Advanced Configuration and
Power Interface Specification

Hewlett-Packard Corporation
Intel Corporation
Microsoft Corporation
Phoenix Technologies Ltd.
Toshiba Corporation

Revision 4.0a
April 5, 2010

ii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Copyright © 1996-2010, Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix
Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DO
NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

iii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

4.0a
Apr. 2010

Errata corrected and clarifications added.

Removed text concerning government requirement of mechanical off

Clarified URL update document, Corrected section references for APIC, SLIT,
SRAT in Table 5-5, Update URLs and reformated Table 5-6

Corrected reference to Interrupt Source Override Structure

Corrected name for CPEP table

Corrected reference to SMBus, should be IPMI

Clarified BusCheck and DeviceCheck notifications in Table 5-53

Added link to non-ACPI Plug and Play ID reference document

Added missing _ATT and _GAI names, Corrected page/section references in
Table 5-67

Corrected EndTag name value. Was 0x78, correct value is 0x79 Table 6-33

Consumer/Producer bit is ignored (Restored 2.0C change that had been lost)

Clarified use of _GLK (Global Lock) object

Corrected definition of _TSD object

Corrected definition of _PSD object

Corrected table name (CPEP)

Corrected “maximum positive adjustment” value. Was 500%, correct value is
50%, Updated description of example – 300 to 400 lux, Eliminated hardcoded
package lengths in examples, Changed “brightness” to “highest ambient light
value”

Corrected reference to _IDE, should be _GTM. Corrected table reference

Clarified GPE Block Device Description

Corrected _PLD object examples

Repaired diagram that would not display properly Figure 10-2

Added missing _BCT method to Table 10-3

Clarified that OEM Information field should contain NULL string if not
supported in Table 10-4 &Table 10-5

Corrected description of _BTM arguments and return value

Clarified description of _BCT return value

Corrected HID for Power Source device. Was ACPI0003, correct value is
ACPI0004

Corrected _PIF example. First package element was a Buffer, should be
Integer, Clarified that OEM Information field should contain NULL string if
not supported Table 10-10

Corrected description of _SHL method Table 10-11

Clarified _PRL return value, a list of References

Corrected _PMC example. First package element was a Buffer, should be
Integer

2.2

5.2.6

5.2.12.4

5.2.18

5.5.2.4.3.1

5.6.5

5.6.6

5.6.7

6.4.2.8

6.4.3.5.1,2,3

6.5.7

8.4.3.4

8.4.4.5

8.4.5

9.2.5

9.8.2.1.1

9.10

9.13

10.1.3.1

10.2.2

10.2.1.1-2

10.2.2.8

10.2.2.9

10.3

10.3.3

10.4

10.3.4

10.4.1

iv

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

Clarified that OEM Information field should contain NULL string if not
supported Table 10-12

Removed “TODO” note. Updated example

Repaired diagram that would not display properly Figure 15-1

Corrected error conditions from “fatal” to “corrected

Corrected several incorrect section references, Clarified number of Generic
Error Data Entry structures is >=1 (not Zero)

Clarified number of Generic Error Data Entry structures is >=1 (not Zero)

Added new section clarifying SCI notification for generic error sources

Added new section describing Firmware First error handling

Clarified purpose of the codes Table 17-17

Added reference to table of COMMAND_STATUS codes Table 17-23

Clarified purpose of the command status codes in Table 17-27 and the error
type definitions in Table 17-28

Added _ATT resource descriptor field name

Clarified rules for Buffer vs. Integer return types from a field unit

Corrected section/page reference

10.4.1

10.5

15.1

17.1

17.3.1

17.3.2.6.1

17.3.2.6.2

17.4

17.5.1.1

17.6.1

17.6.3

18.1.8

18.5.44,89

18.5.101

4.0

June 2009

Major specification revision. Clock Domains, x2APIC Support, Logical
Processor Idling, Corrected Platform Error Polling Table, Maximum System
Characteristics Table, Power Metering and Budgeting, IPMI Operation
Region, USB3 Support in _PLD, Re-evaluation of _PPC acknowledgement via
_OST, Thermal Model Enhancements, _OSC at _SB, Wake Alarm Device,
Battery Related Extensions, Memory Bandwidth Monitoring and Reporting,
ACPI Hardware Error Interfaces, D3hot.

3.0b

Oct. 2006

Errata corrected and clarifications added.

3.0a
Dec. 2005

Errata corrected and clarifications added.

3.0
Sept. 2004

Major specification revision. General configuration enhancements. Inter-
Processor power, performance, and throttling state dependency support added.
Support for > 256 processors added. NUMA Distancing support added. PCI
Express support added. SATA support added. Ambient Light Sensor and User
Presence device support added. Thermal model extended beyond processor-
centric support.

2.0c
Aug. 2003

Errata corrected and clarifications added.

2.0b
Oct. 2002

Errata corrected and clarifications added.

2.0a
Mar. 2002

Errata corrected and clarifications added. ACPI 2.0 Errata Document Revision
1.0 through 1.5 integrated.

ACPI 2.0 Errata corrected and clarifications added.

v

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Revision Change Description
Affected
Sections

Errata Doc.
Rev. 1.5

ACPI 2.0
Errata Doc.
Rev. 1.4

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.3

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.2

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.1

Errata corrected and clarifications added.

ACPI 2.0
Errata Doc.
Rev. 1.0

Errata corrected and clarifications added.

2.0
Aug. 2000

Major specification revision. 64-bit addressing support added. Processor and
device performance state support added. Numerous multiprocessor workstation
and server-related enhancements. Consistency and readability enhancements
throughout.

1.0b
Feb. 1999

Errata corrected and clarifications added. New interfaces added.

1.0a
Jul. 1998

Errata corrected and clarifications added. New interfaces added.

1.0
Dec. 1996

Original Release.

vi

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Contents
1 INTRODUCTION ... 21

1.1 Principal Goals ... 21

1.2 Power Management Rationale .. 22

1.3 Legacy Support... 23

1.4 OEM Implementation Strategy... 23

1.5 Power and Sleep Buttons ... 23

1.6 ACPI Specification and the Structure Of ACPI .. 24

1.7 OS and Platform Compliance ... 25
1.7.1 Platform Implementations of ACPI-defined Interfaces .. 25

1.7.2 OSPM Implementations ... 28

1.7.3 OS Requirements.. 29

1.8 Target Audience ... 29

1.9 Document Organization... 29
1.9.1 ACPI Introduction and Overview... 30

1.9.2 Programming Models ... 30

1.9.3 Implementation Details... 30

1.9.4 Technical Reference ... 31

1.10 Related Documents... 31

2 DEFINITION OF TERMS ... 33

2.1 General ACPI Terminology .. 33

2.2 Global System State Definitions .. 39

2.3 Device Power State Definitions.. 41

2.4 Sleeping State Definitions .. 42

2.5 Processor Power State Definitions .. 42

2.6 Device and Processor Performance State Definitions.. 43

3 ACPI OVERVIEW.. 45

3.1 System Power Management .. 46

3.2 Power States.. 47
3.2.1 Power Button.. 48

3.2.2 Platform Power Management Characteristics... 48

3.3 Device Power Management ... 49
3.3.1 Power Management Standards ... 49

3.3.2 Device Power States ... 49

3.3.3 Device Power State Definitions.. 50

3.4 Controlling Device Power.. 50
3.4.1 Getting Device Power Capabilities... 50

3.4.2 Setting Device Power States... 50

3.4.3 Getting Device Power Status .. 51

3.4.4 Waking the Computer... 51

3.4.5 Example: Modem Device Power Management .. 53

3.5 Processor Power Management .. 56

3.6 Device and Processor Performance States ... 56

3.7 Configuration and “Plug and Play”.. 56
3.7.1 Device Configuration Example: Configuring the Modem.. 57

3.7.2 NUMA Nodes... 57

3.8 System Events ... 57

3.9 Battery Management.. 58
3.9.1 Battery Communications .. 58

3.9.2 Battery Capacity ... 59

3.9.3 Battery Gas Gauge.. 59

vii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9.4 Low Battery Levels .. 59

3.9.5 Battery Calibration ... 62

3.10 Thermal Management.. 63
3.10.1 Active and Passive Cooling Modes .. 64

3.10.2 Performance vs. Energy Conservation.. 64

3.10.3 Acoustics (Noise) ... 64

3.10.4 Multiple Thermal Zones ... 64

4 ACPI HARDWARE SPECIFICATION.. 65

4.1 Fixed Hardware Programming Model ... 65
4.1.1 Functional Fixed Hardware .. 65

4.2 Generic Hardware Programming Model ... 66

4.3 Diagram Legends ... 68

4.4 Register Bit Notation.. 69

4.5 The ACPI Hardware Model .. 69
4.5.1 Hardware Reserved Bits ... 72

4.5.2 Hardware Ignored Bits.. 72

4.5.3 Hardware Write-Only Bits.. 73

4.5.4 Cross Device Dependencies ... 73

4.6 ACPI Hardware Features.. 73

4.7 ACPI Register Model ... 75
4.7.1 ACPI Register Summary .. 78

4.7.2 Fixed Hardware Features.. 80

4.7.3 Fixed Hardware Registers .. 89

4.7.4 Generic Hardware Registers ... 97

5 ACPI SOFTWARE PROGRAMMING MODEL .. 105

5.1 Overview of the System Description Table Architecture .. 105
5.1.1 Address Space Translation ... 107

5.2 ACPI System Description Tables .. 109
5.2.1 Reserved Bits and Fields .. 109

5.2.2 Compatibility.. 110

5.2.3 Address Format .. 110

5.2.4 Universal Uniform Identifiers (UUID) ... 111

5.2.5 Root System Description Pointer (RSDP) .. 111

5.2.6 System Description Table Header .. 113

5.2.7 Root System Description Table (RSDT) .. 116

5.2.8 Extended System Description Table (XSDT)... 117

5.2.9 Fixed ACPI Description Table (FADT) ... 118

5.2.10 Firmware ACPI Control Structure (FACS) .. 128

5.2.11 Definition Blocks.. 134

5.2.12 Multiple APIC Description Table (MADT).. 136

5.2.13 Global System Interrupts .. 147

5.2.14 Smart Battery Table (SBST)... 149

5.2.15 Embedded Controller Boot Resources Table (ECDT).. 149

5.2.16 System Resource Affinity Table (SRAT) ... 151

5.2.17 System Locality Distance Information Table (SLIT) ... 155

5.2.18 Corrected Platform Error Polling Table (CPEP)... 156

5.2.19 Maximum System Characteristics Table (MSCT).. 157

5.3 ACPI Namespace.. 160
5.3.1 Predefined Root Namespaces ... 162

5.3.2 Objects.. 162

5.4 Definition Block Encoding... 162

5.5 Using the ACPI Control Method Source Language .. 164
5.5.1 ASL Statements .. 164

5.5.2 Control Method Execution ... 165

5.6 ACPI Event Programming Model .. 172

viii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.1 ACPI Event Programming Model Components.. 172

5.6.2 Types of ACPI Events .. 173

5.6.3 Fixed Event Handling... 174

5.6.4 General-Purpose Event Handling ... 175

5.6.5 Device Object Notifications ... 178

5.6.6 Device Class-Specific Objects.. 183

5.6.7 Predefined ACPI Names for Objects, Methods, and Resources ... 185

5.7 Predefined Objects ... 193
5.7.1 _GL (Global Lock Mutex)... 193

5.7.2 _OSI (Operating System Interfaces).. 193

5.7.3 _OS (OS Name Object) ... 196

5.7.4 _REV (Revision Data Object) ... 197

5.8 System Configuration Objects... 197
5.8.1 _PIC Method .. 197

6 DEVICE CONFIGURATION.. 199

6.1 Device Identification Objects... 199
6.1.1 _ADR (Address)... 200

6.1.2 _CID (Compatible ID).. 201

6.1.3 _DDN (DOS Device Name) ... 201

6.1.4 _HID (Hardware ID) .. 202

6.1.5 _MLS (Multiple Language String) ... 202

6.1.6 _PLD (Physical Device Location) .. 203

6.1.7 _STR (String) ... 209

6.1.8 _SUN (Slot User Number) ... 210

6.1.9 _UID (Unique ID) .. 210

6.2 Device Configuration Objects ... 210
6.2.1 _CDM (Clock Domain) .. 211

6.2.2 _CRS (Current Resource Settings) ... 212

6.2.3 _DIS (Disable).. 212

6.2.4 _DMA (Direct Memory Access) .. 212

6.2.5 _FIX (Fixed Register Resource Provider) .. 215

6.2.6 _GSB (Global System Interrupt Base).. 216

6.2.7 _HPP (Hot Plug Parameters) .. 217

6.2.8 _HPX (Hot Plug Parameter Extensions)... 219

6.2.9 _MAT (Multiple APIC Table Entry) .. 224

6.2.10 _OSC (Operating System Capabilities) .. 225

6.2.11 _PRS (Possible Resource Settings)... 233

6.2.12 _PRT (PCI Routing Table) ... 233

6.2.13 _PXM (Proximity).. 236

6.2.14 _SLI (System Locality Information)... 236

6.2.15 _SRS (Set Resource Settings)... 239

6.3 Device Insertion, Removal, and Status Objects ... 239
6.3.1 _EDL (Eject Device List) ... 241

6.3.2 _EJD (Ejection Dependent Device) .. 241

6.3.3 _EJx (Eject) .. 243

6.3.4 _LCK (Lock) .. 243

6.3.5 _OST (OSPM Status Indication) .. 244

6.3.6 _RMV (Remove) .. 248

6.3.7 _STA (Status) ... 248

6.4 Resource Data Types for ACPI ... 249
6.4.1 ASL Macros for Resource Descriptors ... 249

6.4.2 Small Resource Data Type ... 249

6.4.3 Large Resource Data Type ... 254

6.5 Other Objects and Control Methods .. 276
6.5.1 _INI (Init) ... 276

6.5.2 _DCK (Dock) ... 277

ix

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.5.3 _BDN (BIOS Dock Name)... 277

6.5.4 _REG (Region)... 277

6.5.5 _BBN (Base Bus Number) ... 279

6.5.6 _SEG (Segment)... 279

6.5.7 _GLK (Global Lock) .. 281

7 POWER AND PERFORMANCE MANAGEMENT... 283

7.1 Declaring a Power Resource Object ... 283
7.1.1 Defined Child Objects for a Power Resource ... 284

7.1.2 _OFF .. 284

7.1.3 _ON.. 285

7.1.4 _STA (Status) ... 285

7.2 Device Power Management Objects ... 285
7.2.1 _DSW (Device Sleep Wake) .. 287

7.2.2 _PS0 (Power State 0).. 287

7.2.3 _PS1 (Power State 1).. 288

7.2.4 _PS2 (Power State 2).. 288

7.2.5 _PS3 (Power State 3).. 288

7.2.6 _PSC (Power State Current) ... 288

7.2.7 _PR0 (Power Resources for D0)... 289

7.2.8 _PR1 (Power Resources for D1)... 289

7.2.9 _PR2 (Power Resources for D2)... 290

7.2.10 _PR3 (Power Resources for D3hot).. 290

7.2.11 _PRW (Power Resources for Wake)... 290

7.2.12 _PSW (Power State Wake)... 291

7.2.13 _IRC (In Rush Current) .. 292

7.2.14 _S1D (S1 Device State) .. 292

7.2.15 _S2D (S2 Device State) .. 293

7.2.16 _S3D (S3 Device State) .. 293

7.2.17 _S4D (S4 Device State) .. 294

7.2.18 _S0W (S0 Device Wake State)... 295

7.2.19 _S1W (S1 Device Wake State)... 295

7.2.20 _S2W (S2 Device Wake State)... 295

7.2.21 _S3W (S3 Device Wake State)... 295

7.2.22 _S4W (S4 Device Wake State)... 296

7.3 OEM-Supplied System-Level Control Methods .. 296
7.3.1 _BFS (Back From Sleep)... 296

7.3.2 _PTS (Prepare To Sleep) ... 297

7.3.3 _GTS (Going To Sleep)... 297

7.3.4 System _Sx states .. 298

7.3.5 _SWS (System Wake Source) .. 302

7.3.6 _TTS (Transition To State).. 303

7.3.7 _WAK (System Wake).. 303

7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS ... 304

8 PROCESSOR CONFIGURATION AND CONTROL .. 307

8.1 Processor Power States .. 307
8.1.1 Processor Power State C0... 309

8.1.2 Processor Power State C1... 311

8.1.3 Processor Power State C2... 311

8.1.4 Processor Power State C3... 311

8.1.5 Additional Processor Power States ... 312

8.2 Flushing Caches.. 312

8.3 Power, Performance, and Throttling State Dependencies .. 313

8.4 Declaring Processors .. 313
8.4.1 _PDC (Processor Driver Capabilities) .. 314

8.4.2 Processor Power State Control ... 315

x

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.3 Processor Throttling Controls... 320

8.4.4 Processor Performance Control .. 326

8.4.5 _PPE (Polling for Platform Errors)... 333

8.5 Processor Aggregator Device... 333
8.5.1 Logical Processor Idling... 333

9 ACPI-DEFINED DEVICES AND DEVICE SPECIFIC OBJECTS... 335

9.1 _SI System Indicators ... 335
9.1.1 _SST (System Status) ... 335

9.1.2 _MSG (Message).. 335

9.1.3 _BLT (Battery Level Threshold) .. 335

9.2 Ambient Light Sensor Device .. 336
9.2.1 Overview .. 336

9.2.2 _ALI (Ambient Light Illuminance) .. 337

9.2.3 _ALT (Ambient Light Temperature) .. 337

9.2.4 _ALC (Ambient Light Color Chromaticity) ... 337

9.2.5 _ALR (Ambient Light Response)... 338

9.2.6 _ALP (Ambient Light Polling)... 342

9.2.7 Ambient Light Sensor Events... 342

9.2.8 Relationship to Backlight Control Methods.. 342

9.3 Battery Device... 343

9.4 Control Method Lid Device ... 343
9.4.1 _LID ... 343

9.5 Control Method Power and Sleep Button Devices... 343

9.6 Embedded Controller Device .. 344

9.7 Generic Container Device.. 344

9.8 ATA Controller Devices... 344
9.8.1 Objects for Both ATA and SATA Controllers.. 345

9.8.2 IDE Controller Device.. 346

9.8.3 Serial ATA (SATA) Controller Device .. 348

9.9 Floppy Controller Device Objects... 350
9.9.1 _FDE (Floppy Disk Enumerate) ... 350

9.9.2 _FDI (Floppy Disk Information) .. 351

9.9.3 _FDM (Floppy Disk Drive Mode).. 352

9.10 GPE Block Device... 352
9.10.1 Matching Control Methods for General-Purpose Events in a GPE Block Device 353

9.11 Module Device .. 353
9.11.1 Describing PCI Bus and Segment Group Numbers under Module Devices ... 355

9.12 Memory Devices ... 357
9.12.1 Address Decoding .. 358

9.12.2 Memory Bandwidth Monitoring and Reporting ... 358

9.12.3 _OSC Definition for Memory Device... 359

9.12.4 Example: Memory Device.. 360

9.13 _UPC (USB Port Capabilities) .. 360
9.13.1 USB 2.0 Host Controllers and _UPC and _PLD... 364

9.14 Device Object Name Collision ... 366
9.14.1 _DSM (Device Specific Method) ... 366

9.15 PC/AT RTC/CMOS Devices.. 369
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00).. 369

9.15.2 Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)... 370

9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02).. 371

9.16 User Presence Detection Device .. 371
9.16.1 _UPD (User Presence Detect) .. 372

9.16.2 _UPP (User Presence Polling) .. 372

9.16.3 User Presence Sensor Events.. 372

9.17 I/O APIC Device ... 372

xi

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.18 Wake Alarm Device ... 373
9.18.1 Overview .. 373

9.18.2 _STP (Set Expired Timer Wake Policy)... 375

9.18.3 _STV (Set Timer Value)... 376

9.18.4 _TIP (Expired Timer Wake Policy).. 376

9.18.5 _TIV (Timer Values) .. 376

9.18.6 ACPI Wakeup Alarm Events.. 376

9.18.7 Relationship to Real Time Clock Alarm... 376

9.18.8 Example ASL code... 377

10 POWER SOURCE AND POWER METER DEVICES... 379

10.1 Smart Battery Subsystems... 379
10.1.1 ACPI Smart Battery Status Change Notification Requirements ... 381

10.1.2 Smart Battery Objects... 382

10.1.3 _SBS (Smart Battery Subsystem) ... 382

10.2 Control Method Batteries .. 385
10.2.1 Battery Events .. 385

10.2.2 Battery Control Methods .. 386

10.3 AC Adapters and Power Source Objects.. 398
10.3.1 _PSR (Power Source) ... 398

10.3.2 _PCL (Power Consumer List) .. 399

10.3.3 _PIF (Power Source Information)... 399

10.3.4 _PRL (Power Source Redundancy List) ... 400

10.4 Power Meters.. 400
10.4.1 _PMC (Power Meter Capabilities) ... 400

10.4.2 _PTP (Power Trip Points)... 402

10.4.3 _PMM (Power Meter Measurement) .. 403

10.4.4 _PAI (Power Averaging Interval)... 403

10.4.5 _GAI (Get Averaging Interval) .. 403

10.4.6 _SHL (Set Hardware Limit) ... 404

10.4.7 _GHL (Get Hardware Limit) .. 404

10.4.8 _PMD (Power Metered Devices).. 404

10.5 Example: Power Source and Power Meter Namespace .. 405

11 THERMAL MANAGEMENT ... 407

11.1 Thermal Control... 407
11.1.1 Active, Passive, and Critical Policies ... 408

11.1.2 Dynamically Changing Cooling Temperature Trip Points.. 409

11.1.3 Detecting Temperature Changes... 410

11.1.4 Active Cooling ... 412

11.1.5 Passive Cooling .. 412

11.1.6 Critical Shutdown... 414

11.2 Cooling Preferences.. 415
11.2.1 Evaluating Thermal Device Lists ... 416

11.2.2 Evaluating Device Thermal Relationship Information ... 417

11.2.3 Fan Device Notifications .. 417

11.3 Fan Device... 417
11.3.1 Fan Objects... 417

11.4 Thermal Objects... 421
11.4.1 _ACx (Active Cooling)... 422

11.4.2 _ALx (Active List) ... 422

11.4.3 _ART (Active Cooling Relationship Table) ... 423

11.4.4 _CRT (Critical Temperature) ... 425

11.4.5 _DTI (Device Temperature Indication) .. 425

11.4.6 _HOT (Hot Temperature) ... 425

11.4.7 _NTT (Notification Temperature Threshold) ... 426

11.4.8 _PSL (Passive List) .. 426

xii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.4.9 _PSV (Passive) ... 426

11.4.10 _RTV (Relative Temperature Values) .. 426

11.4.11 _SCP (Set Cooling Policy) ... 427

11.4.12 _TC1 (Thermal Constant 1).. 429

11.4.13 _TC2 (Thermal Constant 2).. 430

11.4.14 _TMP (Temperature) .. 430

11.4.15 _TPT (Trip Point Temperature).. 430

11.4.16 _TRT (Thermal Relationship Table) .. 430

11.4.17 _TSP (Thermal Sampling Period)... 431

11.4.18 _TST (Temperature Sensor Threshold) .. 431

11.4.19 _TZD (Thermal Zone Devices) .. 432

11.4.20 _TZM (Thermal Zone Member) ... 432

11.4.21 _TZP (Thermal Zone Polling) .. 432

11.5 Native OS Device Driver Thermal Interfaces .. 433

11.6 Thermal Zone Interface Requirements .. 433

11.7 Thermal Zone Examples.. 434
11.7.1 Example: The Basic Thermal Zone .. 434

11.7.2 Example: Multiple-Speed Fans... 435

11.7.3 Example: Thermal Zone with Multiple Devices... 436

12 ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATION 443

12.1 Embedded Controller Interface Description.. 443

12.2 Embedded Controller Register Descriptions ... 446
12.2.1 Embedded Controller Status, EC_SC (R)... 447

12.2.2 Embedded Controller Command, EC_SC (W) ... 448

12.2.3 Embedded Controller Data, EC_DATA (R/W) .. 448

12.3 Embedded Controller Command Set ... 448
12.3.1 Read Embedded Controller, RD_EC (0x80)... 448

12.3.2 Write Embedded Controller, WR_EC (0x81)... 448

12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)... 449

12.3.4 Burst Disable Embedded Controller, BD_EC (0x83) ... 449

12.3.5 Query Embedded Controller, QR_EC (0x84)... 449

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT... 450

12.5 Embedded Controller Firmware... 450

12.6 Interrupt Model.. 450
12.6.1 Event Interrupt Model .. 451

12.6.2 Command Interrupt Model ... 451

12.7 Embedded Controller Interfacing Algorithms... 451

12.8 Embedded Controller Description Information .. 452

12.9 SMBus Host Controller Interface via Embedded Controller ... 452
12.9.1 Register Description ... 452

12.9.2 Protocol Description... 456

12.9.3 SMBus Register Set.. 460

12.10 SMBus Devices ... 462
12.10.1 SMBus Device Access Restrictions.. 462

12.10.2 SMBus Device Command Access Restriction.. 462

12.11 Defining an Embedded Controller Device in ACPI Namespace... 462
12.11.1 Example: EC Definition ASL Code.. 463

12.12 Defining an EC SMBus Host Controller in ACPI Namespace ... 463
12.12.1 Example: EC SMBus Host Controller ASL-Code .. 464

13 ACPI SYSTEM MANAGEMENT BUS INTERFACE SPECIFICATION 465

13.1 SMBus Overview.. 465
13.1.1 SMBus Slave Addresses ... 465

13.1.2 SMBus Protocols .. 465

13.1.3 SMBus Status Codes .. 466

13.1.4 SMBus Command Values .. 466

xiii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

13.2 Accessing the SMBus from ASL Code.. 467
13.2.1 Declaring SMBus Host Controller Objects... 467

13.2.2 Declaring SMBus Devices.. 467

13.2.3 Declaring SMBus Operation Regions... 468

13.2.4 Declaring SMBus Fields... 469

13.2.5 Declaring and Using an SMBus Data Buffer.. 471

13.3 Using the SMBus Protocols ... 472
13.3.1 Read/Write Quick (SMBQuick) ... 472

13.3.2 Send/Receive Byte (SMBSendReceive) ... 472

13.3.3 Read/Write Byte (SMBByte).. 473

13.3.4 Read/Write Word (SMBWord)... 473

13.3.5 Read/Write Block (SMBBlock).. 474

13.3.6 Word Process Call (SMBProcessCall).. 475

13.3.7 Block Process Call (SMBBlockProcessCall).. 475

14 SYSTEM ADDRESS MAP INTERFACES .. 477

14.1 INT 15H, E820H - Query System Address Map .. 477

14.2 E820 Assumptions and Limitations .. 479

14.3 UEFI GetMemoryMap() Boot Services Function .. 480

14.4 UEFI Assumptions and Limitations ... 481

14.5 Example Address Map... 481

14.6 Example: Operating System Usage... 483

15 WAKING AND SLEEPING... 485

15.1 Sleeping States .. 486
15.1.1 S1 Sleeping State.. 488

15.1.2 S2 Sleeping State.. 488

15.1.3 S3 Sleeping State.. 489

15.1.4 S4 Sleeping State.. 489

15.1.5 S5 Soft Off State... 490

15.1.6 Transitioning from the Working to the Sleeping State ... 491

15.1.7 Transitioning from the Working to the Soft Off State .. 491

15.2 Flushing Caches.. 491

15.3 Initialization.. 492
15.3.1 Placing the System in ACPI Mode ... 494

15.3.2 BIOS Initialization of Memory... 495

15.3.3 OS Loading... 497

15.3.4 Exiting ACPI Mode.. 498

16 NON-UNIFORM MEMORY ACCESS (NUMA) ARCHITECTURE PLATFORMS 499

16.1 NUMA Node ... 499

16.2 System Locality... 499
16.2.1 System Resource Affinity Table Definition.. 499

16.3 System Locality Distance Information ... 500

17 ACPI PLATFORM ERROR INTERFACES (APEI) .. 503

17.1 Hardware Errors and Error Sources ... 503

17.2 Relationship between OSPM and System Firmware... 504

17.3 Error Source Discovery ... 504
17.3.1 Boot Error Source... 504

17.3.2 ACPI Error Source ... 506

17.4 Firmware First Error Handling.. 519
17.4.1 Example: Firmware First Handling Using NMI Notification ... 519

17.5 Error Serialization ... 519
17.5.1 Serialization Action Table .. 520

17.5.2 Operations .. 526

17.6 Error Injection ... 530
17.6.1 Error Injection Table (EINJ)... 530

xiv

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.6.2 Injection Instruction Entries ... 532

17.6.3 Injection Instructions .. 533

17.6.4 Trigger Action Table .. 534

17.6.5 Error Injection Operation.. 534

18 ACPI SOURCE LANGUAGE (ASL) REFERENCE... 535

18.1 ASL Language Grammar .. 535
18.1.1 ASL Grammar Notation ... 536

18.1.2 ASL Name and Pathname Terms.. 538

18.1.3 ASL Root and Secondary Terms .. 538

18.1.4 ASL Data and Constant Terms ... 539

18.1.5 ASL Opcode Terms .. 541

18.1.6 ASL Primary (Terminal) Terms ... 542

18.1.7 ASL Parameter Keyword Terms... 551

18.1.8 ASL Resource Template Terms.. 552

18.2 ASL Concepts ... 558
18.2.1 ASL Names .. 558

18.2.2 ASL Literal Constants .. 558

18.2.3 ASL Resource Templates ... 560

18.2.4 ASL Macros ... 562

18.2.5 ASL Data Types ... 563

18.3 ASL Operator Summary ... 574

18.4 ASL Operator Summary By Type .. 576

18.5 ASL Operator Reference ... 579
18.5.1 Acquire (Acquire a Mutex)... 579

18.5.2 Add (Integer Add) .. 579

18.5.3 Alias (Declare Name Alias).. 580

18.5.4 And (Integer Bitwise And) ... 580

18.5.5 Argx (Method Argument Data Objects) ... 580

18.5.6 BankField (Declare Bank/Data Field) .. 580

18.5.7 Break (Break from While) .. 581

18.5.8 BreakPoint (Execution Break Point)... 582

18.5.9 Buffer (Declare Buffer Object)... 582

18.5.10 Case (Expression for Conditional Execution)... 582

18.5.11 Concatenate (Concatenate Data)... 583

18.5.12 ConcatenateResTemplate (Concatenate Resource Templates) ... 583

18.5.13 CondRefOf (Create Object Reference Conditionally) .. 583

18.5.14 Continue (Continue Innermost Enclosing While)... 584

18.5.15 CopyObject (Copy and Store Object) ... 584

18.5.16 CreateBitField (Create 1-Bit Buffer Field) ... 584

18.5.17 CreateByteField (Create 8-Bit Buffer Field) .. 585

18.5.18 CreateDWordField (Create 32-Bit Buffer Field) .. 585

18.5.19 CreateField (Create Arbitrary Length Buffer Field) ... 585

18.5.20 CreateQWordField (Create 64-Bit Buffer Field) .. 585

18.5.21 CreateWordField (Create 16-Bit Buffer Field) ... 586

18.5.22 DataTableRegion (Create Data Table Operation Region) .. 586

18.5.23 Debug (Debugger Output) .. 587

18.5.24 Decrement (Integer Decrement) ... 587

18.5.25 Default (Default Execution Path in Switch) ... 587

18.5.26 DefinitionBlock (Declare Definition Block)... 588

18.5.27 DerefOf (Dereference an Object Reference) .. 588

18.5.28 Device (Declare Bus/Device Package) ... 588

18.5.29 Divide (Integer Divide) .. 590

18.5.30 DMA (DMA Resource Descriptor Macro) ... 590

18.5.31 DWordIO (DWord IO Resource Descriptor Macro)... 591

18.5.32 DWordMemory (DWord Memory Resource Descriptor Macro).. 592

18.5.33 DWordSpace (DWord Space Resource Descriptor Macro) .. 594

xv

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.34 EISAID (EISA ID String To Integer Conversion Macro)... 595

18.5.35 Else (Alternate Execution).. 595

18.5.36 ElseIf (Alternate/Conditional Execution) ... 596

18.5.37 EndDependentFn (End Dependent Function Resource Descriptor Macro) .. 597

18.5.38 Event (Declare Event Synchronization Object) .. 597

18.5.39 ExtendedIO (Extended IO Resource Descriptor Macro) .. 597

18.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro).. 599

18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor Macro).. 600

18.5.42 External (Declare External Objects) ... 601

18.5.43 Fatal (Fatal Error Check) .. 602

18.5.44 Field (Declare Field Objects).. 602

18.5.45 FindSetLeftBit (Find First Set Left Bit).. 605

18.5.46 FindSetRightBit (Find First Set Right Bit) ... 605

18.5.47 FixedIO (Fixed IO Resource Descriptor Macro) .. 605

18.5.48 FromBCD (Convert BCD To Integer) .. 606

18.5.49 Function (Declare Control Method).. 606

18.5.50 If (Conditional Execution).. 607

18.5.51 Include (Include Additional ASL File) ... 607

18.5.52 Increment (Integer Increment) .. 608

18.5.53 Index (Indexed Reference To Member Object) .. 608

18.5.54 IndexField (Declare Index/Data Fields).. 610

18.5.55 Interrupt (Interrupt Resource Descriptor Macro).. 611

18.5.56 IO (IO Resource Descriptor Macro) ... 612

18.5.57 IRQ (Interrupt Resource Descriptor Macro)... 613

18.5.58 IRQNoFlags (Interrupt Resource Descriptor Macro).. 613

18.5.59 LAnd (Logical And) ... 614

18.5.60 LEqual (Logical Equal) .. 614

18.5.61 LGreater (Logical Greater) ... 614

18.5.62 LGreaterEqual (Logical Greater Than Or Equal) ... 615

18.5.63 LLess (Logical Less) .. 615

18.5.64 LLessEqual (Logical Less Than Or Equal)... 615

18.5.65 LNot (Logical Not)... 616

18.5.66 LNotEqual (Logical Not Equal)) ... 616

18.5.67 Load (Load Definition Block) .. 616

18.5.68 LoadTable (Load Definition Block From XSDT) .. 617

18.5.69 Localx (Method Local Data Objects).. 618

18.5.70 LOr (Logical Or) .. 618

18.5.71 Match (Find Object Match) .. 618

18.5.72 Memory24 (Memory Resource Descriptor Macro) .. 619

18.5.73 Memory32 (Memory Resource Descriptor Macro) .. 620

18.5.74 Memory32Fixed (Memory Resource Descriptor Macro) ... 621

18.5.75 Method (Declare Control Method) ... 621

18.5.76 Mid (Extract Portion of Buffer or String) ... 623

18.5.77 Mod (Integer Modulo) .. 623

18.5.78 Multiply (Integer Multiply) .. 623

18.5.79 Mutex (Declare Synchronization/Mutex Object).. 624

18.5.80 Name (Declare Named Object)... 624

18.5.81 NAnd (Integer Bitwise Nand)... 625

18.5.82 NoOp Code (No Operation).. 625

18.5.83 NOr (Integer Bitwise Nor).. 625

18.5.84 Not (Integer Bitwise Not) ... 625

18.5.85 Notify (Notify Object of Event).. 626

18.5.86 ObjectType (Get Object Type) ... 626

18.5.87 One (Constant One Object) .. 627

18.5.88 Ones (Constant Ones Object) ... 627

18.5.89 OperationRegion (Declare Operation Region).. 627

18.5.90 Or (Integer Bitwise Or)... 629

xvi

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.91 Package (Declare Package Object) ... 629

18.5.92 PowerResource (Declare Power Resource) .. 630

18.5.93 Processor (Declare Processor) .. 630

18.5.94 QWordIO (QWord IO Resource Descriptor Macro)... 631

18.5.95 QWordMemory (QWord Memory Resource Descriptor Macro).. 632

18.5.96 QWordSpace (QWord Space Resource Descriptor Macro) .. 634

18.5.97 RefOf (Create Object Reference) ... 635

18.5.98 Register (Generic Register Resource Descriptor Macro).. 635

18.5.99 Release (Release a Mutex Synchronization Object) ... 636

18.5.100 Reset (Reset an Event Synchronization Object) ... 636

18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)... 637

18.5.102 Return (Return from Method Execution).. 637

18.5.103 Revision (Constant Revision Object).. 637

18.5.104 Scope (Open Named Scope)... 637

18.5.105 ShiftLeft (Integer Shift Left) .. 638

18.5.106 ShiftRight (Integer Shift Right) .. 639

18.5.107 Signal (Signal a Synchronization Event) .. 639

18.5.108 SizeOf (Get Data Object Size).. 639

18.5.109 Sleep (Milliseconds Sleep) ... 639

18.5.110 Stall (Stall for a Short Time)... 640

18.5.111 StartDependentFn (Start Dependent Function Resource Descriptor Macro) .. 640

18.5.112 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)............................... 641

18.5.113 Store (Store an Object) ... 641

18.5.114 Subtract (Integer Subtract).. 641

18.5.115 Switch (Select Code To Execute Based On Expression) .. 642

18.5.116 ThermalZone (Declare Thermal Zone) ... 644

18.5.117 Timer (Get 64-Bit Timer Value)... 644

18.5.118 ToBCD (Convert Integer to BCD).. 645

18.5.119 ToBuffer (Convert Data to Buffer) ... 645

18.5.120 ToDecimalString (Convert Data to Decimal String)... 645

18.5.121 ToHexString (Convert Data to Hexadecimal String).. 646

18.5.122 ToInteger (Convert Data to Integer) ... 646

18.5.123 ToString (Convert Buffer To String) .. 646

18.5.124 ToUUID (Convert String to UUID Macro) .. 647

18.5.125 Unicode (String To Unicode Conversion Macro)... 648

18.5.126 Unload (Unload Definition Block) ... 648

18.5.127 VendorLong (Long Vendor Resource Descriptor).. 648

18.5.128 VendorShort (Short Vendor Resource Descriptor) ... 649

18.5.129 Wait (Wait for a Synchronization Event) ... 649

18.5.130 While (Conditional Loop)... 649

18.5.131 WordBusNumber (Word Bus Number Resource Descriptor Macro) ... 650

18.5.132 WordIO (Word IO Resource Descriptor Macro) .. 651

18.5.133 WordSpace (Word Space Resource Descriptor Macro)) ... 652

18.5.134 XOr (Integer Bitwise Xor).. 654

18.5.135 Zero (Constant Zero Object)... 654

19 ACPI MACHINE LANGUAGE (AML) SPECIFICATION ... 655

19.1 Notation Conventions... 655

19.2 AML Grammar Definition .. 656
19.2.1 Table and Table Header Encoding.. 656

19.2.2 Name Objects Encoding ... 656

19.2.3 Data Objects Encoding ... 657

19.2.4 Package Length Encoding .. 658

19.2.5 Term Objects Encoding .. 658

19.2.6 Miscellaneous Objects Encoding.. 664

19.3 AML Byte Stream Byte Values ... 665

19.4 AML Encoding of Names in the Namespace .. 669

xvii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A DEVICE CLASS PM SPECIFICATIONS... 671

A.1 Overview .. 671

A.2 Device Power States... 671
A.2.1 Bus Power Management .. 672

A.2.2 Display Power Management.. 672

A.2.3 PCMCIA/PCCARD/CardBus Power Management ... 672

A.2.4 PCI Power Management .. 672

A.2.5 USB Power Management .. 672

A.2.6 Device Classes... 673

A.3 Default Device Class .. 673
A.3.1 Default Power State Definitions .. 673

A.3.2 Default Power Management Policy ... 673

A.3.3 Default Wake Events ... 674

A.3.4 Minimum Power Capabilities .. 674

A.4 Audio Device Class .. 674
A.4.1 Power State Definitions ... 674

A.4.2 Power Management Policy .. 674

A.4.3 Wake Events .. 675

A.4.4 Minimum Power Capabilities .. 675

A.5 COM Port Device Class .. 675
A.5.1 Power State Definitions ... 676

A.5.2 Power Management Policy .. 676

A.5.3 Wake Events .. 676

A.5.4 Minimum Power Capabilities .. 676

A.6 Display Device Class.. 676
A.6.1 Power State Definitions ... 677

A.6.2 Power Management Policy for the Display Class .. 682

A.6.3 Wake Events .. 683

A.6.4 Minimum Power Capabilities .. 683

A.6.5 Performance States for Display Class Devices .. 683

A.7 Input Device Class ... 685
A.7.1 Power State Definitions ... 685

A.7.2 Power Management Policy .. 685

A.7.3 Wake Events .. 686

A.7.4 Minimum Power Capabilities .. 686

A.8 Modem Device Class ... 686
A.8.1 Technology Overview ... 686

A.8.2 Power State Definitions ... 687

A.8.3 Power Management Policy .. 688

A.8.4 Wake Events .. 688

A.8.5 Minimum Power Capabilities .. 688

A.9 Network Device Class.. 689
A.9.1 Power State Definitions ... 689

A.9.2 Power Management Policy .. 690

A.9.3 Wake Events .. 690

A.9.4 Minimum Power Capabilities .. 690

A.10 PC Card Controller Device Class... 690
A.10.1 Power State Definitions ... 691

A.10.2 Power Management Policy .. 692

A.10.3 Wake Events .. 692

A.10.4 Minimum Power Capabilities .. 692

A.11 Storage Device Class ... 693
A.11.1 Power State Definitions ... 693

A.11.2 Power Management Policy .. 694

A.11.3 Wake Events .. 694

A.11.4 Minimum Power Capabilities .. 694

xviii

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

B ACPI EXTENSIONS FOR DISPLAY ADAPTERS.. 695

B.1 Introduction ... 695

B.2 Definitions .. 696

B.3 ACPI Namespace ... 696

B.4 Display-specific Methods... 697
B.4.1 _DOS (Enable/Disable Output Switching) .. 697

B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter) .. 698

B.4.3 _ROM (Get ROM Data) .. 701

B.4.4 _GPD (Get POST Device) ... 702

B.4.5 _SPD (Set POST Device) .. 702

B.4.6 _VPO (Video POST Options).. 703

B.5 Notifications for Display Devices.. 703

B.6 Output Device-specific Methods... 703
B.6.1 _ADR (Return the Unique ID for this Device) .. 704

B.6.2 _BCL (Query List of Brightness Control Levels Supported)... 704

B.6.3 _BCM (Set the Brightness Level) .. 704

B.6.4 _BQC (Brightness Query Current level) .. 705

B.6.5 _DDC (Return the EDID for this Device).. 705

B.6.6 _DCS (Return the Status of Output Device) .. 705

B.6.7 _DGS (Query Graphics State).. 706

B.6.8 _DSS (Device Set State) .. 706

B.7 Notifications Specific to Output Devices .. 707

B.8 Notes on State Changes ... 708

INDEX ... 710

xx

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Introduction 21

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration and
power management of both devices and entire systems. ACPI is the key element in Operating System-
directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APIs, PNPBIOS APIs, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration interface
specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI
hardware, and it allows for both ACPI and legacy mechanisms to exist in a single machine and to be used
as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more efficient
manner.

The interfaces and OSPM concepts defined within this specification are suitable to all classes of computers
including (but not limited to) desktop, mobile, workstation, and server machines. From a power
management perspective, OSPM/ACPI promotes the concept that systems should conserve energy by
transitioning unused devices into lower power states including placing the entire system in a low-power
state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI is the key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPI and OSPM are to:
1. Enable all computer systems to implement motherboard configuration and power management

functions, using appropriate cost/function tradeoffs.
 Computer systems include (but are not limited to) desktop, mobile, workstation, and server

machines.
 Machine implementers have the freedom to implement a wide range of solutions, from the very

simple to the very aggressive, while still maintaining full OS support.
 Wide implementation of power management will make it practical and compelling for applications

to support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.
 Power management policies too complicated to implement in a ROM BIOS can be implemented

and supported in the OS, allowing inexpensive power managed hardware to support very elaborate
power management policies.

 Gathering power management information from users, applications, and the hardware together
into the OS will enable better power management decisions and execution.

 Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

3. Facilitate and accelerate industry-wide implementation of power management.
 OSPM and ACPI reduces the amount of redundant investment in power management throughout

the industry, as this investment and function will be gathered into the OS. This will allow industry
participants to focus their efforts and investments on innovation rather than simple parity.

22 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to
gain the benefits of OS improvements and innovations.

4. Create a robust interface for configuring motherboard devices.
 Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the
OS and the hardware to achieve the principal goals set forth above.

 Minimal support for power management inhibits application vendors from supporting or
exploiting it.

o Moving power management functionality into the OS makes it available on every
machine on which the OS is installed. The level of functionality (power savings, and so
on) varies from machine to machine, but users and applications will see the same power
interfaces and semantics on all OSPM machines.

o This will enable application vendors to invest in adding power management functionality
to their products.

 Legacy power management algorithms were restricted by the information available to the BIOS
that implemented them. This limited the functionality that could be implemented.

o Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have a policy of dividing I/O operations into normal and lazy. Lazy
I/O operations (such as a word processor saving files in the background) would be
gathered up into clumps and done only when the required I/O device is powered up for
some other reason. A non-lazy I/O request made when the required device was powered
down would cause the device to be powered up immediately, the non-lazy I/O request to
be carried out, and any pending lazy I/O operations to be done. Such a policy requires
knowing when I/O devices are powered up, knowing which application I/O requests are
lazy, and being able to assure that such lazy I/O operations do not starve.

o Appliance functions, such as answering machines, require globally coherent power
decisions. For example, a telephone-answering application could call the OS and assert,
“I am waiting for incoming phone calls; any sleep state the system enters must allow me
to wake and answer the telephone in 1 second.” Then, when the user presses the “off”
button, the system would pick the deepest sleep state consistent with the needs of the
phone answering service.

 BIOS code has become very complex to deal with power management. It is difficult to make work
with an OS and is limited to static configurations of the hardware.

o There is much less state information for the BIOS to retain and manage (because the OS
manages it).

o Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

o Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

o Because the BIOS has fewer functions and they are simpler, it is much easier (and
therefore cheaper) to implement and support.

 The existing structure of the PC platform constrains OS and hardware designs.
 Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the

hardware from the OS.
 ACPI is by nature more portable across operating systems and processors. ACPI control methods

allow for very flexible implementations of particular features.

Introduction 23

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware\OS Legacy OS ACPI OS with OSPM

Legacy hardware A legacy OS on legacy hardware
does what it always did.

If the OS lacks legacy support, legacy
support is completely contained within
the hardware functions.

Legacy and ACPI
hardware support in
machine

It works just like a legacy OS on
legacy hardware.

During boot, the OS tells the hardware
to switch from legacy to OSPM/ACPI
mode and from then on, the system has
full OSPM/ACPI support.

ACPI-only hardware There is no power management. There is full OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they see fit. Given the existence of the ACPI
specification, two general implementation strategies are possible:
 An original equipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software

and implement the hardware part of the ACPI specification (for a given platform) in one of many
possible ways.

 An OEM can develop a driver and hardware that are not ACPI-compatible. This strategy opens up
even more hardware implementation possibilities. However, OEMs who implement hardware that is
OSPM-compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing
drivers for their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

24 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1.6 ACPI Specification and the Structure Of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

Figure 1-1 OSPM/ACPI Global System

ACPI TablesACPI BIOSACPI Registers

Kernel

Device
Driver

ACPI
Register
Interface

ACPI Table
Interface

ACPI BIOS
Interface

- ACPI Spec Covers this area
- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Platform Hardware

Existing
industry
standard
register

interfaces to:
CMOS, PIC,

PITs, ...

ACPI Driver/
AML Interpreter

Dependent
Application

APIs

OS Specific
technologies,

interfaces, and code

OS
Independent
technologies,

interfaces,
code, and
hardware

BIOS

OSPM System Code

Introduction 25

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

There are three run-time components to ACPI:

 ACPI System Description Tables. Describe the interfaces to the hardware. Some descriptions limit
what can be built (for example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be built in
arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function.
ACPI Tables containing “Definition Blocks” can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that
executes procedures encoded in the pseudo-code language and stored in the ACPI tables containing
“Definition Blocks.” The pseudo-code language, known as ACPI Machine Language (AML), is a
compact, tokenized, abstract type of machine language.

 ACPI Registers. The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

 ACPI System Firmware. Refers to the portion of the firmware that is compatible with the ACPI
specifications. Typically, this is the code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely, compared to a
legacy BIOS. The ACPI Description Tables are also provided by the ACPI System Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitable to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design
Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces specified
below are generally spread throughout the ACPI specification. The ACPI specification defines:

System address map reporting interfaces (Section 14)

ACPI System Description Tables (Section 5.2):

Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

26 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table

System Resource Affinity Table (SRAT)

System Locality Information Table (SLIT)

ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):

Power management timer control/status

Power or sleep button with S5 override (also possible in generic space)

Real time clock wakeup alarm control/status

SCI /SMI routing control/status for Power Management and General-purpose events

System power state controls (sleeping/wake control) (Section 7)

Processor power state control (c states) (Section 8)

Processor throttling control/status (Section 8)

Processor performance state control/status (Section 8)

General-purpose event control/status

Global Lock control/status

System Reset control (Section 4.7.3.6)

Embedded Controller control/status (Section 12)

SMBus Host Controller (HC) control/status (Section 13)

Smart Battery Subsystem (Section 10.1)

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2,
Section 5.6.5):

General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):

Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory

Global Lock related interfaces

ACPI Event programming model (Section 5.6)

Introduction 27

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI-defined System BIOS Responsibilities (Section 15)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, S0, S5)
System sleeping states (S-states S1-S4) (Section 15)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following provides an example of how a client platform design guide, whose goal is to require robust
configuration and power management for the system class, could use the recommended terminology to
define ACPI requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)

Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events

(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

 ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
Devices and device controls:

Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)

Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

 ACPI Event programming model (Section 5.6)
 ACPI-defined System BIOS Responsibilities (Section 15)
 ACPI-defined State Definitions:

System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class
specifications)

Processor power states (All processors must support the C1 Power State)

28 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following provides an example of how a design guide for systems that execute multiple OS instances,
whose goal is to require robust configuration and continuous availability for the system class, could use the
recommended terminology to define ACPI related requirements.

Important: This example is provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and General-purpose events

(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

 ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
System indicators
Devices and device controls:

Processor
Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

 ACPI Event programming model (Section 5.6)
 ACPI-defined System BIOS Responsibilities (Section 15)
 ACPI-defined State Definitions:

Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their
associated event models appropriate to the system platform class upon which the OS executes. This is the
implementation of OSPM. The following outlines the OS enhancements and elements necessary to support
all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs to be
modified to:

 Use system address map reporting interfaces.
 Find and consume the ACPI System Description Tables.
 Interpret ACPI machine language (AML).
 Enumerate and configure motherboard devices described in the ACPI Namespace.
 Interface with the power management timer.
 Interface with the real-time clock wake alarm.
 Enter ACPI mode (on legacy hardware systems).
 Implement device power management policy.
 Implement power resource management.
 Implement processor power states in the scheduler idle handlers.

Introduction 29

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Control processor and device performance states.
 Implement the ACPI thermal model.
 Support the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general-purpose events, embedded controller interrupts, and dynamic device support.
 Support acquisition and release of the Global Lock.
 Use the reset register to reset the system.
 Provide APIs to influence power management policy.
 Implement driver support for ACPI-defined devices.
 Implement APIs supporting the system indicators.
 Support all system states S1–S5.

1.7.3 OS Requirements

The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:
 Use system address map reporting interfaces to get the system address map on Intel Architecture (IA)

platforms:
 INT 15H, E820H - Query System Address Map interface (see section 14, “System Address Map

Interfaces”)
 EFI GetMemoryMap() Boot Services Function (see section 14, “System Address Map Interfaces”)

 Find and consume the ACPI System Description Tables (see section 5, “ACPI Software Programming
Model”).

 Implementation of an AML interpreter supporting all defined AML grammar elements (see section 19,
ACPI Machine Language Specification”).

 Support for the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general-purpose events, embedded controller interrupts, and dynamic device support.

 Enumerate and configure motherboard devices described in the ACPI Namespace.
 Implement support for the following ACPI devices defined within this specification:

 Embedded Controller Device (see section 12, “ACPI Embedded Controller Interface
Specification”)

 GPE Block Device (see section 9.10, “GPE Block Device”)
 Module Device (see section 9.11, “Module Device”)

 Implementation of the ACPI thermal model (see section 11, “Thermal Management”).
 Support acquisition and release of the Global Lock.
 OS-directed power management support (device drivers are responsible for maintaining device context

as described by the Device Power Management Class Specifications described in Appendix A).

1.8 Target Audience

This specification is intended for the following users:
 OEMs building hardware containing ACPI-compatible interfaces
 Operating system and device driver developers
 BIOS and ACPI system firmware developers
 CPU and chip set vendors
 Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:
 The first part of the specification (sections 1 through 3) introduces ACPI and provides an executive

overview.
 The second part (sections 4 and 5) defines the ACPI hardware and software programming models.
 The third part (sections 6 through 17) specifies the ACPI implementation details; this part of the

specification is primarily for developers.

30 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 The fourth part (sections 18 and 19) is technical reference material; section 18 is the ACPI Source
Language (ASL) reference, parts of which are referred to by most of the other sections in the
document.

 Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview

The first three sections of the specification provide an executive overview of ACPI.

Section 1: Introduction. Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-compatible
system, and provides references to related specifications.

Section 2: Definition of Terms. Defines the key terminology used in this specification. In particular, the
global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in
this section, along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (D0).
Device and processor performance states (P0, P1, …Pn) are also discussed.

Section 3: ACPI Overview. Gives an overview of the ACPI specification in terms of the functional areas
covered by the specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and 5.
These sections are the heart of the ACPI specification. There are extensive cross-references between the
two sections.

Section 4: ACPI Hardware Specification. Defines a set of hardware interfaces that meet the goals of this
specification.

Section 5: ACPI Software Programming Model. Defines a set of software interfaces that meet the goals
of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration. Defines the reserved Plug and Play objects used to configure and assign
resources to devices, and share resources and the reserved objects used to track device insertion and
removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance Management. Defines the reserved device power-management
objects and the reserved-system power-management objects.

Section 8: Processor Configuration and Control. Defines how the OS manages the processors’ power
consumption and other controls while the system is in the working state.

Section 9: ACPI-Specific Device Objects. Lists the integrated devices that need support for some device-
specific ACPI controls, along with the device-specific ACPI controls that can be provided. Most device
objects are controlled through generic objects and control methods and have generic device IDs; this
section discusses the exceptions.

Section 10: Power Source Devices. Defines the reserved battery device and AC adapter objects.

Section 11: Thermal Management. Defines the reserved thermal management objects.

Introduction 31

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Section 12: ACPI Embedded Controller Interface Specification. Defines the interfaces between an
ACPI-compatible OS and an embedded controller.

Section 13: ACPI System Management Bus Interface Specification. Defines the interfaces between an
ACPI-compatible OS and a System Management Bus (SMBus) host controller.

Section 14: System Address Map Interfaces. Explains the special INT 15 call for use in ISA/EISA/PCI
bus-based systems. This call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard. UEFI-based memory address map reporting
interfaces are also described.

Section 15: Waking and Sleeping. Defines in detail the transitions between system working and sleeping
states and their relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 16: Non-Uniform Memory Access (NUMA) Architecture Platforms. Discusses in detail how
ACPI define interfaces can be used to describe a NUMA architecture platform. Refers to the reserved
objects defined in sections 5, 6, 8, and 9.

Section 17: ACPI Platform Error Interfaces. Defines interfaces that enable OSPM to processes different
types of hardware error events that are detected by platform-based error detection hardware.

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.

Section 18: ACPI Source Language Reference. Defines the syntax of all the ASL statements that can be
used to write ACPI control methods, along with example syntax usage.

Section 19: ACPI Machine Language Specification. Defines the grammar of the language of the ACPI
virtual machine language. An ASL translator (compiler) outputs AML.

Appendix A: Device class specifications. Describes device-specific power management behavior on a per
device-class basis.

Appendix B: Video Extensions. Contains video device class-specific ACPI interfaces.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from http://www.microsoft.com/whdc/resources/respec/specs/default.mspx:
 Advanced Power Management (APM) BIOS Specification, Revision 1.2.
 Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://developer.intel.com:

Intel® ItaniumTM Architecture Software Developer’s Manual, Volumes 1–4, Revision 2.1, Intel Corporation,
October 2002.

ItaniumTM Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:

Unified Extensible Firmware Interface Specification, Version 2.3, May 2009.

Documentation and specifications for the Smart Battery System components and the SMBus are available
from http://www.sbs-forum.org:
 Smart Battery Charger Specification, Revision 1.1, Smart Battery System Implementers Forum,

December, 1998.
 Smart Battery Data Specification, Revision 1.1, Smart Battery System Implementers Forum,

December, 1998.

32 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Smart Battery Selector Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

 Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

 System Management Bus Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Definition of Terms 33

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2 Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three parts:

General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as a whole is in the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power Interface (ACPI)
As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to allow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware
Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudo-code for a virtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definition is provided in section 19, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)
An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple I/O subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICs commonly attached directly to
processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)
The programming language equivalent for AML. ASL is compiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Control Method
A control method is a definition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of a thermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPI-compatible OS.
An ACPI-compatible system must provide a minimal set of control methods in the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table developers can reference in their
control methods. OEMs can support different revisions of chip sets with one BIOS by either including
control methods in the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.

34 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Central Processing Unit (CPU) or Processor
The part of a platform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines a working state, labeled G0 (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the sleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also defines processor
performance states, where the processor (while in C0) executes instructions, but with lower
performance and (potentially) lower power consumption and operating temperature. For more
information, see section 8, “Processor Configuration and Control.”

Definition Block
A definition block contains information about hardware implementation and configuration details in
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocks in the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the
contents of the Differentiated Definition Block into the ACPI Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPI Namespace, can contain
references to the Differentiated Definition Block. For more information, see section 5.2.11, “Definition
Blocks.”

Device
Hardware component outside the core chip set of a platform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Integrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget this information
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS software is responsible for saving and restoring the information.
Device Context refers to small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply a DSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base
system. The OS always inserts the DSDT information into the ACPI Namespace at system boot time
and never removes it.

Unified Extensible Firmware Interface (UEFI)
An interface between the OS and the platform firmware. The interface is in the form of data tables that
contain platform related information, and boot and run-time service calls that are available to the OS
and loader. Together, these provide a standard environment for booting an OS.

Embedded Controller
The general class of microcontrollers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllers in any platform design,
as long as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller Interface
A standard hardware and software communications interface between an OS driver and an embedded
controller. This allows any OS to provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
This in turn enables the OEM to provide platform features that the OS and applications can use.

Definition of Terms 35

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. The FACS is passed to an ACPI-compatible OS via the Fixed ACPI Description Table (FADT).
The FACS contains the system’s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details that
the OS needs to directly manage the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT, which contains other platform implementation and configuration details. An OEM must
provide an FADT to an ACPI-compatible OS in the RSDT/XSDT. The OS always inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removes it.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events
A set of events that occur at the ACPI interface when a paired set of status and event bits in the fixed
feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SCI is raised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registers in fixed feature register space at specific address locations in system I/O
address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
general-purpose events generate SCIs.

Generic Feature
A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events.

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled G0 through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bits in ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignores ignored bits in ACPI hardware registers on reads and preserves ignored bits on
writes.

Intel Architecture-Personal Computer (IA-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry-
standard PC architecture.

I/O APIC
An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the
processor’s local APIC.

I/O SAPIC
An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devices to the processor’s local APIC.

36 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses a legacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPI or OSPM power management support.

Legacy OS
An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the I/O APIC.

Local SAPIC
A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/O
SAPIC.

Multiple APIC Description Table (MADT)
The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT is a list of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. There is a set of rules for naming objects.

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
An array of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operate in a given
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.

Definition of Terms 37

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within a register grouping can be split between the two register blocks. This allows the
bits within a register grouping to be split between two chips.

Reserved Bits
Some unused bits in ACPI hardware registers are designated as “Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bits in enable and status
registers and preserve bits in control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)
A table with the signature ‘RSDT,’ followed by an array of physical pointers to other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform description.
After the DSDT is loaded into the ACPI Namespace, each secondary description table listed in the
RSDT/XSDT with a unique OEM Table ID is loaded. This allows the OEM to provide the base
support in one table, while adding smaller system options in other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signals the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem
A battery subsystem that conforms to the following specifications: Smart Battery and either Smart
Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

System Management Bus (SMBus)
A two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface
A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable Interrupt Controller (SAPIC)
An advanced APIC commonly found on Intel ItaniumTM Processor Family-based 64-bit systems.

System Context
The volatile data in the system that is not saved by a device driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is an active, low,
shareable, level interrupt.

System Management Interrupt (SMI)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems

38 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

must support a way of re-mapping the interrupt events between SMIs and SCIs when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are
marked by trip points, which are implemented to generate an SCI when the temperature in a thermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

Definition of Terms 39

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2.2 Global System State Definitions

Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principal criteria:
1. Does application software run?
2. What is the latency from external events to application response?
3. What is the power consumption?
4. Is an OS reboot required to return to a working state?
5. Is it safe to disassemble the computer?
6. Can the state be entered and exited electronically?

Following is a list of the system states:

G3 Mechanical Off
A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of a large red switch). It is implied by the entry of this off state through a
mechanical means that no electrical current is running through the circuitry and that it can be worked
on without damaging the hardware or endangering service personnel. The OS must be restarted to
return to the Working state. No hardware context is retained. Except for the real-time clock, power
consumption is zero.

G2/S5 Soft Off
A computer state where the computer consumes a minimal amount of power. No user mode or system
mode code is run. This state requires a large latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machine in this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not
being executed, and the system “appears” to be off (from an end user’s perspective, the display is off,
and so on). Latency for returning to the Working state varies on the wake environment selected prior to
entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the
rest by system software. It is not safe to disassemble the machine in this state.

G0 Working
A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can
select, through some UI, various performance/power characteristics of the system to have the software
optimize for performance or battery life. The system responds to external events in real time. It is not
safe to disassemble the machine in this state.

40 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

S4 Non-Volatile Sleep
A special global system state that allows system context to be saved and restored (relatively slowly)
when power is lost to the motherboard. If the system has been commanded to enter S4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers.
The machine will then enter the S4 state. When the system leaves the Soft Off or Mechanical Off state,
transitioning to Working (G0) and restarting the OS, a restore from a NVS file can occur. This will
only happen if a valid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OS restarting, it will reload the system context and activate it. The net effect for the
user is what looks like a resume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to S4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that
the OS or BIOS can save the system context takes too long from the user’s point of view. The
transition from Mechanical Off to S4 is likely to be done when the user is not there to see it.

Because the S4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Global
system state

Software
runs Latency

Power
consumption

OS restart
required

Safe to
disassemble
computer

Exit state
electronically

G0 Working Yes 0 Large No No Yes

G1 Sleeping No >0, varies with
sleep state

Smaller No No Yes

G2/S5 Soft
Off

No Long Very near 0 Yes No Yes

G3
Mechanical
Off

No Long RTC battery Yes Yes No

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” This implies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the G0 and G1 states almost exclusively (the G3 state may be used for moving the machine or
repairing it).

Definition of Terms 41

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
 Power consumption. How much power the device uses.
 Device context. How much of the context of the device is retained by the hardware. The OS is

responsible for restoring any lost device context (this may be done by resetting the device).
 Device driver. What the device driver must do to restore the device to full on.
 Restore time. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes, only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For a list of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 (Off)
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devices in this state do not decode their address lines. Devices in this state have the longest
restore times. All classes of devices define this state.

D3hot
The meaning of the D3hot State is defined by each device class. Devices in the D3hot State are
required to be software enumerable. In general, D3hot is expected to save more power and optionally
preserve device context. If device context is lost when this state is entered, the OS software will
reinitialize the device when transitioning to D0. Devices in this state can have long restore times. All
classes of devices define this state.

NOTE: The D3hot state differs from the D3 state in two distinct parameters; the main power rail is
present and software can access a device in D3hot. For devices that support both D3hot and D3
exposed to OSPM via _PR3, device software/drivers must always assume OSPM will target D3and
must assume device context will be lost.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
D0. Buses in D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

D0 (Fully-On)
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

42 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 2-2 Summary of Device Power States

Device State Power Consumption Device Context Retained Driver Restoration

D0 - Fully-On As needed for operation All None

D1 D0>D1>D2> D3hot>D3 >D2 <D2

D2 D0>D1>D2> D3hot>D3 <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization
and load

D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

2.4 Sleeping State Definitions

Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4, “System _Sx States.” For a detailed definition of the transitions between each of the Sx states, see
section 15.1, “Sleeping States.”

S1 Sleeping State
The S1 sleeping state is a low wake latency sleeping state. In this state, no system context is lost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 sleeping state is a low wake latency sleeping state. This state is similar to the S1 sleeping state
except that the CPU and system cache context is lost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’s reset vector after the wake event.

S3 Sleeping State
The S3 sleeping state is a low wake latency sleeping state where all system context is lost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L2 configuration context. Control starts from the processor’s reset
vector after the wake event.

S4 Sleeping State
The S4 sleeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 state is similar to the S4 state except that the OS does not save any context. The system is in
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the S4 state to allow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states within
the global working state, G0. The Cx states possess specific entry and exit semantics and are briefly defined
below. For a more detailed definition of each Cx state, see section 8.1, “Processor Power States.”

Definition of Terms 43

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

C0 Processor Power State
While the processor is in this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. While in the C3
state, the processor’s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within the
active/executing states, C0 for processors and D0 for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.4.4, “Processor
Performance Control.” For a more detailed definition of each Px state from a device perspective see section
3.6, “Device and Processor Performance States,” and the device class specifications in Appendix A.

P0 Performance State
While a device or processor is in this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of a device or processor is limited below
its maximum and consumes less than maximum power.

Pn Performance State
In this performance state, the performance capability of a device or processor is at its minimum level
and consumes minimal power while remaining in an active state. State n is a maximum number and is
processor or device dependent. Processors and devices may define support for an arbitrary number of
performance states not to exceed 16.

44 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Overview 45

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3 ACPI Overview

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,
SMM-based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM is responsible for
handling motherboard device configuration events as well as for controlling the power, performance, and
thermal status of the system based on user preference, application requests and OS imposed Quality of
Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

 System power management. ACPI defines mechanisms for putting the computer as a whole in and
out of system sleeping states. It also provides a general mechanism for any device to wake the
computer.

 Device power management. ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

 Processor power management. While the OS is idle but not sleeping, it will use commands described
by ACPI to put processors in low-power states.

 Device and processor performance management. While the system is active, OSPM will transition
devices and processors into different performance states, defined by ACPI, to achieve a desirable
balance between performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

 Configuration / Plug and Play. ACPI specifies information used to enumerate and configure
motherboard devices. This information is arranged hierarchically so when events such as docking and
undocking take place, the OS has precise, a priori knowledge of which devices are affected by the
event.

 System Events. ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the core logic
chip set.

 Battery management. Battery management policy moves from the APM BIOS to the ACPI OS. An
ACPI-compatible battery device needs either a Smart Battery subsystem interface, which is controlled
by the OS directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, allowing an OEM to
choose any type of the battery and any kind of communication interface supported by ACPI. The
battery must comply with the requirements of its interface, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by adjusting
the Low Battery or Battery Warning trip point. When there are multiple batteries present, the battery
subsystem is not required to perform any synthesis of a “composite battery” from the data of the
separate batteries. In cases where the battery subsystem does not synthesize a “composite battery”
from the separate battery’s data, the OS must provide that synthesis.

 Thermal management. Since the OS controls the power and performance states of devices and
processors, ACPI also addresses system thermal management. It provides a simple, scalable model that
allows OEMs to define thermal zones, thermal indicators, and methods for cooling thermal zones.

 Embedded Controller. ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This allows any OS to provide a standard
bus enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. This in turn enables the OEM to provide platform features that the OS and
applications can use.

46 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 SMBus Controller. ACPI defines a standard hardware and software communications interface
between an OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. This in turn enables the OEM
to provide platform features that the OS and applications can use.

OSPM’s mission is to optimally configure the platform and to optimally manage the system’s power,
performance, and thermal status given the user’s preferences and while supporting OS imposed Quality of
Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platform is in ACPI mode, the platform’s hardware, firmware, or other non-OS software must not
manipulate the platform’s configuration, power, performance, and thermal control interfaces independently
of OSPM. OSPM alone is responsible for coordinating the configuration, power management, performance
management, and thermal control policy of the system. Manipulation of these interfaces independently of
OSPM undermines the purpose of OSPM/ACPI and may adversely impact the system’s configuration,
power, performance, and thermal policy goals. There are two exceptions to this requirement. The first is in
the case of the possibility of damage to a system from an excessive thermal conditions where an ACPI
compatible OS is present and OSPM latency is insufficient to remedy an adverse thermal condition. In this
case, the platform may exercise a failsafe thermal control mechanism that reduces the performance of a
system component to avoid damage. If this occurs, the platform must notify OSPM of the performance
reduction if the reduction is of significant duration (in other words, if the duration of reduced performance
could adversely impact OSPM’s power or performance control policy - operating system vendors can
provide guidance in this area). The second exception is the case where the platform contains Active cooling
devices but does not contain Passive cooling temperature trip points or controls,. In this case, a hardware
based Active cooling mechanism may be implemented without impacting OSPM’s goals. Any platform that
requires both active and passive cooling must allow OSPM to manage the platform thermals via ACPI
defined active and passive cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and
knowledge of how devices are being used by applications, the OS puts devices in and out of low-power
states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into a low- power state. The OS uses ACPI to
control power state transitions in hardware.

ACPI Overview 47

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:

Figure 3-1 Global System Power States and Transitions

See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual devices
can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not being used.
Any device the system turns off because it is not actively in use can be turned on with short latency. (What
“short” means depends on the device. An LCD display needs to come on in sub-second times, while it is
generally acceptable to wait a few seconds for a printer to wake.)

The net effect of this is that the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer is idle or the user has pressed the power button, the OS will put the computer into one
of the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
a switch and a latency of minutes is allowed, the OS could save all system context into an NVS file and
transition the hardware into the S4 sleeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

G3 -Mech
Off

Legacy

Wake
Event

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure/
Power Off

G2 (S5) -
Soft Off

BIOS
Routine

C0

D0

D1
D2

D3
Modem

D0

D1
D2

D3
HDD

D0

D1
D2

D3
CDROM

C2

C1

Cn

Performance
State Px

Throttling

C0

CPU

48 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The other states are used less often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Users typically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or,
on a laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user wants
the machine to “come on” in less than 1 second with all context as it was when the user turned the machine
“off”), system alert functions (such as the system being used as an answering machine or fax machine), or
application function (such as saving a user file).

In an OSPM system, there are two switches. One is to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other is the “main” power button. This is in some obvious place (for example,
beside the keyboard on a laptop). Unlike legacy on/off buttons, all it does is send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section
11, “Thermal Management”) and the embedded controller interface (see section 12, “ACPI Embedded
Controller Interface Specification”).

3.2.2.2 Desktop PCs

Power-managed desktops will be of two types, though the first type will migrate to the second over time.

 Ordinary “Green PC.” Here, new appliance functions are not the issue. The machine is really only
used for productivity computations. At least initially, such machines can get by with very minimal
function. In particular, they need the normal ACPI timers and controls, but don’t need to support
elaborate sleeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as possible (to
allow for maximum compute speed with minimum power wasted on unused devices). Such PCs will
also need to support wake from the sleeping state by means of a timer, because this allows
administrators to force them to turn on just before people are to show up for work.

 Home PC. Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of a laptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a thermal
management aspect to a home PC, as a home PC user wants the system to run as quietly as possible,
often in a thermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

ACPI Overview 49

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Day Mode. In day mode, servers are power-managed much like a corporate ordinary green PC, staying
in the Working state all the time, but putting unused devices into low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power management can
result in large savings. OSPM allows careful tuning of when to do this, thus making it workable.

 Night Mode. In night mode, servers look like home PCs. They sleep as deeply as they can and are still
able to wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a print job
at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and then goes back to
sleep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state is
described, and an example of ACPI-compatible device management using a modem is given.

3.3.1 Power Management Standards

To manage power of all the devices in the system, the OS needs standard methods for sending commands
to a device. These standards define the operations used to manage power of devices on a particular I/O
interconnect and the power states that devices can be put into. Defining these standards for each I/O
interconnect creates a baseline level of power management support the OS can utilize. Independent
Hardware Vendors (IHVs) do not have to spend extra time writing software to manage power of their
hardware, because simply adhering to the standard gains them direct OS support. For OS vendors, the I/O
interconnect standards allow the power management code to be centralized in the driver for each I/O
interconnect. Finally, I/O interconnect-driven power management allows the OS to track the states of all
devices on a given I/O interconnect. When all the devices are in a given state (or example, D3 - off), the OS
can put the entire I/O interconnect into the power supply mode appropriate for that state (for example, D3 -
off).

I/O interconnect-level power management specifications are written for a number of buses including:
 PCI
 PCI Express
 CardBus
 USB
 IEEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of the following criteria:

 Power consumption. How much power the device uses.

 Device context How much of the context of the device is retained by the hardware.

 Device driver. What the device driver must do to restore the device to fully on.

 Restore latency. How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See section 2.3, “Device Power State Definitions,” for the detailed description of the general device
power states (D0-D3).

50 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.3.3 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to set
the device power state to a given level is invoked, the actions a device might take and the specific sorts of
behaviors the OS can assume while the device is in that state will vary from device type to device type. For
a fully integrated device power management system, these class-specific power characteristics must also be
standardized:
 Device Power State Characteristics. Each class of device has a standard definition of target power

consumption levels, state-change latencies, and context loss.
 Minimum Device Power Capabilities. Each class of device has a minimum standard set of power

capabilities.
 Device Functional Characteristics. Each class of device has a standard definition of what subset of

device functionality or features is available in each power state (for example, the net card can receive,
but cannot transmit; the sound card is fully functional except that the power amps are off, and so on).

 Device Wakeup Characteristics. Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state characteristics for
each class of device.

3.4 Controlling Device Power

ACPI interfaces provides control and information needed to perform device power management. ACPI
interfaces describe to OSPM the capabilities of all the devices it controls. It also gives the OS the control
methods used to set the power state or get the power status for each device. Finally, it has a general scheme
for devices to wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devices is handled
through their own bus specification (in this case, PCI). All other devices on the main board are handled
through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported through their own
bus specification, the root of each bus in the system, and devices that have additional power management or
configuration options not covered by their own bus specification.

For more detailed information see section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

As the OS enumerates devices in the system, it gets information about the power management features that
the device supports. The Differentiated Definition Block given to the OS by the BIOS describes every
device handled by ACPI. This description contains the following information:
 A description of what power resources (power planes and clock sources) the device needs in each

power state that the device supports. For example, a device might need a high power bus and a clock in
the D0 state but only a low-power bus and no clock in the D2 state.

 A description of what power resources a device needs in order to wake the machine (or none to
indicate that the device does not support wake). The OS can use this information to infer what device
and system power states from which the device can support wake.

 The optional control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States

OSPM uses the Set Power State operation to put a device into one of the four power states.

ACPI Overview 51

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When a device is put in a lower power state, it configures itself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state based
on the current device requirements on that bus. For example, if all devices on a bus are in the D3 state, the
OS will send a command to the bus control chip set to remove power from the bus (thus putting the bus in
the D3 state). If a particular bus supports a low-power supply state, the OS puts the bus in that state if all
devices are in the D1 or D2 state. Whatever power state a device is in, the OS must be able to issue a Set
Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

When a device is to be set in a particular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS tracks all the devices on a given power
resource. When all the devices on a resource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to
be turned on, the OS first turns on the power resource using a control method and then signals the device to
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
device in that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changes in power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS via the SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signals to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining capacity),
the OS uses control methods from the battery’s description table to read this information. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfaces to
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can still forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devices in a device and bus
specific manner.

52 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The OS enables the wake feature on devices by setting that device’s SCI Enable bit. The location of this bit
is listed in the device’s entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine1 (based on capabilities reported in
the description table).

When the computer is in the Sleeping state and a wake device decides to wake the machine, it signals to the
ACPI chip set. The SCI status bit corresponding to the device waking the machine is set, and the ACPI chip
set resumes the machine. After the OS is running again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from certain
states (such as the S4 state), it may start out in non-ACPI mode. In this case, the SCI status bit may be
cleared when ACPI mode is re-entered. However the platform must still attempt to record the wake source
for retrieval by OSPM at a later point.

Note: Although the above description explains how a device can wake the system, note that a device can
also be put into a low power state during the S0 system state, and that this device may generate a wake
signal in the S0 state as the following example illustrates.

1 Some OS policies may require the OS to put the machine into a global system state for which the device
can no longer wake the system. Such as when a system has very low battery power.

ACPI Overview 53

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(This example is greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

D0 Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook

D2 Same as D3

D3 Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook

The power policy for the modem is defined as follows:

D3  D0 COM port opened

D0, D1  D3 COM port closed

D0  D1 Modem put in answer mode

D1  D0 Application requests dial or the phone rings while the modem is in answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

54 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware
as shown in Figure 3-2. This is just an example for illustrating features of ACPI. This example is not
intended to describe how OEMs should build hardware.

S
w

itc
h

e
d

p
o

w
e

r

S
w

itc
h

e
d

p
o

w
e

r
ACPI core
chip set Phone

interface
Modem

controller

I/O

Control
Phone

line

PWR1 PWR2

RI

WAKE

PWR1_EN

PWR2_EN

MDM_D1
MDM_D3

I/O COM port
(UART)

I/O

COM_D3

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part is isolated
when power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports D0, D1, and D3:

D0 requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from D0,
D1, and D3)

Control methods for setting power state and resources

ACPI Overview 55

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.4.5.2 Setting the Modem Power State

While the OS is running (G0 state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the D0 state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the
PWR2_EN line. Then, OSPM runs a control method (_PS1) provided in the modem’s entry to put the
device in the D1 state. This control method asserts the MDM_D1 signal that tells the modem controller to
go into a low-power mode.

OSPM does not always turn off power resources when a given device is put in a lower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWR1 is in use. OSPM does not turn off the PWR1 resource.
It continues the state transition process by running the modem’s control method to switch the device to the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM
port is closed, the same sequence of events will take place to put it in the D3 state. Notice that these
registers might not be in the device itself. For example, the control method could read the register that
controls MDM_D3.

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power state of
the modem. To determine the modem’s current power state (D0-D3), OSPM runs a control method (_PSC)
supplied in the modem’s entry in the Differentiated Definition Block. This control method reads from the
necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer

As indicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can still provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devices in the appropriate power state, and puts all other devices in the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem’s phone interface asserting its ring indicate (RI)
line when it detects a ring on the phone line. This line is routed to the core chip set to generate a wake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OS is running, it puts the device in
the D0 state and begins handling interrupts from the modem to process the event.

56 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OS is idle. In these low-power states, the CPU does not run any instructions, and wakes when an
interrupt, such as the OS scheduler’s timer interrupt, occurs.

The OS determines how much time is being spent in its idle loop by reading the ACPI Power Management
Timer. This timer runs at a known, fixed frequency and allows the OS to precisely determine idle time.
Depending on this idle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it enters its idle loop.

The CPU states are defined in detail in section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, C0 for processors and D0 for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest impact
when the states invoke different device and processor efficiency levels as opposed to a linear scaling of
performance and energy consumption. Since performance state transitions occur in the active/executing
device states, care must be taken to ensure that performance state transitions do not adversely impact the
system.

Examples of device performance states include:
 A hard drive that provides levels of maximum throughput that correspond to levels of power

consumption.
 An LCD panel that supports multiple brightness levels that correspond to levels of power consumption.
 A graphics component that scales performance between 2D and 3D drawing modes that corresponds to

levels of power consumption.
 An audio subsystem that provides multiple levels of maximum volume that correspond to levels of

maximum power consumption.
 A Direct-RDRAMTM controller that provides multiple levels of memory throughput performance,

corresponding to multiple levels of power consumption, by adjusting the maximum bandwidth
throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM to
configure the required resources of motherboard devices along with their dynamic insertion and removal.
ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and Secondary
System Description Tables (SSDTs), describe motherboard devices in a hierarchical format called the
ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware IDs.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPI Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently used
by the device, and objects for configuring those resources. The information is used by the Plug and Play OS
(OSPM) to configure the devices.

ACPI is used primarily to enumerate and configure motherboard devices that do not have other hardware
standards for enumeration and configuration. For example, PCI devices on the motherboard need not be
enumerated by ACPI; Plug and Play information for these devices need not be included in the APCI
Namespace. However, power management information and insertion/removal control for these devices can
still appear in the namespace if the devices’ power management and/or insertion/removal is to be controlled
by OSPM via ACPI-defined interfaces.

ACPI Overview 57

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes
boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OS finds it in the DSDT. This table will have control methods that give the OS the following
information:
 The device can use IRQ 3, I/O 3F8-3FF or IRQ 4, I/O 2E8-2EF
 The device is currently using IRQ 3, I/O 3F8-3FF

The OS configures the modem’s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the device
for those resources by running a control method supplied in the modem’s section of the Differentiated
Definition Block. This control method will write to any I/O ports or memory addresses necessary to
configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and I/O buses, that comprise what is commonly known as a
“NUMA node”. Processor accesses to memory or I/O resources within the local NUMA node is generally
faster than processor accesses to memory or I/O resources outside of the local NUMA node. ACPI defines
interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receives this interrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one bit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the
status bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above is just one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three status
bits (and three enable bits). Yet another design might have every individual event wired to its own pin and
status bit. This design, at the opposite extreme from the single pin design, allows very complex hardware,
yet very simple control methods. Countless variations in wiring up events are possible. However, note that
care must be taken to ensure that if events share a signal that the event that generated the signal can be
determined in the corresponding event handling control method allowing the proper device notification to
be sent.

58 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystem is
not required to perform any synthesis of a “composite battery” from the data of the separate batteries. In
cases where the battery subsystem does not synthesize a “composite battery” from the separate battery's
data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method
Battery interface.

 Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see section 12.9, “SMBus Host
Controller Interface via Embedded Controller.” For additional information about the Smart Battery
subsystem interface, see section 10.1, “Smart Battery Subsystems.”

 Control Method Battery is completely accessed by AML code control methods, allowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI. For more
information about the Control Method Battery Interface, see section 10.2, “Control Method Batteries.”

This section describes concepts common to all battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’s condition. All battery system
types must provide notification to the OS when there is a change such as inserting or removing a battery, or
when a battery starts or stops discharging. Smart Batteries and some Control Method Batteries are also able
to give notifications based on changes in capacity. Smart batteries provide extra information such as
estimated run-time, information about how much power the battery is able to provide, and what the run-
time would be at a predetermined rate of consumption.

ACPI Overview 59

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

OEM designed initial capacity for warning

OEM designed initial capacity for low

Last full charged capacity
Designed capacity

Present remaining capacity

Figure 3-3 Reporting Battery Capacity

3.9.3 Battery Gas Gauge

At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

Remaining Battery Percentage[%] =
Battery Remaining Capacity [mAh/mWh]

Last Full Charged Capacity [mAh/mWh]
* 100

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Remaining Battery Life [h]=
Battery Remaining Capacity [mAh/mWh]

Battery Present Drain Rate [mA/mW]

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteries in
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM-designed levels, but cannot set these values lower than the OEM-designed
values, as shown in the figure below

60 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Warning

Low

Full

Critical

OEM-designed initial capacity for warning (minimum)

OEM-designed initial capacity for low (minimum)

Last full charged capacity

OSPM-selected low battery
capacity

OSPM-selected low battery warning capacity

OEM-defined Battery Critical flag

F

E

Figure 3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well as a flag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular
machine type, so the OEM-designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.13.

ACPI Overview 61

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The table below describes how these values should be set by the OEM and interpreted by the OS.

Table 3-1 Low Battery Levels

Level Description

Warning When the total available energy (mWh) or capacity (mAh) in the batteries falls below this
level, the OS will notify the user through the UI. This value should allow for a few minutes
of run-time before the “Low” level is encountered so the user has time to wrap up any
important work, change the battery, or find a power outlet to plug the system in.

Low This value is an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user
defined system state (S1-S5). In most situations this should be S4 so that system state is not
lost if the battery eventually becomes completely empty. The design of the OS should
consider that users of a multiple battery system may remove one or more of the batteries in
an attempt replace or charge it. This might result in the remaining capacity falling below
the “Low” level not leaving sufficient battery capacity for the OS to safely transition the
system into the sleeping state. Therefore, if the batteries are discharging simultaneously,
the action might need to be initiated at the point when both batteries reach this level.

Critical The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the OS
must attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of
0, but an OEM may choose to put a larger value in the Smart Battery Table to provide an
extra margin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the system is in a critically low state and is still providing power
to the system (in other words, the battery is discharging), the system is considered to be in
a critical energy state. The _BST control method is required to return the Critical flag on a
discharging battery only when all batteries have reached a critical state; the ACPI BIOS is
otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteries in a system are critical is not a situation that should be encountered normally,
since the system should be put into a sleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may be lost at
any time. For example, if a hard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt files if the write were not
completed. Even if a disk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settings if power was lost halfway through the write operation.

62 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the user.
However, it is possible with many battery systems to provide more useable runtime on an old battery if a
calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the BIOS setup menu, or by running a custom driver and calibration
application provided by the OEM. The calibration process typically takes several hours, and the laptop
must be plugged in during this time. Ideally the application that controls this should make this as good of a
user experience as possible, for example allowing the user to schedule the system to wake up and perform
the calibration at some time when the system will not be in use. Since the calibration user experience does
not need to be different from system to system it makes sense for this service to be provided by the OSPM.
.In this way OSPM can provide a common experience for end users and eliminate the need for OEMs to
develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in section 10.2.2.5 and 10.2.2.6. First, there
is a means to detect when it would be beneficial to calibrate the battery. Second there is a means to perform
that calibration cycle. Both of those functions may be implemented by dedicated hardware such as a battery
controller chip, by firmware in the embedded controller, by the BIOS, or by OSPM. From here on any
function implemented through AML, whether or not the AML code relies on hardware, will be referred to
as “AML controlled” since the interface is the same whether the AML passes control to the hardware or
not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be reported
through the _BMD method. Alternately, the _BMD method may simply report the number of cycles before
calibration should be performed and let the OS attempt to count the cycles. A counter implemented by the
hardware or the BIOS will generally be more accurate since the batteries can be used without the OS
running, but in some cases, a system designer may opt to simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle can
be AML controlled or OSPM controlled. OSPM can only implement a very simple algorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the _BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle
by calling _BMC. That method will either give control to the hardware, or will control the calibration cycle
itself. If the control of the calibration cycle is implemented entirely in AML code, the BIOS may avoid
continuously running AML code by having the initial call to _BMC start the cycle, set some state flags, and
then exit. Control of later parts of the cycle can be accomplished by putting code that checks these state
flags in the battery event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in section 10.2.

ACPI Overview 63

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.10 Thermal Management

ACPI allows the OS to play a role in the thermal management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal-coupled device. In this example, the whole notebook is covered as one large thermal zone. This
notebook uses one fan for active cooling and the CPU for passive cooling.

F0: PIC, PITs,
DMA, RTC, EIO, ...

CPU

CPU/
Memory/

PCI Bridge

F2:
USB

F1: BM
IDE

SIO:
COMs,
LPT,
FDC,
ACPI

EPROM

Graphics

Embedded
Controller

D
R
A
M

L
2

D
R
A
M

PCI/PCI
Bridge

L
A
N

M
P
E
G

NVRAM

LCD

LPT

COM

HDD
1

USB
Port 1

CRT

Keyboard

PS/2
Ports

Mouse

Docking

HDD
0

FDD

Momentary

Thermal
Zone

DPR0

DPR1

P
L
L

Fan
(Active Cooling)

(Passive Cooling)

Figure 3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see section 11.5, “Thermal Zone
Interface Requirements.”

64 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

3.10.1 Active and Passive Cooling Modes

ACPI defines two cooling modes, Active and Passive:

 Passive cooling. OS reduces the power consumption of devices at the cost of system performance to
reduce the temperature of the machine.

 Active cooling. OS increases the power consumption of the system (for example, by turning on a fan)
to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship is that Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or a
level of preference) for either performance or energy conservation. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference for
energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey the
cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing a thermal
trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to manipulate
device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’s physical requirement for fan silence may override the preference
for either performance or energy conservation.

A user’s desire for fan silence corresponds to the Passive cooling mode. Accordingly, a user’s desire for fan
silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in a complex system, ACPI specifies a multiple thermal zone implementation. Under a multiple
thermal zone model, OSPM will independently manage several thermal-coupled devices and a designated
thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods available to
each thermal zone. Each thermal zone can have more than one Passive and Active cooling device.
Furthermore, each zone might have unique or shared cooling resources. In a multiple thermal zone
configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

ACPI Hardware Specification 65

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4 ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. This section describes the hardware aspects of
ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goals, designated features
conform to a specific addressing and programming scheme. Hardware that falls within this category is
referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert a legacy-only hardware model to an ACPI/Legacy hardware
model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has a wide degree of flexibility in its implementation.

4.1 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:
 Performance sensitive features
 Features that drivers require during wake
 Features that enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing a thermal condition or extending battery life. If this logic were allowed
to reside in PCI configuration space, for example, several layers of drivers would be called to access this
address space. This takes a long time and will either adversely affect the power of the system (when trying
to enter a low-power state) or the accuracy of the event (when trying to get a time stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCI configuration space access is needed, the bus enumerator is loaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which OSPM
can communicate without any other driver’s assistance, allows OSPM to gather information prior to
making a decision as to whether it continues loading the entire OS or puts it back to sleep.

If elements of the OS fail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power button
events, the power button override feature provides a back-up mechanism to unconditionally transition the
system to the soft-off state.

4.1.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined in
this specification, conveys to OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

66 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI as Functional Fixed
Hardware.

In IA-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach is not recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach is that functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registers to exist in address spaces
other than the System I/O address space. This is accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information).
When specifically directed by the CPU manufacturer, the system firmware may define an interface as
functional fixed hardware by supplying a special address space identifier, FfixedHW (0x7F), in the address
space ID field for register definitions. It is emphasized that functional fixed hardware definitions may be
declared in the ACPI system firmware only as indicated by the CPU Manufacturer for specific interfaces
as the use of functional fixed hardware requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it a reliance on OS specific
software that must be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

4.2 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provides system OEMs with a wide degree of flexibility in the implementation of
specific functions in hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM-
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code allows the OEM to provide the means for OSPM to control a generic hardware feature’s control
and event logic.

The section entitled “ACPI Source Language Reference” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is a very compact machine language that the ACPI AML code interpreter
executes.

AML does two things:
 Abstracts the hardware from OSPM
 Buffers OEM code from the different OS implementations

ACPI Hardware Specification 67

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

One goal of ACPI is to allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware is that it is all implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods” that it calls to perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.

Another important goal of ACPI is to provide OS independence. To do this, the OEM AML code has to
execute the same under any ACPI-compatible OS. ACPI allows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic feature
is described to OSPM through AML code. This description takes the form of an object that sits in the ACPI
Namespace associated with the hardware to which it is adding value.

Generic Event
Logic

Control
Events

ACPI Driver
and AML-
Interpreter

Generic
Control
Logic

AML
Code

Rds

GP Event Status

Generic Child
Event Status

Figure 4-1 Generic Hardware Feature Model

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have a reference to the AML PowerResource object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the D3
state of the drive:

 _PS0. A control method to sequence the IDE drive to the D0 state.

 _PS3. A control method to sequence the IDE drive to the D3 state.

 _PSC. A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined PowerResource object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would describe
its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within the
_PS3 control method. This enables the following sequence:

When OSPM decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
drive into the D3 state (at which point the driver saves the device’s context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware to
place the HDD into an even lower power state.

68 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

As an example of a generic event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been detected
or when the user requests to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
a reader to understand the following:

 Which hardware registers are required or optional when an ACPI feature, concept or interface is
required by a design guide for a platform class

 How to design fixed hardware features
 How to design generic hardware features
 The ACPI Event Model

4.3 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

Write-only control bit

Enable, control or status bit

Sticky status bit

##
Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior
that it generates its control function when it is set. Reads to write-only bits are treated as ignore by software
(the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit it
directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a “1” to its bit
position.

The rectangular symbol represents a query value from the embedded controller. This is the value the
embedded controller returns to the system software upon a query command in response to an SCI event.
The query value is associated with the event control method that is scheduled to execute upon an embedded
controller event.

ACPI Hardware Specification 69

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.4 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit

Registername contains the name of the register as it appears in this specification

Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit resides in the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

4.5 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (G0-G3) as illustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” This state is
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device still runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 state transitions into either the G0 working state or the Legacy state depending on what the
platform supports. If the platform is an ACPI-only platform, then it allows a direct boot into the G0
working state by always returning the status bit SCI_EN set (1) (for more information, see section 4.7.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, a transition out of the G3 state requires a total
boot of OSPM.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “Soft Off,” or the G0 “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCIs are
generated) and the hardware uses legacy power management and configuration mechanisms. While in the
Legacy state, an ACPI-compliant OS can request a transition into the G0 working state by performing an
ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in the
G0 “working state,” OSPM can request a transition to Legacy mode by writing the ACPI_DISABLE value
to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN
bit LOW (for more information, see section 4.7.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The G0 “Working” state is the normal operating environment of an ACPI machine. In this state different
devices are dynamically transitioning between their respective power states (D0, D1, D2, D3hot, or D3)
and processors are dynamically transitioning between their respective power states (C0, C1, C2 or C3). In
this state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state. The
platform can only enter a single sleeping state at a time (referred to as the global G1 state); however, the
hardware can provide up to four system sleeping states that have different power and exit latencies
represented by the S1, S2, S3, or S4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled wake
events and what sleeping states these support). OSPM initiates the sleeping transition by enabling the
appropriate wake events and then programming the SLP_TYPx field with the desired sleeping state and
then setting the SLP_ENx bit. The system will then enter a sleeping state; when one of the enabled wake
events occurs, it will transition the system back to the working state (for more information, see section 15,
“Waking and Sleeping”).

70 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Another global state transition option while in the G0 “working” state is to enter the G2 “soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring the
system down in an orderly fashion (unloading applications, closing files, and so on). The policy for these
types of transitions can be associated with the ACPI power button, which when pressed generates an event
to the power button driver. When OSPM is finished preparing the operating environment for a power loss,
it will either generate a pop-up message to indicate to the user to remove power, in order to enter the G3
“Mechanical Off” state, or it will initiate a G2 “soft-off” transition by writing the value of the S5 “soft off”
system state to the SLP_TYPx register and setting the SLP_EN bit.

The G1 sleeping state is represented by four possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The sleeping state differs from the
working state in that the user’s operating environment is frozen in a low-power state until awakened by an
enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context and
wake sequences (for more information, see section 15, Waking and Sleeping”).

The G2 “soft off” state is an OS initiated system shutdown. This state is initiated similar to the sleeping
state transition (SLP_TYPx is set to the S5 value and setting the SLP_EN bit initiates the sequence).
Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only machine will re-enter
the G0 state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy machine transitions to
the Legacy state (SCI_EN bit is clear).

S4BIOS_F
S4BIOS_REQ

ACPI_DISABLE
(SCI_EN=0)

G3 -Mech
Off

Legacy
Boot

(SCI_EN=0)

Legacy
Boot

(SCI_EN=0)

ACPI_ENABLE
(SCI_EN=1)

Legacy

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

C0

G0 (S0) -
Working

G1 -
Sleeping

S4
S3

S2
S1

Power
Failure/
Power Off

ACPI
Boot

(SCI_EN=1)

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=(S1-S4)
and

SLP_EN

D0

D1
D2

D3
Modem

D0

D1
D2

D3
HDD

D0

D1
D2

D3
CDROM

BIOS
Routine

C2

C1

Cn

Performance
State Px

Throttling

C0

CPU

Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement
this behavior model. Events are used to notify OSPM that some action is needed, and control logic is used
by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A
hardware event is one that causes the hardware to unconditionally perform some operation. For example,
any wake event will sequence the system from a sleeping state (S1, S2, S3, and S4 in the global G1 state) to
the G0 working state (see Figure 15-1).

ACPI Hardware Specification 71

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPI-aware driver acts as the event handler. For generic logic events OSPM will schedule the execution
of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support a way of re-mapping the interrupt events between
SMIs and SCIs when switching between ACPI and legacy models. This is illustrated in the following block
diagram.

Power Plane
Control

Generic Space

GLBL STBY
Timer

PWRBTN

LID

THRM

DOCK

STS_CHG

RI

SMI Arbiter

Sleep/Wake
State machine

SMI#

SCI#

Legacy Only Event Logic

ACPI/Legacy Event Logic

ACPI Only Event Logic

SMI Events

SCI/SMI Events

Dec

0

1

CPU Clock
Control

Device
Traps

Device Idle
Timers

User
Interface

Thermal
Logic

Hardware
Events

RTC

SCI_EN

ACPI/Legacy Generic Control Features

ACPI/Legacy Fixed Control Features

Wake-up Events

PM Timer

SCI Arbiter

Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports a number of external events that are power-related (power
button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic
represents the three different types of events:

 OS Transparent Events. These events represent OEM-specific functions that have no OS support and
use software that can be operated in an OS-transparent fashion (that is, SMIs).

 Interrupt Events. These events represent features supported by ACPI-compatible operating systems,
but are not supported by legacy operating systems. When a legacy OS is loaded, these events are
mapped to the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped
to an OS-visible shareable interrupt (SCI#). This logic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI#
arbiter when the SCI_EN bit is set.

 Hardware events. These events are used to trigger the hardware to initiate some hardware sequence
such as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power management
models use the idle timers to determine when a device should be placed in a low-power state because it is
idle—that is, the device has not been accessed for the programmed amount of time. The device traps are
used to indicate when a device in a low-power state is being accessed by OSPM. The global standby timer
is used to determine when the system should be allowed to go into a sleeping state because it is idle—that
is, the user interface has not been used for the programmed amount of time.

72 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI mode.
This work is handled by different software structures in an ACPI-compatible OS. For example, the driver
model of an ACPI-compatible OS is responsible for placing its device into a low-power state (D1, D2,
D3hot, or D3) and transitioning it back to the On state (D0) when needed. And OSPM is responsible for
determining when the system is idle by profiling the system (using the PM Timer) and other knowledge it
gains through its operating structure environment (which will vary from OS to OS). When the system is
placed into the ACPI mode, these events no longer generate SMIs, as OSPM handles this function. These
events are disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking,
the power button, and so on) and this type of interrupt event changes to an SCI event when enabled for
ACPI. The ACPI OS will generate a request to the platform’s hardware (BIOS) to enter into the ACPI
mode. The BIOS sets the SCI_EN bit to indicate that the system has successfully entered into the ACPI
mode, so this is a convenient mechanism to map the desired interrupt (SMI or SCI) for these events (as
shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). This is a free running timer that the ACPI OS uses to profile system
activity. The frequency of this timer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware as is, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their use is limited by the defined ACPI control methods
(for more information, see section 9, “ACPI Devices and Device Specific Objects”). Generic hardware
usually controls power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt
status bits can be accessed via generic hardware interfaces; however, they have a “parent” interrupt status
bit in the GP_STS register. ACPI defines eight address spaces that may be accessed by generic hardware
implementations. These include:

 System I/O space
 System memory space
 PCI configuration space
 Embedded controller space
 System Management Bus (SMBus) space
 CMOS
 PCI BAR Target
 IPMI space

Generic hardware power management features can be implemented accessing spare I/O ports residing in
any of these address spaces. The ACPI specification defines an optional embedded controller and SMBus
interfaces needed to communicate with these associated address spaces.

4.5.1 Hardware Reserved Bits
ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status registers
and preserve bits in control registers, and they will treat these bits as ignored.

4.5.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to a register with ignored bit fields, it
preserves the ignored bit fields.

ACPI Hardware Specification 73

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.5.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a 1
to their bit position. Reads to write-only bit positions generate undefined results. Upon reads to registers
with write-only bits, software masks out all write-only bits.

4.5.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This condition is
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

4.5.4.1 Example 1: Related Device Interference

This example illustrates a cross device dependency where a device interferes with the proper operation of
other unrelated devices. Device A has a dependency that when it is being configured it blocks all accesses
that would normally be targeted for Device B. Thus, the device driver for Device B cannot access Device B
while Device A is being configured; therefore, it would need to synchronize access with the driver for
Device A. High performance, multithreaded operating systems cannot perform this kind of synchronization
without seriously impacting performance.

To further illustrate the point, assume that Device A is a serial port and Device B is a hard drive controller.
If these devices demonstrate this behavior, then when a software driver configures the serial port, accesses
to the hard drive need to block. This can only be done if the hard disk driver synchronizes access to the disk
controller with the serial driver. Without this synchronization, hard drive data will be lost when the serial
port is being configured.

4.5.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully write to its registers; if any other platform
access is able to break between the back-to-back accesses, then the write to Device A is unsuccessful. If the
Device A driver is unable to generate atomic back-to-back accesses to its device, then it relies on software
to synchronize accesses to its device with every other driver in the system; then a device cross dependency
is created and the platform is prone to Device A failure.

4.6 ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features are
categorized as the following:

 Fixed Hardware Features
 Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described
by the ACPI programming model. Generic hardware features reside in one of four address spaces (system
I/O, system memory, PCI configuration, embedded controller, or serial device I/O space) and are described
by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described since OSPM manipulates the
registers of fixed hardware devices and expects the defined behavior. Functional fixed hardware provides
functional equivalents of the fixed hardware feature interfaces as described in section 4.1.1, “Functional
Fixed Hardware.”

74 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Generic hardware feature implementation is flexible. This logic is controlled by OEM-supplied AML code
(for more information, see section 5, “ACPI Software Programming Model”), which can be written to
support a wide variety of hardware. Also, ACPI provides specialized control methods that provide
capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A good
understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many
types of hardware not listed.

Table 4-1 Feature/Programming Model Summary

Feature Name Description Programming Model

Power Management
Timer

24-bit or 32-bit free running timer. Fixed Hardware Feature Control
Logic

Power Button User pushes button to switch the system
between the working and sleeping states.

Fixed Hardware Event and
Control Logic or Generic
Hardware Event and Logic

Sleep Button User pushes button to switch the system
between the working and sleeping state.

Fixed Hardware Event and
Control Logic or Generic
Hardware Event and Logic

Power Button Override User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm Programmed time to wake the system. Optional Fixed Hardware Event2

Sleep/Wake Control
Logic

Logic used to transition the system
between the sleeping and working states.

Fixed Hardware Control and
Event Logic

Embedded Controller
Interface

ACPI Embedded Controller protocol and
interface, as described in section 12,
“ACPI Embedded Controller Interface
Specification.”

Generic Hardware Event Logic,
must reside in the general-
purpose register block

Legacy/ACPI Select Status bit that indicates the system is
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

Lid switch Button used to indicate whether the
system’s lid is open or closed (mobile
systems only).

Generic Hardware Event Feature

C1 Power State Processor instruction to place the
processor into a low-power state.

Processor ISA

C2 Power Control Logic to place the processor into a C2
power state.

Fixed Hardware Control Logic

C3 Power Control Logic to place the processor into a C3
power state.

Fixed Hardware Control Logic

2 RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

ACPI Hardware Specification 75

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Feature Name Description Programming Model

Thermal Control Logic to generate thermal events at
specified trip points.

Generic Hardware Event and
Control Logic (See description of
thermal logic in section 3.10,
“Thermal Management.”)

Device Power
Management

Control logic for switching between
different device power states.

Generic Hardware control logic

AC Adapter Logic to detect the insertion and removal
of the AC adapter.

Generic Hardware event logic

Docking/device
insertion and removal

Logic to detect device insertion and
removal events.

Generic Hardware event logic

4.7 ACPI Register Model

ACPI hardware resides in one of six address spaces:
 System I/O
 System memory
 PCI configuration
 SMBus
 Embedded controller
 Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI-defined interfaces. The generic hardware registers are needed for
any events generated by value-added hardware.

ACPI defines register blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains a list of pointers to the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registers that ACPI defines are:

 Status/Enable Registers (for events)
 Control Registers

If a register block is of the status/enable type, then it will contain a register with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation definition
that needs to be followed (unless otherwise noted), which is illustrated by the following diagram:

Status Bit

Enable Bit

Event Input
Event Output

Figure 4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determines if the SET status bit will generate an “Event Output,” which
generates an SCI when set if its enable bit is set.

76 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each bit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats a register grouping as a single register; but located in multiple places. To read a register
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYP field is an exception to this rule). Reserved bits, or
unused bits within a register block always return zero for reads and have no side effects for writes (which is
a requirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object _Sx
contains a SLP_TYPa and a SLP_TYPb field. That is, the object returns a package with two integer values
of 0-7 in it. OSPM will always write the SLP_TYPa value to the “A” register block followed by the
SLP_TYPb value within the field to the “B” register block. All other bit locations will be written with the
same value. Also, OSPM does not read the SLP_TYPx value but throws it away.

Register Block A

Register Block B

Bit d
Bit c

Bit b
Bit a

Bit e

Register
Grouping

Figure 4-5 Example Fixed Hardware Feature Register Grouping

As an example, the above diagram represents a register grouping consisting of register block A and register
block b. Bits “a” and “d” are implemented in register block B and register block A returns a zero for these
bit positions. Bits “b”, “c” and “e” are implemented in register block A and register block B returns a zero
for these bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does a logical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI defines the following fixed hardware register blocks. Each register block gets a separate pointer from
the FADT. These addresses are set by the OEM as static resources, so they are never changed—OSPM
cannot re-map ACPI resources. The following register blocks are defined:

ACPI Hardware Specification 77

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

PM1a_EVT_BLK

PM1b_EVT_BLK

PM2 Control Block

PM Timer Block

Processor Block

Register GroupingsRegister Blocks

PM1a_STS
PM1a_EN

PM1 EVT Grouping

PM1 CNT Grouping
PM1a_CNT_BLK

PM1b_CNT_BLK

PM1b_STS
PM1b_EN

PM1a_CNT

PM1b_CNT

PM2_CNT_BLKPM2_CNT

PM_TMR_BLKPM_TMR

P_BLK
P_CNT

P_LVL2
P_LVL3

Registers

GPE0_BLK

GPE1_BLK

GPE0_STS
GPE0_EN

GPE1_STS
GPE1_EN

General Purpose Event 0
Block

General Purpose Event 1
Block

Figure 4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a_EVT and PM1b_EVT register blocks, which contain the
fixed hardware feature event bits. Each event register block (if implemented) contains two registers: a
status register and an enable register. Each register grouping has a defined bit position that cannot be
changed; however, the bit can be implemented in either register block (A or B). The A and B register
blocks for the events allow chipsets to vary the partitioning of events into two or more chips. For read
operations, OSPM will generate a read to the associated A and B registers, OR the two values together, and
then operate on this result. For write operations, OSPM will write the value to the associated register in
both register blocks. Therefore, there are two rules to follow when implementing event registers:

 Reserved or unimplemented bits always return zero (control or enable).
 Writes to reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PM1a_CNT_BLK and PM1b_CNT_BLK register blocks. Each register block is associated with a single
control register. Each register grouping has a defined bit position that cannot be changed; however, the bit
can be implemented in either register block (A or B). There are two rules to follow when implementing
CNT registers:

 Reserved or unimplemented bits always return zero (control or enable).
 Writes to reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the top-
level generic event resides in one of the general-purpose register blocks. Any generic feature event status
not in the general-purpose register space is considered a child or sibling status bit, whose parent status bit is
in the general-purpose event register space. Notice that it is possible to have N levels of general-purpose
events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPE0_BLK or the GPE1_BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-purpose event
registers follow the event model for the fixed hardware event registers.

78 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.1 ACPI Register Summary

The following tables summarize the ACPI registers:

Table 4-2 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)

PM1a_STS PM1_EVT_LEN/2 <PM1a_EVT_BLK >

PM1a_EN PM1_EVT_LEN/2 <PM1a_EVT_BLK >+PM1_EVT_LEN/2

PM1b_STS PM1_EVT_LEN/2 <PM1b_EVT_BLK >

PM1b_EN PM1_EVT_LEN/2 <PM1b_EVT_BLK >+PM1_EVT_LEN/2

Table 4-3 PM1 Control Registers

Register Size (Bytes) Address (relative to register block)

PM1_CNTa PM1_CNT_LEN <PM1a_CNT_BLK >

PM1_CNTb PM1_CNT_LEN <PM1b_CNT_BLK >

Table 4-4 PM2 Control Register

Register Size (Bytes) Address (relative to register block)

PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >

Table 4-5 PM Timer Register

Register Size (Bytes) Address (relative to register block)

PM_TMR PM_TMR_LEN <PM_TMR_BLK >

Table 4-6 Processor Control Registers

Register Size (Bytes) Address (relative to register block)

P_CNT 4 Either <P_BLK> or specified by the PTC object (See section
8.3.1, “PTC [Processor Throttling Control].”)

P_LVL2 1 <P_BLK>+4h

P_LVL3 1 <P_BLK>+5h

Table 4-7 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)

GPE0_STS GPE0_LEN/2 <GPE0_BLK>

GPE0_EN GPE0_LEN/2 <GPE0_BLK>+GPE0_LEN/2

GPE1_STS GPE1_LEN/2 <GPE1_BLK>

GPE1_EN GPE1_LEN/2 <GPE1_BLK>+GPE1_LEN/2

ACPI Hardware Specification 79

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1a_EVT_BLK is a required register
block when the following ACPI interface categories are required by a class specific platform design guide:
 Power management timer control/status
 Processor power state control/status
 Global Lock related interfaces
 Power or Sleep button (fixed register interfaces)
 System power state controls (sleeping/wake control)

The PM1b_EVT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_EVT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 event grouping contains two registers that are required to be the same size:
the PM1x_STS and PM1x_EN (where x can be “a” or “b”). The length of the registers is variable and is
described by the PM1_EVT_LEN field in the FADT, which indicates the total length of the register block
in bytes. Hence if a length of “4” is given, this indicates that each register contains two bytes of I/O space.
The PM1 event register block has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PM1a_CNT_BLK is a required
register block when the following ACPI interface categories are required by a class specific platform design
guide:
 SCI/SMI routing control/status for power management and general-purpose events
 Processor power state control/status
 Global Lock related interfaces
 System power state controls (sleeping/wake control)

The PM1b_CNT_BLK is an optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bits to be partitioned between two chips. If the
PM1b_CNT_BLK is not supported, its pointer contains a value of zero in the FADT.

Each register block in the PM1 control grouping contains a single register: the PM1x_CNT. The length of
the register is variable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_CNT_BLK register block. The FADT contains a length
variable for this register block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register
(the only register in this register block). This register block is optional, if not supported its block pointer
and length contain a value of zero.

4.7.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_BLK register block, which is a required register block
when the power management timer control/status ACPI interface category is required by a class specific
platform design guide.

This register block contains the register that returns the running value of the power management timer. The
FADT also contains a length variable for this register block (PM_TMR_LEN) that is equal to the size in
bytes of the PM_TMR register (the only register in this register block).

80 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.1.5 Processor Control Block (P_BLK)

There is an optional processor control register block for each processor in the system. As this is a
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains the
processor control register (P_CNT-a 32-bit performance control configuration register), and the P_LVL2
and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of the
processor clock logic for that processor, the P_LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPE0_BLK and GPE1_BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own
length variable in the FADT, where GPE0_LEN and GPE1_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is 0 or 1).
The length of the GPE0_STS and GPE0_EN registers is equal to half the GPE0_LEN. The length of the
GPE1_STS and GPE1_EN registers is equal to half the GPE1_LEN. If a generic register block is not
supported then its respective block pointer and block length values in the FADT table contain zeros. The
GPE0_LEN and GPE1_LEN do not need to be the same size.

4.7.2 Fixed Hardware Features

This section describes the fixed hardware features defined by ACPI.

4.7.2.1 Power Management Timer

The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system is in the working (G0) state. To allow software to
extend the number of bits in the timer, the power management timer generates an interrupt when the last bit
of the timer changes (from 0 to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management
timer. The PM Timer is accessed directly by OSPM, and its programming model is contained in fixed
register space. The programming model can be partitioned in up to three different register blocks. The
event bits are contained in the PM1_EVT register grouping, which has two register blocks, and the timer
value can be accessed through the PM_TMR_BLK register block. A block diagram of the power
management timer is illustrated in the following figure:

PMTMR_PME

TMR_EN
PM1x_EN.0

3.579545 MHz

-- 24/32

TMR_VAL
PM_TMR.0-23/0-31

TMR_STS
PM1x_STS.024/32-bit

Counter
Bits(23/31-0)

Figure 4-7 Power Management Timer

ACPI Hardware Specification 81

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or
24-bit timer. The programming model for the PM Timer consists of event logic, and a read port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then the
setting of the TMR_STS will generate an ACPI event in the PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate a larger timer.

OSPM uses the read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial
TMR_VAL upon loading OSPM and assumes that the timer is counting. It is allowable to stop the Timer
when the system transitions out of the working (G0/S0) state. The only timer reset requirement is that the
timer functions while in the working state.

The PM Timer’s programming model is implemented as a fixed hardware feature to increase the accuracy
of reading the timer.

4.7.2.2 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the G0 working
state and the G1 sleeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended
mechanism to unconditionally transition the platform from a hung G0 working state to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:
 A single-button model that generates an event for both sleeping and entering the soft-off state. The

function of the button can be configured using OSPM UI.
 A dual-button model where the power button generates a soft-off transition request and a sleeping

button generates a sleeping transition request. The type of button implies the function of the button.

Control of these button events is either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a crashed
system with a fixed hardware power button, OSPM can make a “best” effort to determine whether the
power button has been pressed to transition to the system to the soft-off state, because it doesn’t require the
AML interpreter to access the event bits.

4.7.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-button
model, the user button acts as both a power button for transitioning the system between the G0 and G2
states and a sleeping button for transitioning the system between the G0 and G1 states. The action of the
user pressing the button is determined by software policy or user settings. In the dual-button model, there
are separate buttons for sleeping and power control. Although the buttons still generate events that cause
software to take an action, the function of the button is now dedicated: the sleeping button generates a
sleeping request to OSPM and the power button generates a waking request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table 4-8 Power Button Support

Indicated Support PWR_BUTTON Flag Power Button Device Object

Fixed hardware power button Clear Absent

Control method power button Set Present

82 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’t have a mechanical off button, which can also provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

4.7.2.2.1.1 Fixed Power Button

PWRBTN#

PWRBTN_EN
PM1x_EN.8

PWRBTN_STS
PM1x_STS.8

Debounce
Logic

PWRBTN Event

PWRBTN
Over-ridePWRBTN

Statemachine

Figure 4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system is in the
G0 state, then an SCI is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that sets the PWRBTN_STS bit on the button press “edge.”

While the system is in the G1 or G2 global states (S1, S2, S3, S4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally sets the
power button status bit and wakes the system, regardless of the value of the power button enable bit. OSPM
responds by clearing the power button status bit and waking the system.

4.7.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This allows
the power button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the power button is implemented using generic hardware, then the
OEM needs to define the power button as a device with an _HID object value of “PNP0C0C,” which then
identifies this device as the power button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a power button event was generated. While the system is in the working
state, a power button press is a user request to transition the system into either the sleeping (G1) or soft-off
state (G2). In these cases, the power button event handler issues the Notify command with the device
specific code of 0x80. This indicates to OSPM to pass control to the power button driver (PNP0C0C) with
the knowledge that a transition out of the G0 state is being requested. Upon waking from a G1 sleeping
state, the AML event handler generates a notify command with the code of 0x2 to indicate it was
responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform and
only requires an _HID. An example definition follows.

This example ASL code performs the following:
 Creates a device named “PWRB” and associates the Plug and Play identifier (through the _HID

object) of “PNP0C0C.”
 The Plug and Play identifier associates this device object with the power button driver.
 Creates an operational region for the control method power button’s programming model: System

I/O space at 0x200.
 Fields that are not accessed are written as zeros. These status bits clear upon writing a 1 to their bit

position, therefore preserved would fail in this case.

ACPI Hardware Specification 83

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Creates a field within the operational region for the power button status bit (called PBP). In this
case the power button status bit is a child of the general-purpose event status bit 0. When this bit is
set, it is the responsibility of the ASL-code to clear it (OSPM clears the general-purpose status
bits). The address of the status bit is 0x200.0 (bit 0 at address 0x200).

 Creates an additional status bit called PBW for the power button wake event. This is the next bit
and its physical address would be 0x200.1 (bit 1 at address 0x200).

 Generates an event handler for the power button that is connected to bit 0 of the general-purpose
event status register 0. The event handler does the following:

 Clears the power button status bit in hardware (writes a one to it).
 Notifies OSPM of the event by calling the Notify command passing the power button object and

the device specific event indicator 0x80.

// Define a control method power button
Device(_SB.PWRB){

Name(_HID, EISAID(“PNP0C0C”))
Name(_PRW, Package(){0, 0x4})

OperationRegion(\PHO, SystemIO, 0x200, 0x1)
Field(\PHO, ByteAcc, NoLock, WriteAsZeros){

PBP, 1, // sleep/off request
PBW, 1 // wakeup request

}
} // end of power button device object

Scope(_GPE){ // Root level event handlers
Method(_L00){ // uses bit 0 of GP0_STS register

If(\PBP){
Store(One, \PBP) // clear power button status
Notify(_SB.PWRB, 0x80) // Notify OS of event

}
If(\PBW){

Store(One, \PBW)
Notify(_SB.PWRB, 0x2)

}
} // end of _L00 handler

} // end of _GPE scope

4.7.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system is in the working state, a hardware event is generated and the system will transition to the
soft-off state. This hardware event is called a power button override. In reaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

4.7.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM to
transition the platform between the G0 working and G1 sleeping states. Support for a sleep button is
indicated by a combination of the SLEEP_BUTTON flag and the sleep button device object:

Table 4-9 Sleep Button Support

Indicated Support SLEEP_BUTTON Flag Sleep Button Device Object

No sleep button Set Absent

Fixed hardware sleep button Clear Absent

Control method sleep button Set Present

84 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.2.2.2.1 Fixed Hardware Sleeping Button

SLPBTN#

SLPBTN_EN
PM1x_EN.9

SLPBTN_STS
PM1x_STS.9Debounce

Logic
SLPBTN Event

SLPBTN
State machine

Figure 4-9 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model in the PM1x_EVT_BLK. This logic
consists of a single enable bit and sticky status bit. When the user presses the sleep button, the sleep button
status bit (SLPBTN_STS) is unconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN)
is set, and the sleep button status bit is set (SLPBTN_STS, due to a button press) while the system is in the
G0 state, then an SCI is generated. OSPM responds to the event by clearing the SLPBTN_STS bit. The
sleep button logic provides debounce logic that sets the SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the S0, S1, S2, S3 or S4 states), any further sleep button press (after
the button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the sleep
button status bit and waking the system.

4.7.2.2.2.2 Control Method Sleeping Button

The sleep button programming model can also use the generic hardware programming model. This allows
the sleep button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the sleep button is implemented via generic hardware, then the OEM
needs to define the sleep button as a device with an _HID object value of “PNP0C0E”, which then
identifies this device as the sleep button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a sleep button event was generated. While in the working state, a sleep
button press is a user request to transition the system into the sleeping (G1) state. In these cases the sleep
button event handler issues the Notify command with the device specific code of 0x80. This will indicate to
OSPM to pass control to the sleep button driver (PNP0C0E) with the knowledge that the user is requesting
a transition out of the G0 state. Upon waking-up from a G1 sleeping state, the AML event handler
generates a Notify command with the code of 0x2 to indicate it was responsible for waking the system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform and
only requires an _HID. An example definition is shown below.

The AML code below does the following:
 Creates a device named “SLPB” and associates the Plug and Play identifier (through the _HID

object) of “PNP0C0E.”
 The Plug and Play identifier associates this device object with the sleep button driver.
 Creates an operational region for the control method sleep button’s programming model: System

I/O space at 0x201.
 Fields that are not accessed are written as “1s” (these status bits clear upon writing a “1” to their

bit position, hence preserved would fail in this case).
 Creates a field within the operational region for the sleep button status bit (called PBP). In this

case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is set it
is the responsibility of the AML code to clear it (OSPM clears the general-purpose status bits).
The address of the status bit is 0x201.0 (bit 0 at address 0x201).

 Creates an additional status bit called PBW for the sleep button wake event. This is the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

 Generates an event handler for the sleep button that is connected to bit 0 of the general-purpose
status register 0. The event handler does the following:

 Clears the sleep button status bit in hardware (writes a “1” to it).

ACPI Hardware Specification 85

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

// Define a control method sleep button
Device(_SB.SLPB){

Name(_HID, EISAID(“PNP0C0E”))
Name(_PRW, Package(){0x01, 0x04})
OperationRegion(\Boo, SystemIO, 0x201, 0x1)
Field(\Boo, ByteAcc, NoLock, WriteAsZeros){

SBP, 1, // sleep request
SBW, 1 // wakeup request

} // end of field definition
}
Scope(_GPE){ // Root level event handlers

Method(_L01){ // uses bit 1 of GP0_STS register
If(\SBP){

Store(One, \SBP) // clear sleep button status
Notify(_SB.SLPB, 0x80) // Notify OS of event

}
If(\SBW){

Store(One, \SBW)
Notify(_SB.SLPB, 0x2)

}
} // end of _L01 handler

} // end of _GPE scope

4.7.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working state
upon a wake event. Notice that the S4BIOS state is entered in a different manner (for more information, see
section 15.1.4.2, “The S4BIOS Transition”).

SLP_EN
PM1x_CNT.S4.13

WAK_STS
PM1x_STS.S0.15

Sleeping

SLP_TYP:3
PM1x_CNT.S4.[10-12]

Wakeup/
Sleep
Logic

"OR" or all
Wake
Events

PWRBTN_OR

Figure 4-10 Sleeping/Wake Logic

The logic is controlled via two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type
of sleep state desired is programmed into the SLP_TYPx field and upon assertion of the SLP_EN the
hardware will sequence the system into the defined sleeping state. OSPM gets values for the SLP_TYPx
field from the _Sx objects defined in the static definition block. If the object is missing OSPM assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, OSPM will read
the designated _Sx object and place this value in the SLP_TYP field.

Additionally ACPI defines a fail-safe Off protocol called the “power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI defines that this sequence be initiated by the user pressing the power
button for over 4 seconds, at which point the hardware unconditionally sequences the system to the Off
state. This logic is represented by the PWRBTN_OR signal coming into the sleep logic.

86 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (G0). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-
on” after setting the SLP_EN/SLP_TYP bit fields. When waking from the S1 sleeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’s reset vector). The WAK_STS bit
provides a mechanism to separate OSPM’s sleeping and waking code during an S1 sequence. When the
hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able
to execute instructions), any enabled wake event is allowed to set the WAK_STS bit and sequence the
system back on (to the G0 state). If the system does not support the S1 sleeping state, the WAK_STS bit
can always return zero.

-If more than a single sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. This is accomplished by waking the system;
OSPM programs the new sleep state into the SLP_TYP field, and then sets the SLP_EN bit–placing the
system again in the sleeping state.

4.7.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system is in a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STS and RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STS and RTC_EN bits are not supported, OSPM will attempt to identify the RTC as a possible
wake source; however, it might miss certain wake events. If implemented, the RTC wake feature is
required to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the
RTC_S4 flag within the FADT (if set, then the platform supports RTC wake in the S4 state)3.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit is set, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

Real Time Clock
(RTC) RTC Wake-up

Event

RTC_EN
PM1x_EN.10

RTC_STS
PM1x_STS.10

Figure 4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and
enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. This also gives the platform the capability of indicating an RTC
wake source without consuming a GPE bit, as would be required if RTC wake was not implemented using
the fixed hardware RTC feature. If the fixed hardware feature event bits are not supported, then OSPM will
attempt to determine this by reading the RTC’s status field. If the platform implements the RTC fixed
hardware feature, and this hardware consumes resources, the _FIX method can be used to correlate these
resources with the fixed hardware. See section 6.2.5, “_FIX (Fixed Register Resource Provide”, for details.

3 Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will
disable the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

ACPI Hardware Specification 87

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:

 Day Alarm. The DAY_ALRM field points to an optional CMOS RAM location that selects the
day within the month to generate an RTC alarm.

 Month Alarm. The MON_ALRM field points to an optional CMOS RAM location that selects
the month within the year to generate an RTC alarm.

 Centenary Value. The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in IA-PC architecture systems). OSPM will
insure that the periodic and update interrupt sources are disabled prior to sleeping. This allows the RTC’s
interrupt pin to serve as the source for the RTC_STS bit generation. Note however that if the RTC interrupt
pin is used for RTC_STS generation, the RTC_STS bit value may not be accurate when waking from S4. If
this value is accurate when waking from S4, the platform should set the S4_RTC_STS_VALID flag, so that
OSPM can utilize the RTC_STS information.

Table 4-10 Alarm Field Decodings within the FADT

Field Value
Address (Location) in RTC CMOS
RAM (Must be Bank 0)

DAY_ALRM Eight bit value that can represent 0x01-0x31
days in BCD or 0x01-0x1F days in binary.
Bits 6 and 7 of this field are treated as
Ignored by software. The RTC is initialized
such that this field contains a “don’t care”
value when the BIOS switches from legacy
to ACPI mode. A don’t care value can be any
unused value (not 0x1-0x31 BCD or 0x01-
0x1F hex) that the RTC reverts back to a 24
hour alarm.

The DAY_ALRM field in the FADT
will contain a non-zero value that
represents an offset into the RTC’s
CMOS RAM area that contains the day
alarm value. A value of zero in the
DAY_ALRM field indicates that the day
alarm feature is not supported.

MON_ALRM Eight bit value that can represent 01-12
months in BCD or 0x01-0xC months in
binary. The RTC is initialized such that this
field contains a don’t care value when the
BIOS switches from legacy to ACPI mode. A
“don’t care” value can be any unused value
(not 1-12 BCD or x01-xC hex) that the RTC
reverts back to a 24 hour alarm and/or 31 day
alarm).

The MON_ALRM field in the FADT
will contain a non-zero value that
represents an offset into the RTC’s
CMOS RAM area that contains the
month alarm value. A value of zero in
the MON_ALRM field indicates that the
month alarm feature is not supported. If
the month alarm is supported, the day
alarm function must also be supported.

CENTURY 8-bit BCD or binary value. This value
indicates the thousand year and hundred year
(Centenary) variables of the date in BCD (19
for this century, 20 for the next) or binary
(x13 for this century, x14 for the next).

The CENTURY field in the FADT will
contain a non-zero value that represents
an offset into the RTC’s CMOS RAM
area that contains the Centenary value
for the date. A value of zero in the
CENTURY field indicates that the
Centenary value is not supported by this
RTC.

88 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems
use some type of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler).
ACPI-compatible hardware can choose to support both legacy and ACPI modes or just an ACPI mode.
Legacy hardware is needed to support these features for non-ACPI-compatible operating systems. When
the ACPI OS loads, it scans the BIOS tables to determine that the hardware supports ACPI, and then if the
it finds the SCI_EN bit reset (indicating that ACPI is not enabled), issues an ACPI activate command to the
SMI handler through the SMI command port. The BIOS acknowledges the switching to the ACPI model of
power management by setting the SCI_EN bit (this bit can also be used to switch over the event mechanism
as illustrated below):

Dec

0

1

Power
Management
Event Logic

SCI_EN
PM1x_CNT.0

SMI_EVNT

SCI_EVNT
Shareable
Interrupt

Figure 4-12 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SCIs in ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt events to
the SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt
logic. This bit always returns set for ACPI-compatible hardware that does not support a legacy power
management mode (in other words, the bit is wired to read as “1” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses
a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is mapped to
(see section 5.2.6, “System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has a register that generates a hardware
event (for example, SMI for IA-PC processors). OSPM uses this register to make the hardware switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SMI_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would
occur:

 ACPI driver checks that the SCI_EN bit is zero, and that it is in the Legacy mode.

 OSPM does an OUT to the SMI_CMD port with the data in the ACPI_ENABLE field of the
FADT.

 OSPM polls the SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

 ACPI driver checks that the SCI_EN bit is one, and that it is in the ACPI mode.

 OSPM does an OUT to the SMI_CMD port with the data in the ACPI_DISABLE field of the
FADT.

 OSPM polls the SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit. In this case OSPM skips the
Legacy to ACPI transition stated above.

ACPI Hardware Specification 89

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.2.6 Processor Control

The ACPI specification defines several processor controls including power state control, throttling control,
and performance state control. See Section 8, “Processor Configuration and Control,” for a complete
description of the processor controls.

4.7.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.7.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or all placed in a single chip. Although the
bits can be split between the two register blocks (each register block has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 PM1 Status Registers

Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> System I/O or Memory Space

Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN / 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two
registers: PM1a_STS or PM1b_STS. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state this register is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

90 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 4-11 PM1 Status Registers Fixed Hardware Feature Status Bits

Bit Name Description

0 TMR_STS This is the timer carry status bit. This bit gets set any time the most
significant bit of a 24/32-bit counter changes from clear to set or set to clear.
While TMR_EN and TMR_STS are set, an interrupt event is raised.

1-3 Reserved Reserved

4 BM_STS This is the bus master status bit. This bit is set any time a system bus master
requests the system bus, and can only be cleared by writing a “1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity
(this bit monitors any bus master that can cause an incoherent cache for a
processor in the C3 state when the bus master performs a memory
transaction).

5 GBL_STS This bit is set when an SCI is generated due to the BIOS wanting the
attention of the SCI handler. BIOS will have a control bit (somewhere within
its address space) that will raise an SCI and set this bit. This bit is set in
response to the BIOS releasing control of the Global Lock and having seen
the pending bit set.

6-7 Reserved Reserved. These bits always return a value of zero.

8 PWRBTN_STS This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off state, a wake event is
generated when the power button is pressed (regardless of the PWRBTN_EN
bit setting). This bit is only set by hardware and can only be reset by software
writing a “1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a system
that has stopped working from the G0 working state into the G2 soft-off state
called the power button override. If the Power Button is held active for more
than four seconds, this bit is cleared by hardware and the system transitions
into the G2/S5 Soft Off state (unconditionally).

Support for the power button is indicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

If the power button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.

9 SLPBTN_STS This optional bit is set when the sleep button is pressed. In the system
working state, while SLPBTN_EN and SLPBTN_STS are both set, an
interrupt event is raised. In the sleeping or soft-off states a wake event is
generated when the sleeping button is pressed and the SLPBTN_EN bit is set.
This bit is only set by hardware and can only be reset by software writing a
“1” to this bit position.

Support for the sleep button is indicated by the SLP_BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep button
device object is present in the ACPI Namespace, then this bit field is ignored
by OSPM.

If the sleep button was the cause of the wake (from an S1-S4 state), then this
bit is set prior to returning control to OSPM.

ACPI Hardware Specification 91

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Bit Name Description

10 RTC_STS This optional bit is set when the RTC generates an alarm (asserts the RTC
IRQ signal). Additionally, if the RTC_EN bit is set then the setting of the
RTC_STS bit will generate a power management event (an SCI, SMI, or
resume event). This bit is only set by hardware and can only be reset by
software writing a “1” to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit is
set prior to returning control to OSPM. If the RTC_S4 flag within the FADT
is set, and the RTC was the cause of the wake from the S4 state), then this bit
is set prior to returning control to OSPM.

11 Ignore This bit field is ignored by software.

12-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE
_STS

This bit is required for chipsets that implement PCI Express. This bit is set by
hardware to indicate that the system woke due to a PCI Express wakeup
event. A PCI Express wakeup event is defined as the PCI Express WAKE#
pin being active , one or more of the PCI Express ports being in the beacon
state, or receipt of a PCI Express PME message at a root port. This bit should
only be set when one of these events causes the system to transition from a
non-S0 system power state to the S0 system power state. This bit is set
independent of the state of the PCIEXP_WAKE_DIS bit.

Software writes a 1 to clear this bit. If the WAKE# pin is still active during
the write, one or more PCI Express ports is in the beacon state or the PME
message received indication has not been cleared in the root port, then the bit
will remain active (i.e. all inputs to this bit are level-sensitive).

Note: This bit does not itself cause a wake event or prevent entry to a
sleeping state. Thus if the bit is 1 and the system is put into a sleeping state,
the system will not automatically wake.

15 WAK_STS This bit is set when the system is in the sleeping state and an enabled wake
event occurs. Upon setting this bit system will transition to the working state.
This bit is set by hardware and can only be cleared by software writing a “1”
to this bit position.

92 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.1.2 PM1 Enable Registers

Register Location: <PM1a_EVT_BLK / PM1b_EVT_BLK> + PM1_EVT_LEN / 2 System I/O or

Memory Space

Default Value: 00h

Attribute: Read/Write

Size: PM1_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two
registers: PM1a_EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and
is pointed to by the PM1a_EVT_BLK or PM1b_EVT_BLK. The values for these pointers to the register
space are found in the FADT. Accesses to the PM1 Enable registers are done through byte or word
accesses.

For ACPI/legacy systems, when transitioning from the legacy to the G0 working state the enables are
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the G0 working state this register is cleared prior to entering the G0 working state.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as zero.

ACPI Hardware Specification 93

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 4-12 PM1 Enable Registers Fixed Hardware Feature Enable Bits

Bit Name Description

0 TMR_EN This is the timer carry interrupt enable bit. When this bit is set then an
SCI event is generated anytime the TMR_STS bit is set. When this bit
is reset then no interrupt is generated when the TMR_STS bit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The global enable bit. When both the GBL_EN bit and the GBL_STS
bit are set, an SCI is raised.

6-7 Reserved Reserved

8 PWRBTN_EN This optional bit is used to enable the setting of the PWRBTN_STS bit
to generate a power management event (SCI or wake). The
PWRBTN_STS bit is set anytime the power button is asserted. The
enable bit does not have to be set to enable the setting of the
PWRBTN_STS bit by the assertion of the power button (see
description of the power button hardware).

Support for the power button is indicated by the PWR_BUTTON flag
in the FADT being reset (zero). If the PWR_BUTTON flag is set or a
power button device object is present in the ACPI Namespace, then
this bit field is ignored by OSPM.

9 SLPBTN_EN This optional bit is used to enable the setting of the SLPBTN_STS bit
to generate a power management event (SCI or wake). The
SLPBTN_STS bit is set anytime the sleep button is asserted. The
enable bit does not have to be set to enable the setting of the
SLPBTN_STS bit by the active assertion of the sleep button (see
description of the sleep button hardware).

Support for the sleep button is indicated by the SLP_BUTTON flag in
the FADT being reset (zero). If the SLP_BUTTON flag is set or a
sleep button device object is present in the ACPI Namespace, then this
bit field is ignored by OSPM.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS bit to
generate a wake event. The RTC_STS bit is set any time the RTC
generates an alarm.

11-13 Reserved Reserved. These bits always return a value of zero.

14 PCIEXP_WAKE_DIS This bit is required for chipsets that implement PCI Express. This bit
disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no
impact on the value of the PCIEXP_WAKE_STS bit.

15 Reserved Reserved. These bits always return a value of zero.

4.7.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT), the
bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

94 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.2.1 PM1 Control Registers

Register Location: <PM1a_CNT_BLK / PM1b_CNT_BLK> System I/O or Memory Space

Default Value: 00h

Attribute: Read/Write

Size: PM1_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split between
two registers: PM1a_CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a_CNT_BLK or PM1b_CNT_BLK. The values for these pointers to
the register space are found in the FADT. Accesses to PM1 control registers are accessed through byte and
word accesses.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-13 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI interrupt for
the following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events will
generate an SMI interrupt. It is the responsibility of the hardware to set or reset
this bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the C0 state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

2 GBL_RLS This write-only bit is used by the ACPI software to raise an event to the BIOS
software, that is, generates an SMI to pass execution control to the BIOS for IA-
PC platforms. BIOS software has a corresponding enable and status bit to
control its ability to receive ACPI events (for example, BIOS_EN and
BIOS_STS). The GBL_RLS bit is set by OSPM to indicate a release of the
Global Lock and the setting of the pending bit in the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.

10-12 SLP_TYPx Defines the type of sleeping state the system enters when the SLP_EN bit is set
to one. This 3-bit field defines the type of hardware sleep state the system enters
when the SLP_EN bit is set. The _Sx object contains 3-bit binary values
associated with the respective sleeping state (as described by the object). OSPM
takes the two values from the _Sx object and programs each value into the
respective SLP_TYPx field.

13 SLP_EN This is a write-only bit and reads to it always return a zero. Setting this bit
causes the system to sequence into the sleeping state associated with the
SLP_TYPx fields programmed with the values from the _Sx object.

14-15 Reserved Reserved. This field always returns zero.

ACPI Hardware Specification 95

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.3 Power Management Timer (PM_TMR)

Register Location: <PM_TMR_BLK> System I/O or Memory Space

Default Value: 00h

Attribute: Read-Only

Size: 32 bits

This read-only register returns the current value of the power management timer (PM timer). The FADT
has a flag called TMR_VAL_EXT that an OEM sets to indicate a 32-bit PM timer or reset to indicate a 24-
bit PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is accessed as 32
bits.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-14 PM Timer Bits

Bit Name Description

0-23 TMR_VAL This read-only field returns the running count of the power management timer.
This is a 24-bit counter that runs off a 3.579545-MHz clock and counts while
in the S0 working system state. The starting value of the timer is undefined,
thus allowing the timer to be reset (or not) by any transition to the S0 state
from any other state. The timer is reset (to any initial value), and then
continues counting until the system’s 14.31818 MHz clock is stopped upon
entering its Sx state. If the clock is restarted without a reset, then the counter
will continue counting from where it stopped.

24-31 E_TMR_VAL This read-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the
upper eight bits; if the hardware supports a 24-bit timer then this field returns
all zeros.

4.7.3.4 PM2 Control (PM2_CNT)

Register Location: <PM2_CNT_BLK> System I/O, System Memory, or

Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read/Write

Size: PM2_CNT_LEN

This register block is naturally aligned and accessed based on its length. For ACPI 1.0 this register is byte
aligned and accessed as a byte.

This register contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table 4-15 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When this bit is
CLEAR the system arbiter is enabled and the arbiter can grant the bus to other
bus masters. When this bit is SET the system arbiter is disabled and the default
CPU has ownership of the system.

OSPM clears this bit when using the C0, C1 and C2 power states.

>0 Reserved Reserved

96 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and control
methods that can be used to control processors, see section 8, “Processor Configuration and Control.” This
register block is DWORD aligned and the context of this register block is not maintained across S3 or S4
sleeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Register Location: Either <P_BLK>: System I/O Space

or specified by _PTC Object: System I/O, System Memory, or

Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read/Write

Size: 32 bits

This register is accessed as a DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET values in the FADT.
Software treats all other CLK_VAL bits as ignored (those not used by the duty setting value).

Table 4-16 Processor Control Register Bits

Bit Name Description

0-3 CLK_VAL Possible locations for the clock throttling value.

4 THT_EN This bit enables clock throttling of the clock as set in the CLK_VAL field.
THT_EN bit must be reset LOW when changing the CLK_VAL field (changing
the duty setting).

5-31 CLK_VAL Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Register Location: Either <P_BLK> + 4: System I/O Space

or specified by _CST Object: System I/O, System Memory, or

Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read-Only

Size: 8 bits

This register is accessed as a byte.

Table 4-17 Processor LVL2 Register Bits

Bit Name Description

0-7 P_LVL2 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C2 power state” to the clock control
logic.

ACPI Hardware Specification 97

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Register Location: Either <P_BLK> + 5: System I/O Space

or specified by _CST Object: System I/O, System Memory, or

Functional Fixed Hardware Space

Default Value: 00h

Attribute: Read-Only
Size: 8 bits

This register is accessed as a byte.

Table 4-18 Processor LVL3 Register Bits

Bit Name Description

0-7 P_LVL3 Reads to this register return all zeros; writes to this register have no effect. Reads
to this register also generate an “enter a C3 power state” to the clock control
logic.

4.7.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset.
When implemented, this mechanism must reset the entire system. This includes processors, core logic, all
buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the logical
equivalent to power cycling the machine. Upon gaining control after a reset, OSPM will perform actions in
like manner to a cold boot.

The reset mechanism is implemented via an 8-bit register described by RESET_REG in the FADT (always
accessed via the natural alignment and size described in RESET_REG). To reset the machine, software will
write a value (indicated in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the
FADT indicates the location of the reset register.

The reset register may exist only in I/O space, Memory space, or in PCI Configuration space on a function
in bus 0. Therefore, the Address_Space_ID value in RESET_REG must be set to I/O space, Memory space,
or PCI Configuration space (with a bus number of 0). As the register is only 8 bits, Register_Bit_Width
must be 8 and Register_Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.

4.7.4 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system I/O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in
the general-purpose event registers. The general-purpose event registers are pointed to by the GPE0_BLK
and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined ACPI
address spaces. A device’s generic hardware programming model is described through an associated object
in the ACPI Namespace, which specifies the bit’s function, location, address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bits reside in either the GPE0_STS or GPE1_STS registers, and “child”
event status bits can reside in generic address space.

98 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned
into two chips: a chipset and an embedded controller.

 The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

 The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

GPx_REG
Block

ACPI-Compatible
Chip Set

Momentary

Momentary

PWRBTN#

LID
Switch

Power
Button

LID#

Embedded
Controller

8

EC_CS#

EXTSMI#

EXTPME#

AC#

E
m

b
e

d
d

e
d

C
o

n
tr

o
lle

r
In

te
rf

a
c
e

EC_STS
GP_STS.0

EC_EN
GP_EN.0

Other SCI
sources

SCI#
Shareable

Interrupt

AC_STS
E0.0

DOCK_STS
P0.40.1

DOCK#

RI#

EXTPME#

RI_STS
GP_STS.1

RI_EN
GP_EN.1

RI#

AC#

DOCK#

EXTPME# EXTPME#

LID_STS
GP_STS.2

LID_EN
GP_EN.2

LID

LID_POL
S33.2

EXTSMI#
SMI-only
sourcesEXTSMI#

EXTSMI#
SMI Only
Events

Debounce

Docking
Chip

DOCK#

34

35

Figure 4-13 Example of General-Purpose vs. Generic Hardware Events

At the top level, the generic events in the GPEx_STS register are the:
 Embedded controller interrupt, which contains two query events: one for AC detection and one for

docking (the docking query event has a child interrupt status bit in the docking chip).
 Ring indicate status (used for waking the system).
 Lid status.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query events is
active.

 A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this event;
OSPM will then schedule for execution the control method associated with query value 34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the query
value of 35 to be executed, which services the docking event.

ACPI Hardware Specification 99

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For each of the status bits in the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK_STS bit).

The lid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL is set
and LID is set) or closed (LID_POL is clear and LID is clear). This control bit resides in generic I/O space
(in this case, bit 2 of system I/O space 33h) and would be manipulated with a control method associated
with the lid object.

As with fixed hardware events, OSPM will clear the status bits in the GPEx register blocks. However,
AML code clears all sibling status bits in the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following is a list of features supported by
ACPI. The list is not intended to be complete or comprehensive.

 Device insertion/ejection (for example, docking, device bay, A/C adapter)
 Batteries4

 Platform thermal subsystem
 Turning on/off power resources
 Mobile lid Interface
 Embedded controller
 System indicators
 OEM-specific wake events
 Plug and Play configuration

4.7.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general-purpose register blocks as described in the FADT (see section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as a byte. It is up to the specific
design to determine if these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing control
to the OS upon waking.

4.7.4.1.1 General-Purpose Event 0 Register Block

This register block consists of two registers: The GPE0_STS and the GPE0_EN registers. Each register’s
length is defined to be half the length of the GPE0 register block, and is described in the ACPI FADT’s
GPE0_BLK and GPE0_BLK_LEN operators. OSPM owns the general-purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a platform
has GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the
platform and have no associated AML code. In such, cases these event pins are to be tied inactive such that
the corresponding SCI status bit in the GPE register is not set by a floating input pin.

4 ACPI operating systems assume the use of the Smart Battery System Implementers Forum defined
standard for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control
methods for use by OEMs that use a proprietary “control method” battery interface.

100 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.4.1.1.1 General-Purpose Event 0 Status Register

Register Location: <GPE0_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 status register contains the general-purpose event status bits in bank zero of
the general-purpose registers. Each available status bit in this register corresponds to the bit with the same
bit position in the GPE0_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a “1” to its respective bit position. For the general-
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register

Register Location: <GPE0_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE0_BLK_LEN/2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE0_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the enable
bit is set, then a set status bit in the corresponding status bit will generate an SCI bit. OSPM accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block

This register block consists of two registers: The GPE1_STS and the GPE1_EN registers. Each register’s
length is defined to be half the length of the GPE1 register block, and is described in the ACPI FADT’s
GPE1_BLK and GPE1_BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register

Register Location: <GPE1_STS> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available
status bit in this register corresponds to the bit with the same bit position in the GPE1_EN register. Each
available status bit in this register is set when the event is active, and can only be cleared by software
writing a “1” to its respective bit position. For the general-purpose event registers, unimplemented bits are
ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system is in a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

ACPI Hardware Specification 101

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.4.1.2.2 General-Purpose Event 1 Enable Register

Register Location: <GPE1_EN> System I/O or System Memory Space
Default Value: 00h
Attribute: Read/Write
Size: GPE1_BLK_LEN/2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STS register. The
enable bits work similarly to how the enable bits in the fixed-event registers are defined: When the enable
bit is set, a set status bit in the corresponding status bit will generate an SCI bit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by
the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used, then
the OEM needs to define the lid switch as a device with an _HID object value of “PNP0C0D”, which
identifies this device as the lid switch to OSPM. The Lid device needs to contain a control method that
returns its status. The Lid event handler AML code reconfigures the lid hardware (if it needs to) to generate
an event in the other direction, clear the status, and then notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

LID_POL

LID_STS

8 ms
Debounce

Momentary Normally
Open push button

Figure 4-14 Example Generic Address Space Lid Switch Logic

This logic will set the Lid status bit when the button is pressed or released (depending on the LID_POL
bit).

The ASL code below defines the following:
 An operational region where the lid polarity resides in address space System address space in registers

0x201.
 A field operator to allow AML code to access this bit: Polarity control bit (LID_POL) is called LPOL

and is accessed at 0x201.0.
 A device named _SB.LID with the following:

 A Plug and Play identifier “PNP0C0D” that associates OSPM with this object.
 Defines an object that specifies a change in the lid’s status bit can wake the system from the S4

sleep state and from all higher sleep states (S1, S2, or S3).
 The lid switch event handler that does the following:

 Defines the lid status bit (LID_STS) as a child of the general-purpose event 0 register bit 1.
 Defines the event handler for the lid (only event handler on this status bit) that does the following:
Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite condition).
Generates a notify to the OS that does the following:
Passes the _SB.LID object.
Indicates a device specific event (notify value 0x80).

102 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Define a Lid switch
OperationRegion(\PHO, SystemIO, 0x201, 0x1)
Field(\PHO, ByteAcc, NoLock, Preserve) {

LPOL, 1 // Lid polarity control bit
}

Device(_SB.LID){
Name(_HID, EISAID(“PNP0C0D”))
Method(_LID){Return(LPOL)}
Name(_PRW, Package(2){

1, // bit 1 of GPE to enable Lid wakeup
0x04} // can wakeup from S4 state

)
}
Scope(_GPE){ // Root level event handlers

Method(_L01){ // uses bit 1 of GP0_STS register
Not(LPOL, LPOL) // Flip the lid polarity bit
Notify(LID, 0x80) // Notify OS of event

}
}

4.7.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

The embedded controller is defined as a device and must contain a set number of control methods:
 _HID with a value of PNP0C09 to associate this device with the ACPI’s embedded controller’s driver.
 _CRS to return the resources being consumed by the embedded controller.
 _GPE that returns the general-purpose event bit that this embedded controller is wired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s device
as control methods. An example of defining an embedded controller device is shown below:

Device(EC0) {
// PnP ID
Name(_HID, EISAID(“PNP0C09”))
// Returns the “Current Resources” of EC
Name(_CRS,

ResourceTemplate(){
IO(Decode16, 0x62, 0x62, 0, 1)
IO(Decode16, 0x66, 0x66, 0, 1)

})
// Indicate that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0) // embedded controller is wired to bit 0 of GPE

OperationRegion(\EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {
// Field definitions
}
// Query methods
Method(_Q00){...}
Method(_QFF){...}

}

For more information on the embedded controller, see section 12, “ACPI Embedded Controller Interface
Specification.”

ACPI Hardware Specification 103

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

4.7.4.2.3 Fan

ACPI has a device driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNP0C0B.” It should then contain a list power resources used to control the
fan.

For more information, see section 9, “ACPI-Defined Devices and Device Specific Objects.”

104 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Software Programming Model 105

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5 ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in section 4, “ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI system.
Finally, ACPI defines an interface between an ACPI-compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tables list devices on the system
board or devices that cannot be detected or power managed using some other hardware standard, plus their
capabilities as described in section 3, “Overview.” They also list system capabilities such as the sleeping
power states supported, a description of the power planes and clock sources available in the system,
batteries, system indicator lights, and so on. This enables OSPM to control system devices without needing
to know how the system controls are implemented.

Topics covered in this section are:
 The ACPI system description table architecture is defined, and the role of OEM-provided

definition blocks in that architecture is discussed.
 The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the platform firmware. This structure contains the address of the Extended System
Description Table (XSDT), which references other description tables that provide data to OSPM, supplying
it with knowledge of the base system’s implementation and configuration (see Figure 5-1).

Located in system's memory address space

Extended System
Description Table

Header

XSDT

Entry

Entry

...

Entry

...

Root System
Description Pointer

Header

Sig

contents

Header

Sig

contents

RSD PTR

Pointer

Pointer

Figure 5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

106 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The Extended System Description Table (XSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-2.

Device I/O
Device Memory

PCI configuration
Embedded Controller space

Firmware ACPI
Control Structure

Wake Vector
Shared Lock

FACS

GPx_BLK

PM2x_BLK

Differentiated System
Description Table

Header

DSDT

Differentiated
Definition

Block

PM1x_BLK

Fixed ACPI
Description Table

Header

FACP

Static info

Located in
port space

OEM-Specific

ACPI
Driver

Software

Hardware

FIRM
DSDT
BLKs

...

Figure 5-2 Description Table Structures

 OSPM finds the RSDP structure as described in section 5.2.5.1 (“Finding the RSDP on IA-PC
Systems”) or section 5.2.5.2 (“Finding the RSDP on UEFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table or
the Extended System Description Table. The Root System Description Table starts with the signature
“RSDT”, while the Extended System Description Table starts with the signature “XSDT”. These tables
contain one or more physical pointers to other system description tables that provide various information
about the system. As shown in Figure 5-1, there is always a physical address in the Root System
Description Table for the Fixed ACPI Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, OSPM can then interpret the implementation-specific data within the description
table.

The purpose of the FADT is to define various static system information related to configuration and power
management. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT describes
the implementation and configuration details of the ACPI hardware registers on the platform.

ACPI Software Programming Model 107

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For a specification of the ACPI Hardware Register Blocks (PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GP0_BLK, GP1_BLK, and one
or more P_BLKs), see section 4.7, “ACPI Register Model.” The PM1a_EVT_BLK, PM1b_EVT_BLK,
PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, and PM_TMR_BLK blocks are for controlling
low-level ACPI system functions.

The GPE0_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to a data structure known as the Differentiated System Description Table (DSDT), which is encoded in
Definition Block format (See section 5.2.11, “Definition Blocks”).

A Definition Block contains information about the platform’s hardware implementation details in the form
of data objects arranged in a hierarchical (tree-structured) entity known as the “ACPI namespace”, which
represents the platform’s hardware configuration. All definition blocks loaded by OSPM combine to form
one namespace that represents the platform. Data objects are encoded in a format known as ACPI Machine
Language or AML for short. Data objects encoded in AML are “evaluated” by an OSPM entity known as
the AML interpreter. Their values may be static or dynamic. The AML interpreter’s dynamic data object
evaluation capability includes support for programmatic evaluation, including accessing address spaces (for
example, I/O or memory accesses), calculation, and logical evaluation, to determine the result. Dynamic
namespace objects are known as “control methods”. OSPM “loads” or “unloads” an entire definition block
as a logical unit – adding to or removing the associated objects from the namespace. The DSDT is always
loaded by OSPM at boot time and cannot be unloaded. It contains a Definition Block named the
Differentiated Definition Block that contains implementation and configuration information OSPM can use
to perform power management, thermal management, or Plug and Play functionality that goes beyond the
information described by the ACPI hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block is to
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCI configuration space-like access method within a Definition Block, by
building it from I/O space, but that is not the goal of the Definition Block specification. Such a space is
usually defined as a “built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to OSPM. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware designs to be expressed.

5.1.1 Address Space Translation

Some platforms may contain bridges that perform translations as I/O and/or Memory cycles pass through
the bridges. This translation can take the form of the addition or subtraction of an offset. Or it can take the
form of a conversion from I/O cycles into Memory cycles and back again. When translation takes place, the
addresses placed on the processor bus by the processor during a read or write cycle are not the same
addresses that are placed on the I/O bus by the I/O bus bridge. The address the processor places on the
processor bus will be known here as the processor-relative address. And the address that the bridge places
on the I/O bus will be known as the bus-relative address. Unless otherwise noted, all addresses used within
this section are processor-relative addresses.

108 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-bit I/O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode the
entire 16-bit I/O space, mapping the second root PCI bus’s I/O space into memory space. In this second
scenario, when the processor needs to read from an I/O register of a device underneath the second root PCI
bus, it would need to perform a memory read within the range that the root PCI bus bridge is using to map
the I/O space.

Note: Industry standard PCs do not provide address space translations because of historical compatibility
issues.

ACPI Software Programming Model 109

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:
 Root System Description Pointer (RSDP)
 System Description Table Header
 Root System Description Table (RSDT)
 Fixed ACPI Description Table (FADT)
 Firmware ACPI Control Structure (FACS)
 Differentiated System Description Table (DSDT)
 Secondary System Description Table (SSDT)
 Multiple APIC Description Table (MADT)
 Smart Battery Table (SBST)
 Extended System Description Table (XSDT)
 Embedded Controller Boot Resources Table (ECDT)
 System Locality Distance Information Table (SLIT)
 System Resource Affinity Table (SRAT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian
format. Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all data items marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tables and AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
 OEM implementations of software and AML code return the bit value of 0 for all reserved bits in

ACPI tables or in other software values, such as resource descriptors.
 For all reserved bits in ACPI tables and registers, OSPM implementations must:
 Ignore all reserved bits that are read.
 Preserve reserved bit values of read/write data items (for example, OSPM writes back reserved bit

values it reads).
 Write zeros to reserved bits in write-only data items.

5.2.1.2 Reserved Values and Software Components
 OEM implementations of software and AML code return only defined values and do not return

reserved values.
 OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components
 Software ignores all reserved bits read from hardware enable or status registers.
 Software writes zero to all reserved bits in hardware enable registers.
 Software ignores all reserved bits read from hardware control and status registers.
 Software preserves the value of all reserved bits in hardware control registers by writing back read

values.

5.2.1.4 Ignored Hardware Bits and Software Components
 Software handles ignored bits in ACPI hardware registers the same way it handles reserved bits in

these same types of registers.

110 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previously reserved fields and values plus appending data to the 1.0
tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or I/O
space. This was targeted at the IA-32 environment. Newer architectures require addressing mechanisms
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it
must allow the placement of control registers in address spaces other than System I/O.

5.2.3.1 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-1), is used to express register addresses within tables
defined by ACPI .

Table 5-1 Generic Address Structure (GAS)

Field
Byte
Length

Byte
Offset Description

Address Space
ID

1 0 The address space where the data structure or register exists.
Defined values are:

0 System Memory

1 System I/O

2 PCI Configuration Space

3 Embedded Controller

4 SMBus

5 to 0x7E Reserved

0x7F Functional Fixed Hardware

0x80 to 0xBF Reserved

0xC0 to 0xFF OEM Defined

Register Bit
Width

1 1 The size in bits of the given register. When addressing a data
structure, this field must be zero.

Register Bit
Offset

1 2 The bit offset of the given register at the given address. When
addressing a data structure, this field must be zero.

Access Size 1 3 Specifies access size.

0 Undefined (legacy reasons)

1 Byte access

2 Word access

3 Dword access

4 QWord access

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)

ACPI Software Programming Model 111

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-2 Address Space Format

Address Space Format

0–System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1–System I/O The 64-bit I/O address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

PCI Configuration space addresses must be confined to devices on PCI Segment
Group 0, bus 0. This restriction exists to accommodate access to fixed hardware
prior to PCI bus enumeration. The format of addresses are defined as follows:

WORD Location Description

Highest WORD Reserved (must be 0)

… PCI Device number on bus 0

… PCI Function number

Lowest WORD Offset in the configuration space header

2–PCI Configuration
Space

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

0x7F–Functional
Fixed Hardware

Use of GAS fields other than Address_Space_ID is specified by the CPU
manufacturer. The use of functional fixed hardware carries with it a reliance on
OS specific software that must be considered. OEMs should consult OS vendors
to ensure that specific functional fixed hardware interfaces are supported by
specific operating systems.

5.2.4 Universal Uniform Identifiers (UUID)

UUIDs (Universally Unique IDentifiers), also known as GUIDs (Globally Unique IDentifiers) are 128 bit
long values that extremely likely to be different from all other UUIDs generated until 3400 A.D. UUIDs are
used to distinguish between callers of ASL methods, such as _DSM and _OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to generate
them is specified in ISO/IEC 11578:1996 and can be found as part of the Distributed Computing
Environment 1.1: Remote Procedure Call specification, which can be downloaded from here:
http://www.opengroup.org/publications/catalog/c706.htm.

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.

5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges
on 16-byte boundaries for a valid Root System Description Pointer structure signature and checksum match
as follows:
 The first 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can

be found in the two-byte location 40:0Eh on the BIOS data area.
 The BIOS read-only memory space between 0E0000h and 0FFFFFh.

112 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.5.2 Finding the RSDP on UEFI Enabled Systems

In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure exists
within the EFI System Table. The OS loader is provided a pointer to the EFI System Table at invocation.
The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table and convey the
pointer to OSPM, using an OS dependent data structure, as part of the hand off of control from the OS
loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table within
the EFI System Table. EFI Configuration Table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0 and the other for
ACPI 2.0 or later specification revisions.

The EFI GUID for a pointer to the ACPI 1.0 specification RSDP structure is: EB9D2D30-2D88-11D3-
9A16-0090273FC14D.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is: 8868E871-E4F1-
11D3-BC22-0080C73C8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer using the current
revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is
not found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table before assuming
platform control via the EFI ExitBootServices interface. See the UEFI Specification for more information.

5.2.5.3 RSDP Structure
The revision number contained within the structure indicates the size of the table structure.

Table 5-3 Root System Description Pointer Structure

Field
Byte
Length

Byte
Offset Description

Signature 8 0 “RSD PTR ” (Notice that this signature must contain a trailing
blank character.)

Checksum 1 8 This is the checksum of the fields defined in the ACPI 1.0
specification. This includes only the first 20 bytes of this table,
bytes 0 to 19, including the checksum field. These bytes must sum
to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 The revision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI
version 1.0 revision number of this table is zero. The current value
for this field is 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended
Checksum

1 32 This is a checksum of the entire table, including both checksum
fields.

Reserved 3 33 Reserved field

ACPI Software Programming Model 113

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.6 System Description Table Header

All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
are listed in Table 5-5.

Table 5-4 DESCRIPTION_HEADER Fields

Field
Byte
Length

Byte
Offset Description

Signature 4 0 The ASCII string representation of the table identifier. Notice that
if OSPM finds a signature in a table that is not listed in Table 5-5,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the values in
the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed
to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Tables 5-5 and 5-6 contain the system description table signatures defined by this specification. These
system description tables may be defined by ACPI and documented within this specification (Table 5-5) or
they may be simply reserved by ACPI and defined by other industry specifications (Table 5-6). This allows
OS and platform specific tables to be defined and pointed to by the RSDT/XSDT as needed. For tables
defined by other industry specifications, the ACPI specification acts as gatekeeper to avoid collisions in
table signatures.

114 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference URL to a document that describes the table format. Tables defined outside of the ACPI
specification may define data value encodings in either little endian or big endian format. For the purpose
of clarity, external table definition documents should include the endian-ness of their data value encodings.

Since reference URLs can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at:
http://www.acpi.info/DOWNLOADS/referenceurls.pdf. If this document does not exist at this URL, then
there are currently no updates available.

Table 5-5 DESCRIPTION_HEADER Signatures for tables defined by ACPI

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 17.3.1, “Boot Error Source”

“CPEP” Corrected Platform Error Polling
Table

Section 5.2.18, “Corrected Platform Error Polling Table”

“DSDT” Differentiated System Description
Table

Section 5.2.11.1, “Differentiated System Description
Table”

“ECDT” Embedded Controller Boot
Resources Table

Section 5.2.15, “Embedded Controller Boot Resources
Table”

“EINJ” Error Injection Table Section 17.5.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 17.4, “Error Serialization”

”FACP” Fixed ACPI Description Table
(FADT)

Section 5.2.9, “Fixed ACPI Description Table”

“FACS” Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“HEST” Hardware Error Source Table Section 17.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics
Table

Section 5.2.19, “Maximum System Characteristics Table”

“OEMx” OEM Specific Information Tables OEM Specific tables. All table signatures starting with
“OEM” are reserved for OEM use.

“PSDT” Persistent System Description Table Section 5.2.11.3, “Persistent System Description Table”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”

“SBST” Smart Battery Specification Table Section 5.2 14, “Smart Battery Table”

“SLIT” System Locality Distance
Information Table

Section 5.2.17, “System Locality Distance Information
Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “System Resource Affinity Table”

“SSDT” Secondary System Description
Table

Section 5.2.11.2, “Secondary System Description Table”

“XSDT” Extended System Description Table Section 5.2.8, “Extended System Description Table”

http://www.acpi.info/DOWNLOADS/referenceurls.pdf

ACPI Software Programming Model 115

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-6 DESCRIPTION_HEADER Signatures for tables reserved by ACPI

Signature Description and External Reference

“BOOT” Simple Boot Flag Table
See: Microsoft Simple Boot Flag Specification
http://www.microsoft.com/whdc/resources/respec/specs/simp_boot.mspx

“DBGP” Debug Port Table
Microsoft Debug Port Specification
http://www.microsoft.com/HWDEV/PLATFORM/pcdesign/LR/debugspec.asp

“DMAR” DMA Remapping Table
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf

“ETDT” Event Timer Description Table (Obsolete)
IA-PC Multimedia Timers Specification. This signature has been superseded by “HPET” and is
now obsolete.

“HPET” IA-PC High Precision Event Timer Table
IA-PC High Precision Event Timer Specification
http://www.intel.com/hardwaredesign/hpetspec_1.pdf

“IBFT” iSCSI Boot Firmware Table
http://www.microsoft.com/whdc/system/platform/firmware/ibft.mspx

“IVRS” I/O Virtualization Reporting Structure
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf

“MCFG” PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0
http://pcisig.com

“MCHI” Management Controller Host Interface Table
DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
http://www.dmtf.org/standards/published_documents/DSP0256_1.0.0a.pdf

“SPCR” Serial Port Console Redirection Table
Microsoft Serial Port Console Redirection Table
http://www.microsoft.com/HWDEV/PLATFORM/server/headless/SPCR.asp

“SPMI” Server Platform Management Interface Table
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf

“TCPA” Trusted Computing Platform Alliance Capabilities Table
TCPA PC Specific Implementation Specification
https://www.trustedcomputinggroup.org/home

“UEFI” UEFI ACPI Data Table
UEFI Specification
http://www.uefi.org

“WAET” Windows ACPI Enlightenment Table
http://www.microsoft.com/whdc/system/platform/virtual/WAET.mspx

“WDAT” Watch Dog Action Table
Requirements for Hardware Watchdog Timers Supported by Windows – Design Specification
http://www.microsoft.com/whdc/system/sysinternals/hw-wdt.mspx

“WDRT” Watchdog Resource Table
Watchdog Timer Hardware Requirements for Windows Server 2003
http://www.microsoft.com/whdc/system/CEC/watchdog.mspx

http://www.microsoft.com/whdc/resources/respec/specs/simp_boot.mspx
http://www.microsoft.com/HWDEV/PLATFORM/pcdesign/LR/debugspec.asp
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://www.intel.com/hardwaredesign/hpetspec_1.pdf
http://www.microsoft.com/whdc/system/platform/firmware/ibft.mspx
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://pcisig.com/
http://www.dmtf.org/standards/published_documents/DSP0256_1.0.0a.pdf
http://www.microsoft.com/HWDEV/PLATFORM/server/headless/SPCR.asp
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf
https://www.trustedcomputinggroup.org/home
http://www.uefi.org/
http://www.microsoft.com/whdc/system/platform/virtual/WAET.mspx
http://www.microsoft.com/whdc/system/sysinternals/hw-wdt.mspx
http://www.microsoft.com/whdc/system/CEC/watchdog.mspx

116 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shown in Table 5-7, starts with the signature ‘RSDT’ followed by an array of physical pointers to
other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then
interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT,
described in the next section, supersedes RSDT functionality.

Table 5-7 Root System Description Table Fields (RSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘RSDT’ Signature for the Root System Description Table.

Length 4 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 4*n 36 An array of 32-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

ACPI Software Programming Model 117

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.8 Extended System Description Table (XSDT)

The XSDT provides identical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERs that are larger than 32-bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

Table 5-8 Extended System Description Table Fields (XSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘XSDT’. Signature for the Extended System Description
Table.

Length 4 4 Length, in bytes, of the entire table. The length implies the
number of Entry fields (n) at the end of the table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the XSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.

OEM Revision 4 24 OEM revision of XSDT table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

118 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PM1a_EVT_BLK, PM1b_EVT_BLK, PM1a_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
PM_TMR_BLK, GPE0_BLK, and GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Table 5-9 Fixed ACPI Description Table (FADT) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.

Length 4 4 Length, in bytes, of the entire FADT.

Revision 1 8 4

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID. This field
must match the OEM Table ID in the RSDT.

OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and
Firmware exchange control information. See section 5.2.6, “Root
System Description Table,” for a description of the FACS. If the
X_FIRMWARE_CTRL field contains a non zero value then this
field must be zero. A zero value indicates that no FACS is
specified by this field.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as a field named INT_MODEL, which
was eliminated in ACPI 2.0. Platforms should set this field to zero
but field values of one are also allowed to maintain compatibility
with ACPI 1.0.

ACPI Software Programming Model 119

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

0 Unspecified
1 Desktop
2 Mobile
3 Workstation
4 Enterprise Server
5 SOHO Server
6 Appliance PC
7 Performance Server
>7 Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the Global
System interrupt number of the SCI interrupt. OSPM is required to
treat the ACPI SCI interrupt as a sharable, level, active low
interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During ACPI OS
initialization, OSPM can determine that the ACPI hardware
registers are owned by SMI (by way of the SCI_EN bit), in which
case the ACPI OS issues the ACPI_ENABLE command to the
SMI_CMD port. The SCI_EN bit effectively tracks the ownership
of the ACPI hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor. This field
is reserved and must be zero on system that does not support
System Management mode.

ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI ownership of the
ACPI hardware registers. The last action SMI does to relinquish
ownership is to set the SCI_EN bit. During the OS initialization
process, OSPM will synchronously wait for the transfer of SMI
ownership to complete, so the ACPI system releases SMI
ownership as quickly as possible. This field is reserved and must
be zero on systems that do not support Legacy Mode.

ACPI_DISABLE 1 53 The value to write to SMI_CMD to re-enable SMI ownership of
the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off all
SCI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE to the SMI_CMD port from the boot processor.
This field is reserved and must be zero on systems that do not
support Legacy Mode.

S4BIOS_REQ 1 54 The value to write to SMI_CMD to enter the S4BIOS state. The
S4BIOS state provides an alternate way to enter the S4 state where
the firmware saves and restores the memory context. A value of
zero in S4BIOS_F indicates S4BIOS_REQ is not supported. (See
Table 5-12.)

120 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

PSTATE_CNT 1 55 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to assume processor performance state control
responsibility.

PM1a_EVT_BLK 4 56 System port address of the PM1a Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware description
layout of this register block. This is a required field. This field is
superseded by the X_PM1a_EVT_BLK field.

PM1b_EVT_BLK 4 60 System port address of the PM1b Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware description
layout of this register block. This field is optional; if this register
block is not supported, this field contains zero. This field is
superseded by the X_PM1b_EVT_BLK field.

PM1a_CNT_BLK 4 64 System port address of the PM1a Control Register Block. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This is a required field.
This field is superseded by the X_PM1a_CNT_BLK field.

PM1b_CNT_BLK 4 68 System port address of the PM1b Control Register Block. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. This
field is superseded by the X_PM1b_CNT_BLK field.

PM2_CNT_BLK 4 72 System port address of the PM2 Control Register Block. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero. This
field is superseded by the X_PM2_CNT_BLK field.

PM_TMR_BLK 4 76 System port address of the Power Management Timer Control
Register Block. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this register
block. This is a required field. This field is superseded by the
X_PM_TMR_BLK field.

GPE0_BLK 4 80 System port address of General-Purpose Event 0 Register Block.
See section 4.7.4.1, “General-Purpose Event Register Blocks,” for
a hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains zero.
This field is superseded by the X_GPE0_BLK field.

GPE1_BLK 4 84 System port address of General-Purpose Event 1 Register Block.
See section 4.7.4.1, “General-Purpose Event Register Blocks,” for
a hardware description of this register block. This is an optional
field; if this register block is not supported, this field contains zero.
This field is superseded by the X_GPE1_BLK field.

PM1_EVT_LEN 1 88 Number of bytes decoded by PM1a_EVT_BLK and, if supported,
PM1b_ EVT_BLK. This value is  4.

PM1_CNT_LEN 1 89 Number of bytes decoded by PM1a_CNT_BLK and, if supported,
PM1b_CNT_BLK. This value is  2.

ACPI Software Programming Model 121

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

PM2_CNT_LEN 1 90 Number of bytes decoded by PM2_CNT_BLK. Support for the
PM2 register block is optional. If supported, this value is  1. If not
supported, this field contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. This field’s value
must be 4.

GPE0_BLK_LEN 1 92 Number of bytes decoded by GPE0_BLK. The value is a non-
negative multiple of 2.

GPE1_BLK_LEN 1 93 Number of bytes decoded by GPE1_BLK. The value is a non-
negative multiple of 2.

GPE1_BASE 1 94 Offset within the ACPI general-purpose event model where GPE1
based events start.

CST_CNT 1 95 If non-zero, this field contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the _CST object and
C States Changed notification.

P_LVL2_LAT 2 96 The worst-case hardware latency, in microseconds, to enter and
exit a C2 state. A value > 100 indicates the system does not
support a C2 state.

P_LVL3_LAT 2 98 The worst-case hardware latency, in microseconds, to enter and
exit a C3 state. A value > 1000 indicates the system does not
support a C3 state.

FLUSH_SIZE 2 100 If WBINVD=0, the value of this field is the number of flush strides
that need to be read (using cacheable addresses) to completely
flush dirty lines from any processor’s memory caches. Notice that
the value in FLUSH_STRIDE is typically the smallest cache line
width on any of the processor’s caches (for more information, see
the FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’s caches, then
FLUSH_SIZE and WBINVD are set to zero. Notice that this
method of flushing the processor caches has limitations, and
WBINVD=1 is the preferred way to flush the processors caches.
This value is typically at least 2 times the cache size. The
maximum allowed value for FLUSH_SIZE multiplied by
FLUSH_STRIDE is 2 MB for a typical maximum supported cache
size of 1 MB. Larger cache sizes are supported using WBINVD=1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

122 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

FLUSH_STRIDE 2 102 If WBINVD=0, the value of this field is the cache line width, in
bytes, of the processor’s memory caches. This value is typically
the smallest cache line width on any of the processor’s caches. For
more information, see the description of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

DUTY_OFFSET 1 104 The zero-based index of where the processor’s duty cycle setting is
within the processor’s P_CNT register.

DUTY_WIDTH 1 105 The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows the
software to select a nominal processor frequency below its absolute
frequency as defined by:

THTL_EN = 1

BF * DC/(2DUTY_WIDTH)

Where:

BF–Base frequency

DC–Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle is
not supported and the processor continuously runs at its base
frequency.

DAY_ALRM 1 106 The RTC CMOS RAM index to the day-of-month alarm value. If
this field contains a zero, then the RTC day of the month alarm
feature is not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the day of the month alarm. See section 4.7.2.4, “Real
Time Clock Alarm,” for a description of how the hardware works.

MON_ALRM 1 107 The RTC CMOS RAM index to the month of year alarm value. If
this field contains a zero, then the RTC month of the year alarm
feature is not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the month of the year alarm. If this feature is supported,
then the DAY_ALRM feature must be supported also.

CENTURY 1 108 The RTC CMOS RAM index to the century of data value (hundred
and thousand year decimals). If this field contains a zero, then the
RTC centenary feature is not supported. If this field has a non-zero
value, then this field contains an index into RTC RAM space that
OSPM can use to program the centenary field.

IAPC_BOOT_ARCH 2 109 IA-PC Boot Architecture Flags. See Table 5-11 for a description of
this field.

Reserved 1 111 Must be 0.

Flags 4 112 Fixed feature flags. See Table 5-10 for a description of this field.

ACPI Software Programming Model 123

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

RESET_REG 12 116 The address of the reset register represented in Generic Address
Structure format (See section 4.7.3.6, “Reset Register,” for a
description of the reset mechanism.)

Note: Only System I/O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_Width must be 8 and
Register_Bit_Offset must be 0.

RESET_VALUE 1 128 Indicates the value to write to the RESET_REG port to reset the
system. (See section 4.7.3.6, “Reset Register,” for a description of
the reset mechanism.)

Reserved 3 129 Must be 0.

X_FIRMWARE_CTRL 8 132 64bit physical address of the FACS. This field is used when the
physical address of the FACS is above 4GB. If the
FIRMWARE_CTRL field contains a non zero value then this field
must be zero. A zero value indicates that no FACS is specified by
this field.

X_DSDT 8 140 64bit physical address of the DSDT.

X_PM1a_EVT_BLK 12 148 Extended address of the PM1a Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. This is a required field.

X_PM1b_EVT_BLK 12 160 Extended address of the PM1b Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. This field is optional; if this register block is not supported,
this field contains zero.

X_PM1a_CNT_BLK 12 172 Extended address of the PM1a Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. This is a required field.

X_PM1b_CNT_BLK 12 184 Extended address of the PM1b Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. This field is optional; if this register block is not
supported, this field contains zero.

X_PM2_CNT_BLK 12 196 Extended address of the Power Management 2 Control Register
Block, represented in Generic Address Structure format. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of this register block. This field is optional; if
this register block is not supported, this field contains zero.

X_PM_TMR_BLK 12 208 Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure format.
See section 4.7.3.3, “Power Management Timer (PM_TMR),” for a
hardware description layout of this register block. This is a
required field.

124 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

X_GPE0_BLK 12 220 Extended address of the General-Purpose Event 0 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. This is an optional field; if this register block is not
supported, this field contains zero.

X_GPE1_BLK 12 232 Extended address of the General-Purpose Event 1 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. This is an optional field; if this register block is not
supported, this field contains zero.

Table 5-10 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag
Bit
Length

Bit
Offset Description

WBINVD 1 0 Processor properly implements a functional equivalent to the
WBINVD IA-32 instruction.

If set, signifies that the WBINVD instruction correctly flushes the
processor caches, maintains memory coherency, and upon
completion of the instruction, all caches for the current processor
contain no cached data other than what OSPM references and
allows to be cached. If this flag is not set, the ACPI OS is
responsible for disabling all ACPI features that need this function.
This field is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support this function and indicate this to OSPM by
setting this field.

WBINVD_FLUSH 1 1 If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency, but does
not guarantee the caches are invalidated. This provides the
complete semantics of the WBINVD instruction, and provides
enough to support the system sleeping states. If neither of the
WBINVD flags is set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are also not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_C1 1 2 A one indicates that the C1 power state is supported on all
processors.

P_LVL2_UP 1 3 A zero indicates that the C2 power state is configured to only work
on a uniprocessor (UP) system. A one indicates that the C2 power
state is configured to work on a UP or multiprocessor (MP)
system.

ACPI Software Programming Model 125

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FACP - Flag
Bit
Length

Bit
Offset Description

PWR_BUTTON 1 4 A zero indicates the power button is handled as a fixed feature
programming model; a one indicates the power button is handled
as a control method device. If the system does not have a power
button, this value would be “1” and no sleep button device would
be present.

Independent of the value of this field, the presence of a power
button device in the namespace indicates to OSPM that the power
button is handled as a control method device.

SLP_BUTTON 1 5 A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is handled as
a control method device.

If the system does not have a sleep button, this value would be “1”
and no sleep button device would be present.

Independent of the value of this field, the presence of a sleep
button device in the namespace indicates to OSPM that the sleep
button is handled as a control method device.

FIX_RTC 1 6 A zero indicates the RTC wake status is supported in fixed register
space; a one indicates the RTC wake status is not supported in
fixed register space.

RTC_S4 1 7 Indicates whether the RTC alarm function can wake the system
from the S4 state. The RTC must be able to wake the system from
an S1, S2, or S3 sleep state. The RTC alarm can optionally support
waking the system from the S4 state, as indicated by this value.

TMR_VAL_EXT 1 8 A zero indicates TMR_VAL is implemented as a 24-bit value. A
one indicates TMR_VAL is implemented as a 32-bit value. The
TMR_STS bit is set when the most significant bit of the
TMR_VAL toggles.

DCK_CAP 1 9 A zero indicates that the system cannot support docking. A one
indicates that the system can support docking. Notice that this flag
does not indicate whether or not a docking station is currently
present; it only indicates that the system is capable of docking.

RESET_REG_SUP 1 10 If set, indicates the system supports system reset via the FADT
RESET_REG as described in section 4.7. 3.6, “Reset Register.”

SEALED_CASE 1 11 System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the case is sealed.

HEADLESS 1 12 System Type Attribute. If set indicates the system cannot detect the
monitor or keyboard / mouse devices.

CPU_SW_SLP 1 13 If set, indicates to OSPM that a processor native instruction must
be executed after writing the SLP_TYPx register.

PCI_EXP_WAK 1 14 If set, indicates the platform supports the PCIEXP_WAKE_STS
bit in the PM1 Status register and the PCIEXP_WAKE_EN bit in
the PM1 Enable register. This bit must be set on platforms
containing chipsets that implement PCI Express.

126 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FACP - Flag
Bit
Length

Bit
Offset Description

USE_PLATFORM_CL
OCK

1 15 A value of one indicates that OSPM should use a platform
provided timer to drive any monotonically non-decreasing
counters, such as OSPM performance counter services. Which
particular platform timer will be used is OSPM specific, however,
it is recommended that the timer used is based on the following
algorithm: If the HPET is exposed to OSPM, OSPM should use the
HPET. Otherwise, OSPM will use the ACPI power management
timer. A value of one indicates that the platform is known to have a
correctly implemented ACPI power management timer.

A platform may choose to set this flag if a internal processor clock
(or clocks in a multi-processor configuration) cannot provide
consistent monotonically non-decreasing counters.

Note: If a value of zero is present, OSPM may arbitrarily choose to
use an internal processor clock or a platform timer clock for these
operations. That is, a zero does not imply that OSPM will
necessarily use the internal processor clock to generate a
monotonically non-decreasing counter to the system.

S4_RTC_STS_VALID 1 16 A one indicates that the contents of the RTC_STS flag is valid
when waking the system from S4.

See Table 4-11 – PM1 Status Registers Fixed Hardware Feature
Status Bits for more information. Some existing systems do not
reliably set this input today, and this bit allows OSPM to
differentiate correctly functioning platforms from platforms with
this errata.

REMOTE_POWER_O
N_CAPABLE

1 17 A one indicates that the platform is compatible with remote power-
on.

That is, the platform supports OSPM leaving GPE wake events
armed prior to an S5 transition. Some existing platforms do not
reliably transition to S5 with wake events enabled (for example,
the platform may immediately generate a spurious wake event after
completing the S5 transition). This flag allows OSPM to
differentiate correctly functioning platforms from platforms with
this type of errata.

FORCE_
APIC_CLUSTER_MO
DEL

1 18 A one indicates that all local APICs must be configured for the
cluster destination model when delivering interrupts in logical
mode.

If this bit is set, then logical mode interrupt delivery operation may
be undefined until OSPM has moved all local APICs to the cluster
model.

Note that the cluster destination model doesn’t apply to Itanium™
Processor Family (IPF) local SAPICs. This bit is intended for
xAPIC based machines that require the cluster destination model
even when 8 or fewer local APICs are present in the machine.

ACPI Software Programming Model 127

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FACP - Flag
Bit
Length

Bit
Offset Description

FORCE_APIC_PHYSI
CAL_DESTINATION
_MODE

1 19 A one indicates that all local xAPICs must be configured for
physical destination mode. If this bit is set, interrupt delivery
operation in logical destination mode is undefined. On machines
that contain fewer than 8 local xAPICs or that do not use the
xAPIC architecture, this bit is ignored.

Reserved 12 20

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a guide
for setting the Preferred_PM_Profile field in the FADT. OSPM can use this field to set default power
management policy parameters during OS installation.

Desktop. A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This device is
used to perform work that is considered mainstream corporate or home computing (for example, word
processing, Internet browsing, spreadsheets, and so on).

Mobile. A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devices to perform its normal functions. Most often contains one processor. This
device performs the same task set as a desktop. However it may have limitations dues to its size, thermal
requirements, and/or power source life.

Workstation. A single-user, full-featured, stationary computing device that resides on or near an
individual’s work area. Often contains more than one processor. Must be connected to AC power to
function. This device is used to perform large quantities of computations in support of such work as
CAD/CAM and other graphics-intensive applications.

Enterprise Server. A multi-user, stationary computing device that frequently resides in a separate, often
specially designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database, communications, or
financial operations within a corporation or government.

SOHO Server. A multi-user, stationary computing device that frequently resides in a separate area or room
in a small or home office. May contain more than one processor. Must be connected to AC power to
function. This device is generally used to support all of the networking, database, communications, and
financial operations of a small office or home office.

Appliance PC. A device specifically designed to operate in a low-noise, high-availability environment
such as a consumer’s living rooms or family room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be
connected to AC power to function. Normally they are sealed case style and may only perform a subset of
the tasks normally associated with today’s personal computers.

Performance Server. A multi-user stationary computing device that frequently resides in a separate, often
specially designed room. Will often contain more than one processor. Must be connected to AC power to
function. This device is used in an environment where power savings features are willing to be sacrificed
for better performance and quicker responsiveness.

128 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power management
and device settings. For example, a system that has the SEALED_CASE bit set may take a very aggressive
low noise policy toward thermal management. In another example an OS might not load video, keyboard or
mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on IA-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none are
present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.” These flags pertain only to IA-PC platforms. On other system architectures, the entire
field should be set to 0.

Table 5-11 Fixed ACPI Description Table Boot Architecture Flags

BOOT_ARCH
Bit
length

Bit
offset Description

LEGACY_DEVICES 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are
devices that have end-user accessible connectors (for example,
LPT port), or devices for which the OS must load a device
driver so that an end-user application can use a device. If clear,
the OS may assume there are no such devices and that all
devices in the system can be detected exclusively via industry
standard device enumeration mechanisms (including the ACPI
namespace).

8042 1 1 If set, indicates that the motherboard contains support for a port
60 and 64 based keyboard controller, usually implemented as an
8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicates to OSPM that it must not blindly probe the
VGA hardware (that responds to MMIO addresses A0000h-
BFFFFh and IO ports 3B0h-3BBh and 3C0h-3DFh) that may
cause machine check on this system. If clear, indicates to
OSPM that it is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicates to OSPM that it must not enable Message
Signaled Interrupts (MSI) on this platform.

PCIe ASPM Controls 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

Reserved 11 5 Must be 0.

5.2.10 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.9, “Fixed ACPI Description Table (FADT).”

ACPI Software Programming Model 129

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address space.
The memory where the FACS structure resides must not be reported as system AddressRangeMemory in
the system address map. For example, the E820 address map reporting interface would report the region as
AddressRangeReserved. For more information about system address map reporting interfaces, see
section 14, “System Address Map Interfaces.”

Table 5-12 Firmware ACPI Control Structure (FACS)

Field
Byte
Length

Byte
Offset Description

Signature 4 0 ‘FACS’

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. This value is 64 bytes or larger.

Hardware Signature 4 8 The value of the system’s “hardware signature” at last boot.
This value is calculated by the BIOS on a best effort basis to
indicate the base hardware configuration of the system such
that different base hardware configurations can have different
hardware signature values. OSPM uses this information in
waking from an S4 state, by comparing the current hardware
signature to the signature values saved in the non-volatile sleep
image. If the values are not the same, OSPM assumes that the
saved non-volatile image is from a different hardware
configuration and cannot be restored.

Firmware Waking
Vector

4 12 This field is superseded by the X_Firmware_Waking_Vector
field.

The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global sleeping state,
OSPM fills in this field with the physical memory address of an
OS-specific wake function. During POST, the platform
firmware first checks if the value of the
X_Firmware_Waking_Vector field is non-zero and if so
transfers control to OSPM as outlined in the
X_Firmware_Waking_vector field description below. If the
X_Firmware_Waking_Vector field is zero then the platform
firmware checks the value of this field and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function address is in memory below 1 MB
and the control is transferred while in real mode. OSPM’s wake
function restores the processors’ context.

For IA-PC platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps to.
If, for example, the physical address is 0x12345, then the BIOS
must jump to real mode address 0x1234:0x0005. In general this
relationship is

Real-mode address =

Physical address>>4 : Physical address and 0x000F

Notice that on IA-PC platforms, A20 must be enabled when the
BIOS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.

130 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-12 Firmware ACPI Control Structure (FACS) (continued)

Field
Byte
Length

Byte
Offset Description

Global Lock 4 16 This field contains the Global Lock used to synchronize access
to shared hardware resources between the OSPM environment
and an external controller environment (for example, the SMI
environment). This lock is owned exclusively by either OSPM
or the firmware at any one time. When ownership of the lock
is attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has
been released. For example, the Global Lock can be used to
protect an embedded controller interface such that only OSPM
or the firmware will access the embedded controller interface
at any one time. See section 5.2.10.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags 4 20 Firmware control structure flags. See Table 5-13 for a
description of this field.

ACPI Software Programming Model 131

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

X Firmware Waking
Vector

8 24 64-bit physical address of OSPM’s Waking Vector.

Before transitioning the system into a global sleeping state,
OSPM fills in this field and the OSPM Flags field to describe
the waking vector. OSPM populates this field with the
physical memory address of an OS-specific wake function.
During POST, the platform firmware checks if the value of
this field is non-zero and if so transfers control to OSPM by
jumping to this address after creating the appropriate
execution environment, which must be configured as follows:

For 64-bit Itanium™ Processor Family (IPF) -based platforms:

 Interrupts must be disabled

o The processor must have psr.i set to 0. See

the Intel® ItaniumTM Architecture Software
Developer’s Manual for more information.

 Memory address translation must be disabled

o The processor must have psr.it, psr.dt, and

psr.rt set to 0. See the Intel® ItaniumTM

Architecture Software Developer’s Manual
for more information.

For IA 32 and x64 platforms, platform firmware is required to
support a 32 bit execution environment. Platform firmware
can additionally support a 64 bit execution environment. If
platform firmware supports a 64 bit execution environment,
firmware inspects the OSPM Flags during POST. If the
64BIT_WAKE_F flag is set, the platform firmware creates a
64 bit execution environment. Otherwise, the platform
firmware creates a 32 bit execution environment.

For 64 bit execution environment:

 Interrupts must be disabled

o EFLAGS.IF set to 0

 Long mode enabled

 Paging mode is enabled and physical memory for
waking vector is identity mapped (virtual address
equals physical address)

o Waking vector must be contained within one
physical page

 Selectors are set to be flat and are otherwise not used

For 32 bit execution environment:

 Interrupts must be disabled

o EFLAGS.IF set to 0

 Memory address translation / paging must be
disabled

 4 GB flat address space for all segment registers

Version 1 32 2–Version of this table

132 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Reserved 3 33 This value is zero.

OSPM Flags 4 36 OSPM enabled firmware control structure flags. Platform
firmware must initialize this field to zero. See Table 5-14 for
a description of the OSPM control structure feature flags.

Reserved 24 40 This value is zero.

Table 5-13 Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset Description

S4BIOS_F 1 0 Indicates whether the platform supports S4BIOS_REQ. If
S4BIOS_REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the S4 state.

64BIT_WAKE_SUP
PORTED_F

1 1 Indicates that the platform firmware supports a 64 bit
execution environment for the waking vector. When set and
the OSPM additionally set 64BIT_WAKE_F, the platform
firmware will create a 64 bit execution environment before
transferring control to the X_Firmware_Waking_Vector.

Reserved 30 2 The value is zero.

Table 5-14 OSPM Enabled Firmware Control Structure Feature Flags

FACS – Flag
Bit
Length

Bit
Offset Description

64BIT_WAKE_F 1 0 OSPM sets this bit to indicate to platform firmware that the
X_Firmware_Waking_Vector requires a 64 bit execution
environment.

This flag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flags field.

This bit field has no affect on ItaniumTM Processor Family
(IPF) -based platforms, which require a 64 bit execution
environment.

Reserved 31 1 The value is zero.

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock is to provide mutual exclusion between the host OS and the ROM
BIOS. The Global Lock is a 32-bit (DWORD) value in read/write memory located within the FACS and is
accessed and updated by both the OS environment and the SMI environment in a defined manner to
provide an exclusive lock. Note: this is not a pointer to the Global Lock, it is the actual memory location of
the lock. The FACS and Global Lock may be located anywhere in physical memory.

ACPI Software Programming Model 133

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

By convention, this lock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment owns it, the requesting environment sets a “pending” state within the lock, exits its attempt to
acquire the lock, and waits for the owning environment to signal that the lock has been released before
attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after the
lock is released, a signal is sent via an interrupt mechanism to the other environment to inform it that the
lock has been released. During interrupt handling for the “lock released” event within the corresponding
environment, if the lock ownership were still desired an attempt to acquire the lock would be made. If
ownership is not acquired, then the environment must again set “pending” and wait for another “lock
release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.

Table 5-15 Global Lock Structure within the FACS

Field Bit Length Bit Offset Description

Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero is returned by the function, the caller has been granted ownership of the Global Lock and
can proceed. If zero is returned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt event that
the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previously
initialized to point to the 32-bit Global Lock location within the FACS.

AcquireGlobalLock:
mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS

acq10: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax
and edx, not 1 ; Clear pending bit
bts edx, 1 ; Check and set owner bit
adc edx, 0 ; If owned, set pending bit

lock cmpxchg dword ptr[ecx], edx ; Attempt to set new value
jnz short acq10 ; If not set, try again

cmp dl, 3 ; Was it acquired or marked pending?
sbb eax, eax ; acquired = -1, pending = 0

ret

134 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following code sequence is used by OSPM and the firmware to release ownership of the
Global Lock. If non-zero is returned, the caller must raise the appropriate event to the
other environment to signal that the Global Lock is now free. Depending on the
environment, this signaling is done by setting the either the GBL_RLS or BIOS_RLS within
their respective hardware register spaces. This signal only occurs when the other
environment attempted to acquire ownership while the lock was owned.

ReleaseGlobalLock:
mov ecx, GlobalLock ; ecx = Address of Global Lock in FACS

rel10: mov eax, [ecx] ; Get current value of Global Lock

mov edx, eax
and edx, not 03h ; Clear owner and pending field

lock cmpxchg dword ptr[ecx], edx ; Attempt to set it
jnz short rel10 ; If not set, try again

and eax, 1 ; Was pending set?

; If one is returned (we were pending) the caller must signal that the
; lock has been released using either GBL_RLS or BIOS_RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it is important to notice
that its usage when there is ownership contention could entail a significant amount of system overhead as
well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum.

The Global Lock is required whenever a logical register in the hardware is shared. For example, if bit 0 is
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to be
protected under the Global Lock, ensuring that the register’s contents do not change from underneath one
environment while the other is making changes to it. Similarly if the entire register is shared, as the case
might be for the embedded controller interface, access to the register needs to be protected under the Global
Lock.

5.2.11 Definition Blocks

A Definition Block consists of data in AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM “loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permits implementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for I/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from I/O space, but that is not the goal of the definition block. Such a space is usually defined as
a “built in” operator.

ACPI Software Programming Model 135

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bits in ACPI 2.0,
see section 18.2.5, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL Definition Block’s ComplianceRevision field. See section
18.5.26, “DefinitionBlock (Declare Definition Block)”, for more information. It is the responsibility of the
ASL writer to ensure the Definition Block’s compatibility with the corresponding integer width when
setting the ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. This
Definition Block is like all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During initialization, OSPM
finds the pointer to the DSDT in the Fixed ACPI Description Table (using the FADT’s DSDT or X_DSDT
fields) and then loads the DSDT to create the ACPI Namespace.

Table 5-16 Differentiated System Description Table Fields (DSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.

Length 4 4 Length, in bytes, of the entire DSDT (including the header).

Revision 1 8 2. This field also sets the global integer width for the AML
interpreter. Values less than two will cause the interpreter to use
32-bit integers and math. Values of two and greater will cause
the interpreter to use full 64-bit integers and math.

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 The manufacture model ID.

OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID for the ASL Compiler.

Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)

136 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.11.2 Secondary System Description Table (SSDT)
Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by data in Definition Block format. There can be multiple
SSDTs present. After OSPM loads the DSDT to create the ACPI Namespace, each secondary system
description table listed in the RSDT/XSDT with a unique OEM Table ID is loaded. Note: Additional tables
can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system options in other
tables. For example, the OEM might put dynamic object definitions into a secondary table such that the
firmware can construct the dynamic information at boot without needing to edit the static DSDT. A SSDT
can only rely on the DSDT being loaded prior to it.

Table 5-17 Secondary System Description Table Fields (SSDT)

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.

Length 4 4 Length, in bytes, of the entire SSDT (including the header).

Revision 1 8 2

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 The manufacture model ID.

OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID for the ASL Compiler.

Creator Revision 4 32 Revision number of the ASL Compiler.

Definition Block n 36 n bytes of AML code (see section 5.4 , “Definition Block
Encoding”)

5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
follow-on versions of the ACPI specification. OSPM will evaluate a table with the “PSDT” signature in
like manner to the evaluation of an SSDT as described in section 5.2.11.2, “Secondary System Description
Table.”

5.2.12 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT–compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller (APIC) and
Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically changed by
the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports both models, an OS will install support for one model or the other; it
will not mix models. Multi-boot capability is a feature in many modern operating systems. This means that
a system may have multiple operating systems or multiple instances of an OS installed at any one time.
Platform designers must allow for this.

ACPI Software Programming Model 137

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC or SAPIC implementations.

ACPI represents all interrupts as “flat” values known as global system interrupts. Therefore to support
APICs or SAPICs on an ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped
to the global system interrupt value used by ACPI. See Section 5.2.13. Global System Interrupts,” for a
description of Global System Interrupts.

Additional support is required to handle various multi-processor functions that APIC or SAPIC
implementations might support (for example, identifying each processor’s local APIC ID).

All addresses in the MADT are processor-relative physical addresses.

Table 5-18 Multiple APIC Description Table (MADT) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.

Length 4 4 Length, in bytes, of the entire MADT.

Revision 1 8 3

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the MADT, the table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision of MADT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Local APIC
Address

4 36 The 32-bit physical address at which each processor can access
its local APIC.

Flags 4 40 Multiple APIC flags. See Table 5-19 for a description of this
field.

APIC Structure[n] — 44 A list of APIC structures for this implementation. This list will
contain all of the I/O APIC, I/O SAPIC, Local APIC, Local
SAPIC, Interrupt Source Override, Non-maskable Interrupt
Source, Local APIC NMI Source, Local APIC Address Override,
Platform Interrupt Sources, Local x2APIC, and Local x2APIC
NMI structures needed to support this platform. These structures
are described in the following sections.

138 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-19 Multiple APIC Flags

Multiple APIC
Flags

Bit
Length

Bit
Offset Description

PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Reserved 31 1 This value is zero.

Immediately after the Flags value in the MADT is a list of APIC structures that declare the APIC features
of the machine. The first byte of each structure declares the type of that structure and the second byte
declares the length of that structure.

Table 5-20 APIC Structure Types

Value Description

0 Processor Local APIC

1 I/O APIC

2 Interrupt Source Override

3 Non-maskable Interrupt Source (NMI)

4 Local APIC NMI

5 Local APIC Address Override

6 I/O SAPIC

7 Local SAPIC

8 Platform Interrupt Sources

9 Processor Local x2APIC

0xA Local x2APIC NMI

0xB-0x7F Reserved. OSPM skips structures of the reserved type.

0x80-0xFF Reserved for OEM use

5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order

OSPM implementations may limit the number of supported processors on multi-processor platforms.
OSPM executes on the boot processor to initialize the platform including other processors. To ensure that
the boot processor is supported post initialization, two guidelines should be followed. The first is that
OSPM should initialize processors in the order that they appear in the MADT. The second is that platform
firmware should list the boot processor as the first processor entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defines logical processors in an identical manner as physical processors. To
ensure that non multi-threading aware OSPM implementations realize optimal performance on platforms
containing multi-threaded processors, two guidelines should be followed. The first is the same as above ,
that is, OSPM should initialize processors in the order that they appear in the MADT. The second is that
platform firmware should list the first logical processor of each of the individual multi-threaded processors
in the MADT before listing any of the second logical processors. This approach should be used for all
successive logical processors.

ACPI Software Programming Model 139

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in both
unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure

When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table 5-21 Processor Local APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 0 Processor Local APIC structure

Length 1 1 8

ACPI Processor
ID

1 2 The ProcessorId for which this processor is listed in the ACPI
Processor declaration operator. For a definition of the Processor
operator, see section 18.5.93, “Processor (Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-22 for a description of this field.

Table 5-22 Local APIC Flags

LocalAPIC Flags
Bit
Length

Bit
Offset Description

Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.

Reserved 31 1 Must be zero.

5.2.12.3 I/O APIC Structure

In an APIC implementation, there are one or more I/O APICs. Each I/O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of n is from 0 to the number of the last interrupt input on the
I/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with the
I/O APIC interrupt inputs. There is one I/O APIC structure for each I/O APIC in the system. For more
information on global system interrupts see Section 5.2.13, “Global System Interrupts.”

140 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-23 I/O APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 1 I/O APIC structure

Length 1 1 12

I/O APIC ID 1 2 The I/O APIC’s ID.

Reserved 1 3 0

I/O APIC
Address

4 4 The 32-bit physical address to access this I/O APIC. Each I/O
APIC resides at a unique address.

Global System
Interrupt Base

4 8 The global system interrupt number where this I/O APIC’s
interrupt inputs start. The number of interrupt inputs is
determined by the I/O APIC’s Max Redir Entry register.

5.2.12.4 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to
the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see section 5.2.12.5, “Interrupt
Source Override Structure” below). This means that I/O APIC interrupt inputs 0-15 must be mapped to
global system interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless overrides are used.
This allows a platform to support OSPM implementations that use the APIC model as well as OSPM
implementations that use the 8259 model (OSPM will only use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that all interrupt descriptors reporting global system
interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are
ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the I/O APIC structures. For more information on hardware resource configuration see
section 6, “Configuration.”

5.2.12.5 Interrupt Source Override Structure

Interrupt Source Overrides are necessary to describe variances between the IA-PC standard dual 8259
interrupt definition and the platform’s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first I/O APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is not necessary to provide an
Interrupt Source Override for every ISA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding ISA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0,
but in APIC mode, it is connected to I/O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interrupt is ‘2.’

Table 5-24 Interrupt Source Override Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 2 Interrupt Source Override

Length 1 1 10

ACPI Software Programming Model 141

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Bus 1 2 0 Constant, meaning ISA

Source 1 3 Bus-relative interrupt source (IRQ)

Global System
Interrupt

4 4 The Global System Interrupt that this bus-relative interrupt source
will signal.

Flags 2 8 MPS INTI flags. See Table 5-25 for a description of this field.

The MPS INTI flags listed in Table 5-25 are identical to the flags used in Table 4-10 of the MPS version
1.4 specifications. The Polarity flags are the PO bits and the Trigger Mode flags are the EL bits.

Table 5-25 MPS INTI Flags

Local APIC -
Flags

Bit
Length

Bit
Offset Description

Polarity 2 0 Polarity of the APIC I/O input signals:

00 Conforms to the specifications of the bus

(For example, EISA is active-low for level-triggered interrupts)

01 Active high

10 Reserved

11 Active low

Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:

00 Conforms to specifications of the bus

(For example, ISA is edge-triggered)

01 Edge-triggered

10 Reserved

11 Level-triggered

Reserved 12 4 Must be zero.

Interrupt Source Overrides are also necessary when an identity mapped interrupt input has a non-standard
polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if this IRQ
is not identity mapped. This entry will override the value in SCI_INT in FADT. For example, if SCI is
connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in
SCI_INT in the FADT and an interrupt source override entry mapping IRQ 9 to INTIN11.

5.2.12.6 Non-Maskable Interrupt Source Structure

This structure allows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-26 Non-maskable Source Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 3 NMI

Length 1 1 8

142 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Flags 2 2 Same as MPS INTI flags

Global System
Interrupt

4 4 The Global System Interrupt that this NMI will signal.

5.2.12.7 Local APIC NMI Structure

This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of the
processors in the system where such a connection exists. This information is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the
platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table 5-27 Local APIC NMI Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 4 Local APIC NMI Structure

Length 1 1 6

ACPI Processor
ID

1 2 Processor ID corresponding to the ID listed in the processor
object. A value of 0xFF signifies that this applies to all processors
in the machine.

Flags 2 3 MPS INTI flags. See Table 5-25 for a description of this field.

Local APIC
LINT#

1 5 Local APIC interrupt input LINTn to which NMI is connected.

5.2.12.8 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of the local
APIC in the MADT’s table header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),
rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.

Table 5-28 Local APIC Address Override Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC
Address

8 4 Physical address of Local APIC. For Itanium™ Processor Family
(IPF)-based platforms, this field contains the starting address of

the Processor Interrupt Block. See the Intel® ItaniumTM

Architecture Software Developer’s Manual for more information.

ACPI Software Programming Model 143

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.12.9 I/O SAPIC Structure

The I/O SAPIC structure is very similar to the I/O APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the I/O SAPIC structure must be used.

The I/O SAPIC structure uses the I/O_APIC_ID field as defined in the I/O APIC table. The Vector_Base
field remains unchanged but has been moved. The I/O APIC address has been deleted. A new address and
reserved field have been added.

Table 5-29 I/O SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 6 I/O SAPIC Structure

Length 1 1 16

I/O APIC ID 1 2 I/O SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System
Interrupt Base

4 4 The global system interrupt number where this I/O SAPIC’s
interrupt inputs start. The number of interrupt inputs is determined
by the I/O SAPIC’s Max Redir Entry register.

I/O SAPIC
Address

8 8 The 64-bit physical address to access this I/O SAPIC. Each I/O
SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the I/O SAPIC structure instead of the information
from the I/O APIC structure.

If both I/O APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many I/O
SAPIC structures as I/O APIC structures and that every I/O APIC structure has a corresponding I/O SAPIC
structure (same APIC ID).

5.2.12.10 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table 5-30 Processor Local SAPIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor
ID

1 2 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Processor statement by
matching the processor object’s ProcessorID value with this field.
For a definition of the Processor object, see section 18.5.93,
“Processor (Declare Processor).”

144 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Local SAPIC ID 1 3 The processor’s local SAPIC ID

Local SAPIC
EID

1 4 The processor’s local SAPIC EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-22 for a description of this field.

ACPI Processor
UID Value

4 12 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
numeric value, by matching the numeric value with this field.

ACPI Processor
UID String

>=1 16 OSPM associates the Local SAPIC Structure with a processor
object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluates to a
string, by matching the string with this field. This value is stored
as a null-terminated ASCII string.

5.2.12.11 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which I/O SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events

(similar to SMI in IA-32). The Intel® ItaniumTM architecture permits the I/O SAPIC to send a vector value
in the interrupt message of the PMI type. This value is specified in the I/O SAPIC Vector field of the
Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If a platform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the
interrupt input line used to signal such corrected errors is specified by the Global System Interrupt field in
the following table. Some systems may restrict the retrieval of corrected platform error information to a
specific processor. In such cases, the firmware indicates the processor that can retrieve the corrected
platform error information through the Processor ID and EID fields in the structure below. OSPM is
required to program the I/O SAPIC redirection table entries with the Processor ID, EID values specified by
the ACPI system firmware. On platforms where the retrieval of corrected platform error information can be
performed on any processor, the firmware indicates this capability by setting the CPEI Processor Override
flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI Processor Override Flag
is set, OSPM uses the processor specified by Processor ID, and EID fields of the structure below only as a
target processor hint and the error retrieval can be performed on any processor in the system. However,
firmware is required to specify valid values in Processor ID, EID fields to ensure backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a ejection request for the processor that is
targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can
retarget the corrected platform error interrupt to a different processor when the target processor is ejected.

Note that the _MAT object can return a buffer containing Platform Interrupt Source Structure entries. It is
allowed for such an entry to refer to a Global System Interrupt that is already specified by a Platform
Interrupt Source Structure provided through the static MADT table, provided the value of platform
interrupt source flags are identical.

Refer to the ItaniumTM Processor Family System Abstraction Layer (SAL) Specification for details on
handling the Corrected Platform Error Interrupt.

ACPI Software Programming Model 145

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-31 Platform Interrupt Sources Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 8 Platform Interrupt Source structure

Length 1 1 16

Flags 2 2 MPS INTI flags. See Table 5-25 for a description of this field.

Interrupt Type 1 4 1 PMI

2 INIT

3 Corrected Platform Error Interrupt

All other values are reserved.

Processor ID 1 5 Processor ID of destination.

Processor EID 1 6 Processor EID of destination.

I/O SAPIC
Vector

1 7 Value that OSPM must use to program the vector field of the I/O
SAPIC redirection table entry for entries with the PMI interrupt
type.

Global System
Interrupt

4 8 The Global System Interrupt that this platform interrupt will
signal.

Platform
Interrupt Source
Flags

4 12 Platform Interrupt Source Flags. See Table 5-32 for a description
of this field

Table 5-32 Platform Interrupt Source Flags

Platform
Interrupt Source
Flags

Bit
Length

Bit
Offset Description

CPEI Processor
Override

1 0 When set, indicates that retrieval of error information is allowed
from any processor and OSPM is to use the information provided
by the processor ID, EID fields of the Platform Interrupt Source
Structure (Table 5-30) as a target processor hint.

Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using the
X2APIC interrupt model, logical processors with APIC ID values of 255 and greater are required to have a
Processor Device object and must convey the processor’s APIC information to OSPM using the Processor
Local X2APIC structure. Logical processors with APIC ID values less than 255 must use the Processor
Local APIC structure to convey their APIC information to OSPM. OSPM does not expect the information
provided in this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the sleeping state, logical processors must not be added or removed, nor can their X2APIC ID or
x2APIC Flags change. When a logical processor is not present, the processor local X2APIC information is
either not reported or flagged as disabled.

146 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The format of x2APIC structure is listed in Table 5-33.

Table 5-33 Processor Local x2APIC Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 9 Processor Local x2APIC structure

Length 1 1 16

Reserved 2 2 Reserved - Must be zero

X2APIC ID 4 4 The processor’s local x2APIC ID.

Flags 4 8 Same as Local APIC flags. See Table 5-22 for a description of
this field.

ACPI Processor
UID

4 12 OSPM associates the X2APIC Structure with a processor object
declared in the namespace using the Device statement, when the
_UID child object of the processor device evaluates to a numeric
value, by matching the numeric value with this field

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTn) that NMI is
connected to for each of the logical processors in the system where such a connection exists. Each NMI
connection to a processor requires a separate NMI structure. This information is needed by OSPM to enable
the appropriate APIC entry.

NMI connection to a logical processor with local x2APIC ID 255 and greater requires an X2APIC NMI
structure. NMI connection to a logical processor with an x2APIC ID less than 255 requires a Local APIC
NMI structure. For example, if the platform contains 8 logical processors with x2APIC IDs 0-3 and 256-
259 and NMI is connected LINT1 for processor 3, 2, 256 and 257 then two Local APIC NMI entries and
two X2APIC NMI entries must be provided in the MADT.

The Local APIC NMI structure is used to specify global LINTx for all processors if all logical processors
have x2APIC ID less than 255. If the platform contains any logical processors with an x2APIC ID of 255
or greater then the Local X2APIC NMI structure must be used to specify global LINTx for ALL logical
processors. The format of x2APIC NMI structure is listed in Table 5-34.

Table 5-34 Local x2APIC NMI Structure

Field
Byte
Length

Byte
Offset Description

Type 1 0 0AH Local x2APIC NMI Structure

Length 1 1 12

Flags 2 2 Same as MPS INTI flags. See Table 5-25 for a description of this
field.

ACPI Software Programming Model 147

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

ACPI Processor
UID

4 4 UID corresponding to the ID listed in the processor Device object.
A value of 0xFFFFFFFF signifies that this applies to all
processors in the machine.

Local x2APIC
LINT#

1 8 Local x2APIC interrupt input LINTn to which NMI is connected.

Reserved 3 9 Reserved - Must be zero.

0 INTI_0 0
.
.

.

23 INTI_23

24 INTI_0 24
.

.

.

39 INTI_15

40 INTI_0 40
.

51 INTI_11

.

55 INTI_23

24 input
IOAPIC

16 input
IOAPIC

24 input
IOAPIC

Global System Interrupt Vector
(ie ACPI PnP IRQ#)

Interrupt Input Lines
on IOAPIC

‘System Vector Base’
reported in IOAPIC Struc

Figure 5-3 APIC–Global System Interrupts

5.2.13 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interrupts in tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA IRQs although in the case of the IA-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

148 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The first model is the APIC model. In the APIC model, the number of interrupt inputs supported by each
I/O APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
many interrupt inputs each I/O APIC supports and by determining the global system interrupt base for each
I/O APIC as specified by the I/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the I/O APIC. The global system interrupts mapped to that I/O
APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. This mapping is depicted in Figure 5-3.

There is exactly one I/O APIC structure per I/O APIC in the system.

IRQ0

.

IRQ3

.
IRQ7

IR8

.
IRQ11

.

IRQ15

8259 ISA IRQsGlobal System Interrupt Vector

(ie ACPI PnP IRQ#)

Master

8259

Slave

8259

0

8

15

7

Figure 5-4 8259–Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses ISA IRQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in
Figure 5-4.

ACPI Software Programming Model 149

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.14 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the user
to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in current
(mA/mAh) or in energy (mW/mWh), OSPM must set them to operate in energy (mW/mWh) mode so that
the energy levels specified in the SBST can be used. OSPM uses these tables with the capabilities of the
batteries to determine the different trip points. For more precise definitions of these levels, see section
3.9.3, “Battery Gas Gauge.”

Table 5-35 Smart Battery Description Table (SBST) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.

Length 4 4 Length, in bytes, of the entire SBST

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the SBST, the table ID is the manufacturer model ID.

OEM Revision 4 24 OEM revision of SBST for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

Warning Energy
Level

4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
OSPM warns the user.

Low Energy Level 4 40 OEM suggested platform energy level in mWh at which OSPM
will transition the system to a sleeping state.

Critical Energy
Level

4 44 OEM suggested platform energy level in mWh at which OSPM
performs an emergency shutdown.

5.2.15 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access before
the namespace has been evaluated. If this table is not provided, the Embedded Controller region space will
not be available until the Embedded Controller device in the AML namespace has been discovered and
enumerated. The availability of the region space can be detected by providing a _REG method object
underneath the Embedded Controller device.

150 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-36 Embedded Controller Boot Resources Table Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.

Length 4 4 Length, in bytes, of the entire Embedded Controller Table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the Embedded Controller Table, the table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM revision of Embedded Controller Table for supplied OEM
Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

EC_CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller
Command/Status register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

EC_DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.
Note: Only System I/O space and System Memory space are
valid for values for Address_Space_ID.

UID 4 60 Unique ID–Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE_BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described in the FADT that the
embedded controller triggers.

EC_ID Variable 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC”). Quotes
are omitted in the data field.

ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT.
ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The following example
code shows how to detect whether the Embedded Controller operation regions are available in a manner
that is backward compatible with prior versions of ACPI/OSPM.

ACPI Software Programming Model 151

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device(EC0) {
Name(REGC,Ones)
Method(_REG,2) {

If(Lequal(Arg0, 3)) {
Store(Arg1, REGC)

}
}

}
Method(ECAV,0) {

If(Lequal(REGC,Ones)) {
If(LgreaterEqual(_REV,2)) {

Return(One)
}
Else {

Return(Zero)
}
Return(REGC)

}
}

To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCI0.EC0.ECAV()) {
...regions are available...

}
else {

...regions are not available...
}

5.2.16 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate processors and memory ranges,
including ranges of memory provided by hot-added memory devices, with system localities / proximity
domains and clock domains. On NUMA platforms, SRAT information enables OSPM to optimally
configure the operating system during a point in OS initialization when evaluation of objects in the ACPI
Namespace is not yet possible. OSPM evaluates the SRAT only during OS initialization. The Local APIC
ID / Local SAPIC ID / Local x2APIC ID of all processors started at boot time must be present in the
SRAT. If the Local APIC ID / Local SAPIC ID / Local x2APIC ID of a dynamically added processor is not
present in the SRAT, a _PXM object must exist for the processor’s device or one of its ancestors in the
ACPI Namespace.

Table 5-37 Static Resource Affinity Table Format

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘SRAT’. Signature for the System Resource Affinity Table.

Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table

Revision 1 8 3

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Resource Affinity Table, the table ID is the
manufacturer model ID.

OEM Revision 4 24 OEM revision of System Resource Affinity Table for supplied
OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

152 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Creator Revision 4 32 Revision of utility that created the table.

Reserved 4 36 Reserved to be 1 for backward compatibility

Reserved 8 40 Reserved

Static Resource
Allocation
Structure[n]

--- 48 A list of static resource allocation structures for the platform. See
section 5.2.16.1,”Processor Local APIC/SAPIC Affinity
Structure”, section 5.2.16.2 “Memory Affinity Structure”, and
section 5.2.16.3 “Processor Local x2APIC Affinity Structure”.

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure

The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or
SAPIC ID/EID of a processor and the proximity domain to which the processor belongs. Table 5-38
provides the details of the Processor Local APIC/SAPIC Affinity structure.

Table 5-38 Processor Local APIC/SAPIC Affinity Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure

Length 1 1 16

Proximity Domain
[7:0]

1 2 Bit[7:0] of the proximity domain to which the processor belongs.

APIC ID 1 3 The processor local APIC ID.

Flags 4 4 Flags – Processor Local APIC/SAPIC Affinity Structure. See
Table 5-39 for a description of this field.

Local SAPIC EID 1 8 The processor local SAPIC EID.

Proximity Domain
[31:8]

3 9 Bit[31:8] of the proximity domain to which the processor
belongs.

Clock Domain 4 12 The clock domain to which the processor belongs. See section
6.2.1, “_CDM (Clock Domain)”.

Table 5-39 Flags – Processor Local APIC/SAPIC Affinity Structure

Field Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.

Reserved 31 1 Must be zero.

ACPI Software Programming Model 153

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.16.2 Memory Affinity Structure

The Memory Affinity structure provides the following topology information statically to the operating
system:

 The association between a range of memory and the proximity domain to which it belongs

 Information about whether the range of memory can be hot-plugged.

Table 5-40 provides the details of the Memory Affinity structure.

Table 5-40 Memory Affinity Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain 4 2 Integer that represents the proximity domain to which the
processor belongs

Reserved 2 6 Reserved

Base Address Low 4 8 Low 32 Bits of the Base Address of the memory range

Base Address High 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags – Memory Affinity Structure. Indicates whether the region
of memory is enabled and can be hot plugged. Details in See
Table 5-41.

Reserved 8 32 Reserved.

154 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-41 Flags – Memory Affinity Structure

Field Bit
Length

Bit
Offset

Description

Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity
Structure. This allows system firmware to populate the SRAT
with a static number of structures but only enable then as
necessary.

Hot Pluggable5 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit is also set. The
system hardware supports hot-add and hot-remove of this
memory region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of
the Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.

5.2.16.3 Processor Local x2APIC Affinity Structure

The Processor Local x2APIC Affinity structure provides the association between the local x2APIC ID of a
processor and the proximity domain to which the processor belongs. Table 5-42 provides the details of the
Processor Local x2APIC Affinity structure.

Table 5-42 Processor Local x2APIC Affinity Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved – Must be zero

Proximity Domain 4 4 The proximity domain to which the logical processor belongs.

X2APIC ID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags.
See Table 5-39 for a description of this field.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
section 6.2.1, “_CDM (Clock Domain)”.

Reserved 4 20 Reserved.

5 On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into
PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.

ACPI Software Programming Model 155

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.17 System Locality Distance Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between all
System Localities, which are also referred to as Proximity Domains. Systems employing a Non Uniform
Memory Access (NUMA) architecture contain collections of hardware resources including for example,
processors, memory, and I/O buses, that comprise what is known as a “NUMA node”. Processor accesses
to memory or I/O resources within the local NUMA node is generally faster than processor accesses to
memory or I/O resources outside of the local NUMA node.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace.
See section 6.2.12, “_PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System
Locality j is the i*N + j entry in the matrix, where N is the number of System Localities. Except for the
relative distance from a System Locality to itself, each relative distance is stored twice in the matrix. This
provides the capability to describe the scenario where the relative distances for the two directions between
System Localities is different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized
to a value of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For
example, if the relative distance from System Locality i to System Locality j is 2.4, a value of 24 is stored
in table entry i*N+ j and in j*N+ i, where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (0xFF) is stored in that table entry. Distance
values of 0-9 are reserved and have no meaning.

Table 5-43 SLIT Format

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘SLIT’. Signature for the System Locality Distance
Information Table.

Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Locality Information Table, the table ID is
the manufacturer model ID.

OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the ID for the ASL
Compiler.

156 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for the
ASL Compiler.

Number of System
Localities

8 36 Indicates the number of System Localities in the system.

Entry[0][0] 1 44 Matrix entry (0,0), contains a value of 10.

…

Entry[0][Number of
System Localities-1]

1 Matrix entry (0, Number of System Localities-1)

Entry[1][0] 1 Matrix entry (1,0)

…… ……

Entry[Number of
System Localities-
1][Number of System
Localities-1]

1 Matrix entry (Number of System Localities-1, Number of
System Localities-1), contains a value of 10

5.2.18 Corrected Platform Error Polling Table (CPEP)

Platforms may contain the ability to detect and correct certain operational errors while maintaining
platform function. These errors may be logged by the platform for the purpose of retrieval. Depending on
the underlying hardware support, the means for retrieving corrected platform error information varies. If
the platform hardware supports interrupt-based signaling of corrected platform errors, the MADT Platform
Interrupt Source Structure describes the Corrected Platform Error Interrupt (CPEI). See section
5.2.11.14,”Platform Interrupt Source Structure”. Alternatively, OSPM may poll processors for corrected
platform error information. Error log information retrieved from a processor may contain information for
all processors within an error reporting group. As such, it may not be necessary for OSPM to poll all
processors in the system to retrieve complete error information. This optional table provides information
that allows OSPM to poll only the processors necessary for a complete report of the platform’s corrected
platform error information.

Table 5-44 Corrected Platform Error Polling Table Format

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘CPEP’. Signature for the Corrected Platform Error Polling
Table.

Length 4 4 Length, in bytes, of the entire CPET. The length implies the
number of Entry fields at the end of the table

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the Corrected Platform Error Polling Table, the table ID is the
manufacturer model ID.

ACPI Software Programming Model 157

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

OEM Revision 4 24 OEM revision of Corrected Platform Error Polling Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision 4 32 Revision of utility that created the table.

Reserved 8 36 Reserved, must be 0.

CPEP Processor
Structure[n]

--- 44 A list of Corrected Platform Error Polling Processor structures for
the platform. See section 5.2.17.1,” Corrected Platform Error
Polling Processor Structure”.

5.2.18.1 Corrected Platform Error Polling Processor Structure

The Corrected Platform Error Polling Processor structure provides information on the specific processors
OSPM polls for error information. Table 5-45 provides the details of the Corrected Platform Error Polling
Processor structure.

Table 5-45 Corrected Platform Error Polling Processor Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors

Length 1 1 8

Processor ID 1 2 Processor ID of destination.

Processor EID 1 3 Processor EID of destination.

Polling Interval 4 4 Platform-suggested polling interval (in milliseconds)

5.2.19 Maximum System Characteristics Table (MSCT)

This section describes the format of the Maximum System Characteristic Table (MSCT), which provides
OSPM with information characteristics of a system’s maximum topology capabilities. If the system
maximum topology is not known up front at boot time, then this table is not present. OSPM will use
information provided by the MSCT only when the System Resource Affinity Table (SRAT) exists. The
MSCT must contain all proximity and clock domains defined in the SRAT.

Table 5-46 Maximum System Characteristics Table (MSCT) Format

Field
Byte
Length

Byte
Offset Description

Header

Signature 4 0 ‘MSCT’ Signature for the Maximum System
Characteristics Table.

Length 4 4 Length, in bytes, of the entire MSCT.

158 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field
Byte
Length

Byte
Offset Description

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID

OEM Table ID 8 16 For the MSCT, the table ID is the manufacturer model
ID.

OEM Revision 4 24 OEM revision of MSCT for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.

Offset to Proximity
Domain Information
Structure
[OffsetProxDomInfo]

4 36 Offset in bytes to the Proximity Domain Information
Structure table entry.

Maximum Number of
Proximity Domains

4 40 Indicates the maximum number of Proximity Domains
ever possible in the system. The number reported in this
field is (maximum domains – 1). For example if there
are 0x10000 possible domains in the system, this field
would report 0xFFFF.

Maximum Number of
Clock Domains

4 44 Indicates the maximum number of Clock Domains ever
possible in the system. The number reported in this field
is (maximum domains – 1). See section 6.2.1, “_CDM
(Clock Domain)”.

Maximum Physical
Address

8 48 Indicates the maximum Physical Address ever possible
in the system. Note: this is the top of the reachable
physical address.

Proximity Domain
Information
Structure[Maximum
Number of Proximity
Domains]

— [OffsetProx
DomInfo]

A list of Proximity Domain Information for this
implementation. The structure format is defined in the
Maximum Proximity Domain Information Structure
section.

ACPI Software Programming Model 159

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.2.19.1 Maximum Proximity Domain Information Structure

The Maximum Proximity Domain Information Structure is used to report system maximum characteristics.
It is likely that these characteristics may be the same for many proximity domains, but they can vary from
one proximity domain to another. This structure optimizes to cover the former case, while allowing the
flexibility for the latter as well. These structures must be organized in ascending order of the proximity
domain enumerations. All proximity domains within the Maximum Number of Proximity Domains
reported in the MSCT must be covered by one of these structures.

Table 5-47 Maximum Proximity Domain Information Structure

Field
Byte
Length

Byte
Offset Description

Revision 1 0 1

Length 1 1 22

Proximity Domain
Range (low)

4 2 The starting proximity domain for the proximity domain range
that this structure is providing information.

Proximity Domain
Range (high)

4 6 The ending proximity domain for the proximity domain range
that this structure is providing information.

Maximum
Processor
Capacity

4 10 The Maximum Processor Capacity of each of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain processors. This field must be
>= the number of processor entries for the domain in the SRAT.

Maximum
Memory Capacity

8 14 The Maximum Memory Capacity (size in bytes) of the Proximity
Domains specified in the range. A value of 0 means that the
proximity domains do not contain memory.

160 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.3 ACPI Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it uses to refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take care
to avoid any naming collisions6. Only an unload operation of a Definition Block can remove names from
the namespace, so a name collision in an attempt to load a Definition Block is considered fatal. The
contents of the namespace changes only on a load or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:

 All names are a fixed 32 bits.
 The first byte of a name is inclusive of: ‘A’–‘Z’, ‘_’, (0x41–0x5A, 0x5F).
 The remaining three bytes of a name are inclusive of: ‘A’–‘Z’, ‘0’–‘9’, ‘_’, (0x41–0x5A, 0x30–

0x39, 0x5F).
 By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with

trailing underscores (‘_’). See the language definition for AML NameSeg in Section 16, “ACPI
Source Language Reference.”

 Names beginning with ‘_’ are reserved by this specification. Definition Blocks can only use names
beginning with ‘_’ as defined by this specification.

 A name proceeded with ‘\’ causes the name to refer to the root of the namespace (‘\’ is not part of
the 32-bit fixed-length name).

 A name proceeded with ‘^’ causes the name to refer to the parent of the current namespace (‘^’ is
not part of the 32-bit fixed-length name).

Except for names preceded with a ‘\’, the current namespace determines where in the namespace hierarchy
a name being created goes and where a name being referenced is found. A name is located by finding the
matching name in the current namespace, and then in the parent namespace. If the parent namespace does
not contain the name, the search continues recursively upwards until either the name is found or the
namespace does not have a parent (the root of the namespace). This indicates that the name is not found7.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that starts with a ‘\’
prefix), and a relative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which is a relative
namespace path. For those relative name paths that contain multiple NameSegs or Parent Prefixes, ‘^’, the
search rules do not apply. If the search rules do not apply to a relative namespace path, the namespace
object is looked up relative to the current namespace. For example:

ABCD //search rules apply

^ABCD //search rules do not apply

XYZ.ABCD //search rules do not apply

\XYZ.ABCD //search rules do not apply

6 For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where
interaction is being designed are the areas in which extra care must be taken.

7 Unless the operation being performed is explicitly prepared for failure in name resolution, this is
considered an error and may cause the system to stop working.

ACPI Software Programming Model 161

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-bit fixed-length name components together. This is useful for referring to the name of an object, such as
a control method, that is not in the scope of the current namespace.

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been
loaded.

P

R

d

d

Root

_PR

CPU0

\PID0

_STA

_ON

_OFF

_SB

PCI0

_HID

_CRS

IDE0

_ADR

_PR0

_GPE

_L01

_E02

_L03

– Processor Tree

– Processor 0 object

– Power resource for IDE0

– Method to return status of power resourse

– Method to turn on power resourse

– Method to turn off power resourse

– System bus tree

– PCI bus

– Device ID

– Current resources (PCI bus number)

– IDE0 device

– PCI device #, function #

– Power resource requirements for D0

– General purpose events (GP_STS)

– Method to handle level GP_STS.1

– Method to handle edge GP_STS.2

– Method to handle level GP_STS.3

P

R

d

Package

Processor Object

Power Resource
Object

Bus/Device Object

Data Object

Control Method (AML code)

Key

Figure 5-5 Example ACPI NameSpace

Care must be taken when accessing namespace objects using a relative single segment name because of the
namespace search rules. An attempt to access a relative object recurses toward the root until the object is
found or the root is encountered. This can cause unintentional results. For example, using the namespace
described in Figure 5.5, attempting to access a _CRS named object from within the _SB_.PCI0.IDE0 will
have different results depending on if an absolute or relative path name is used. If an absolute pathname is
specified (_SB_.PCI0.IDE0._CRS) an error will result since the object does not exist. Access using a
single segment name (_CRS) will actually access the _SB_.PCI0._CRS object. Notice that the access will
occur successfully with no errors.

162 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.3.1 Predefined Root Namespaces

The following namespaces are defined under the namespace root.

Table 5-48 Namespaces Defined Under the Namespace Root

Name Description

_GPE General events in GPE register block.

_PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined
under this namespace. ACPI allows Processor object definitions under the _SB
namespace. Platforms may maintain the _PR namespace for compatibility with ACPI 1.0
operating systems. An ACPI-compatible namespace may define Processor objects in
either the _SB or _PR scope but not both.

For more information about defining Processor objects, see section 8, “Processor
Configuration and Control.”

_SB All Device/Bus Objects are defined under this namespace.

_SI System indicator objects are defined under this namespace. For more information about
defining system indicators, see section 9.1, _SI System Indicators.”

_TZ ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires all Thermal Zone objects to be
defined under this namespace. Thermal Zone object definitions may now be defined under
the _SB namespace. ACPI-compatible systems may maintain the _TZ namespace for
compatibility with ACPI 1.0 operating systems. An ACPI-compatible namespace may
define Thermal Zone objects in either the _SB or _TZ scope but not both.

For more information about defining Thermal Zone objects, see section 11, “Thermal
Management.”

5.3.2 Objects

All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

Objects may contain a revision field. Successive ACPI specifications define object revisions so that they
are backwards compatible with OSPM implementations that support previous specifications / object
revisions. New object fields are added at the end of previous object definitions. OSPM interprets objects
according to the revision number it supports including all earlier revisions. As such, OSPM expects that an
object’s length can be greater than or equal to the length of the known object revision. When evaluating
objects with revision numbers greater than that known by OSPM, OSPM ignores internal object fields
values that are beyond the defined object field range for the known revision.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages. The Definition Block is encoded as a stream from beginning to end. The lead byte in the
stream comes from the AML encoding tables shown in section 18, “ACPI Source Language (ASL)
Reference,” and signifies how to interpret some number of following bytes, where each following byte can
in turn signify how to interpret some number of following bytes. For a full specification of the AML
encoding, see section 18, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents/run-time).

ACPI Software Programming Model 163

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadByte PkgLength data... LeadByte ...

PkgLength

Figure 5-6 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on a length up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of 0x0FFF,
three-byte encodings of 0x0FFFFF, and four-byte length encodings of 0x0FFFFFFFFF.

It is fatal for a package length to not fall on a logical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly for
a datum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPI namespace and initializes objects
accordingly. The namespace for which population occurs is either from the current namespace location, as
defined by all nested packages or from the root if the name is preceded with ‘\’.

The first object present in a Definition Block must be a named control method. This is the Definition
Block’s initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered a vertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in
the “root.” Unnamed objects can be used as arguments in control methods.

Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. This is true even if the object name specified is relative. For example, the following
ASL code segments are functionally identical.

(1)
Method (DEAD,) {

Scope (_SB_.FOO) {
Name (BAR,) // Run time definition

}
}

(2)
Scope (_SB_) {

Name (_SB_. FOO.BAR,) // Load time definition
}

Notice that in the above example the execution of the DEAD method will always fail because the object
SB.FOO.BAR is created at load time.

164 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.5 Using the ACPI Control Method Source Language

OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4, “Definition Block
Encoding”. For example, the ASL statements that produce the example byte stream shown in that earlier
section are shown in the following ASL example. For a full specification of the ASL statements, see section
18, “ACPI Source Language (ASL) Reference.”

// ASL Example
DefinitionBlock (

"forbook.aml", // Output Filename
"DSDT", // Signature
0x02, // DSDT Compliance Revision
"OEM", // OEMID
"forbook", // TABLE ID
0x1000 // OEM Revision

)
{ // start of definition block

OperationRegion(\GIO, SystemIO, 0x125, 0x1)
Field(\GIO, ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(_SB){ // start of scope
Device(PCI0) { // start of device

PowerResource(FET0, 0, 0) { // start of pwr
Method (_ON) {

Store (Ones, CT01) // assert power
Sleep (30) // wait 30ms

}
Method (_OFF) {

Store (Zero, CT01) // assert reset#
}
Method (_STA) {

Return (CT01)
}

} // end of power
} // end of device

} // end of scope
} // end of definition block

5.5.1 ASL Statements

ASL is principally a declarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Object := ObjectType FixedList VariableList

FixedList refers to a list of known length that supplies data that all instances of a given ObjectType must
have. It is written as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as {x, y, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes can have a null variable list.

For a detailed specification of the ASL language, see section 18, “ACPI Source Language (ASL)
Reference.” For a detailed specification of the ACPI Control Method Machine Language (AML), upon
which the output of the ASL translator is based, see section 19, “ACPI Machine Language (AML)
Specification.”

ACPI Software Programming Model 165

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.5.2 Control Method Execution

OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level
hardware state. This is called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Control Methods can
reference any objects anywhere in the Namespace. Interpretation of a Control Method is not preemptive,
but it can block. When a control method does block, OSPM can initiate or continue the execution of a
different control method. A control method can only assume that access to global objects is exclusive for
any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments

Up to seven arguments can be passed to a control method. Each argument is an object that in turn could be
a “package” style object that refers to other objects. Access to the argument objects is provided via the ASL
ArgTerm (ArgX) language elements. The number of arguments passed to any control method is fixed and
is defined when the control method package is created.

Method arguments can take one of the following forms:

1) An ACPI name or namepath that refers to a named object. This includes the LocalX and ArgX names.
In this case, the object associated with the name is passed as the argument.

2) An ACPI name or namepath that refers to another control method. In this case, the method is invoked
and the return value of the method is passed as the argument. A fatal error occurs if no object is
returned from the method. If the object is not used after the method invocation it is automatically
deleted.

3) A valid ASL expression. In the case, the expression is evaluated and the object that results from this
evaluation is passed as the argument. If this object is not used after the method invocation it is
automatically deleted.

5.5.2.2 Method Calling Convention

The calling convention for control methods can best be described as call-by-reference-constant. In this
convention, objects passed as arguments are passed by “reference”, meaning that they are not copied to
new objects as they are passed to the called control method (A calling convention that copies objects or
object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objects to be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the number of
buffers that must be copied. This calling convention is appropriate to the low-level nature of the ACPI
subsystem within the kernel of the host operating system where non-paged dynamic memory is typically at
a premium. The ASL programmer must be aware of the calling convention and the related side effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to modify
arguments is extremely limited. This reduces aliasing issues such as when a called method unexpectedly
modifies a object or variable that has been passed as an argument by the caller. In effect, the arguments that
are passed to control methods are passed as constants that cannot be modified except under specific
controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or modified
by the called method. In other words, when an ArgX term is used as a target operand in an ASL statement,
the existing ArgX object is not modified. Instead, the new object replaces the existing object and the ArgX
term effectively becomes a LocalX term.

166 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The only exception to the read-only argument rule is if an ArgX term contains an Object Reference created
via the RefOf ASL operator. In this case, the use of the ArgX term as a target operand will cause any
existing object stored at the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change the
value of an ArgX object. These cases are limited to Buffer and Package objects where the “value” of the
object is represented indirectly. For Buffers, a writable Index or Field can be created that refers to the
original buffer data and will allow the called method to read or modify the data. For Packages, a writable
Index can be created to allow the called method to modify the contents of individual elements of the
Package.

5.5.2.3 Local Variables and Locally Created Data Objects

Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initial control method execution, the local data objects are NULL. Access to local objects is
via the ASL LocalTerm language elements.

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wants to
preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XYZ) {
Name (BAR, 5) // Creates \XYZ.BAR
Method (FOO, 1) {

Store (BAR, CREG) // same effect as Store (\XYZ.BAR, CREG)
Name (BAR, 7) // Creates \XYZ.FOO.BAR
Store (BAR, DREG) // same effect as Store (\XYZ.FOO.BAR, DREG
Name (\XYZ.FOOB, 3) // Creates \XYZ.FOOB

} // end method
} // end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL is loaded. The
object \XYZ.FOO.BAR is a dynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \XYZ.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XYZ.FOOB object is destroyed after the
\XYZ.FOO method exits.

5.5.2.4 Access to Operation Regions

Control Methods read and write data to locations in address spaces (for example, System memory and
System I/O) by using the Field operator (see section 18.5.44 Field (Declare Field Objects)”) to declare a
data element within an entity known as an “Operation Region” and then performing accesses using the data
element name. An Operation Region is a specific region of operation within an address space that is
declared as a subset of the entire address space using a starting address (offset) and a length (see section
18.5.89 “OperationRegion (Declare Operation Region)”). Control methods must have exclusive access to
any address accessed via fields declared in Operation Regions. Control methods may not directly access
any other hardware registers, including the ACPI-defined register blocks. Some of the ACPI registers, in
the defined ACPI registers blocks, are maintained on behalf of control method execution. For example, the
GPEx_BLK is not directly accessed by a control method but is used to provide an extensible interrupt
handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of the embedded controller, an embedded controller OpRegion field access may
block.

ACPI Software Programming Model 167

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

There are eight predefined Operation Region types specified by ACPI as described in Table 5-49.

Table 5-49 Operation Region Address Space Identifiers

Name (RegionSpace Keyword) Value

SystemMemory 0

SystemIO 1

PCI_Config 2

EmbeddedControl 3

SMBus 4

CMOS 5

PCIBARTarget 6

IPMI 7

Reserved 0x08-0x7F

In addition, OEMs may define Operation Regions Address Space ID types 0x80 to 0xFF.

Operation region access to the SystemMemory, SystemIO, and PCI_Config address spaces is simple and
straightforward. Operation region access to the EmbeddedControl address space is described in Section 12,
“ACPI Embedded Controller Interface Specification”. Operation region access to the SMBus address space
is described in Section 13, “ACPI System Management Bus Interface Specification”. Operation region
access to the CMOS. PCIBARTarget. and IPMI address spaces is described in the following sections.

5.5.2.4.1 CMOS Protocols

This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL. Most
computers contain an RTC/CMOS device that can be represented as a linear array of bytes of non-volatile
memory. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in devices
that are compatible with the Motorola RTC/CMOS device used in the original IBM PC/AT. Existing
RTC/CMOS devices typically contain more than 64 bytes of non-volatile RAM, and no standard
mechanism exists for access to this additional storage area. To provide access to all of the non-volatile
memory in these devices from AML, PnP IDs exist for each type of extension. These are PNP0B00,
PNP0B01, and PNP0B02. The specific devices that these PnP IDs support are described in section 9.16,
“PC/AT RTC/CMOS Device”, along with field definition ASL example code. The drivers corresponding to
these device handle operation region accesses to the CMOS operation region for their respective device
types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

5.5.2.4.2 PCI Device BAR Target Protocols

This section describes how PCI devices’ control registers can be accessed from ASL. PCI devices each
have an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many as six Base Address Registers, (BARs). These BARs contain the base address of a
series of control registers (in I/O or Memory space) for the PCI device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically using
I/O or Memory operation regions. Furthermore, a Plug and Play OS will automatically assign ownership of
the I/O and Memory regions associated with these BARs to a device driver associated with the PCI device.
An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to read and write
regions that are owned by native device drivers.

168 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If a platform uses a PCI BAR Target operation region, an ACPI OS will not load a native device driver for
the associated PCI function. For example, if any of the BARs in a PCI function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCI function is to be entirely under the
control of the ACPI BIOS. No driver will be loaded. Thus, a PCI function can be used as a platform
controller for some task (hot-plug PCI, and so on) that the ACPI BIOS performs.

5.5.2.4.2.1 Declaring a PCI BAR Target Operation Region

PCI BARs contain the base address of an I/O or Memory region that a PCI device’s control registers lie
within. Each BAR implements a protocol for determining whether those control registers are within I/O or
Memory space and how much address space the PCI device decodes. (See the PCI Specification for more
details.)

PCI BAR Target operation regions are declared by providing the offset of the BAR within the PCI device’s
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/O or Memory cycle, not by the declaration of the operation region. The length of the region is similarly
implied.

In the term OperationRegion(PBAR, PciBarTarget, 0x10, 0x4), the offset is the offset of the
BAR within the configuration space of the device. This would be an example of an operation region that
uses the first BAR in the device.

5.5.2.4.2.2 PCI Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI
Header Type of 0. PCI devices with other header types are bridges. The control of PCI bridges is beyond
the scope of ASL.

5.5.2.4.3 Declaring IPMI Operation Regions

This section describes the Intelligent Platform Management Interface (IPMI) address space and the use of
this address space to communicate with the Baseboard Management Controller (BMC) hardware from
AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPMI address
space represent an IPMI command and response pair. Given this uniqueness, IPMI operation regions
include restrictions on their field definitions and require the use of an IPMI-specific data buffer for all
transactions. The IPMI interface presented in this section is intended for use with any hardware
implementation compatible with the IPMI specification, regardless of the system interface type.

Support of the IPMI generic address space by ACPI-compatible operating systems is optional, and is
contingent on the existence of an ACPI IPMI device, i.e. a device with the “IPI0001” plug and play ID. If
present, OSPM should load the necessary driver software based on the system interface type as specified by
the _IFT (IPMI Interface Type) control method under the device, and register handlers for accesses into the
IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies a single IPMI network function. Operation regions are
defined only for those IPMI network functions that need to be accessed from AML. As with other regions,
IPMI operation regions are only accessible via the Field term (see section 5.5.2.4.3.1, “Declaring IPMI
Fields”).

This interface models each IPMI network function as having a 256-byte linear address range. Each byte
offset within this range corresponds to a single command value (for example, byte offset 0xC1 equates to
command value 0xC1), with a maximum of 256 command values. By doing this, IPMI address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from section 18.5.89, “OperationRegion (Declare Operation
Region]”) is described below.

ACPI Software Programming Model 169

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

OperationRegion (
RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:
 RegionName specifies a name for this IPMI network function (for example, “POWR”).
 RegionSpace must be set to IPMI (operation region type value 0x07).
 Offset is a word-sized value specifying the network function and initial command value offset for the

target device. The network function address is stored in the high byte and the command value offset is
stored in the low byte. For example, the value 0x3000 would be used for a device with the network
function of 0x06, and an initial command value offset of zero (0).

 Length is set to the 0x100 (256), representing the maximum number of possible command values, for
regions with an initial command value offset of zero (0). The difference of these two values is used for
regions with non-zero offsets. For example, a region with an Offset value of 0x3010 would have a
corresponding Length of 0xF0 (0x100 minus 0x10).

For example, a Baseboard Management Controller will support power metering capabilities at the network
function 0x30, and IPMI commands to query the BMC device information at the network function 0x06.

The following ASL code shows the use of the OperationRegion term to describe these IPMI functions:

Device (IPMI)
{

Name(_HID, "IPI0001") // IPMI device
Name(_IFT, 0x1) // KCS system interface type
OperationRegion(DEVC, IPMI, 0x0600, 0x100) // Device info network function
OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
:

}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ IPMI device. This ensures the correct operation region handler will be used, based on the value
returned by the _IFT object. Each definition corresponds to a separate network function, and happens to use
an initial command value offset of zero (0).

5.5.2.4.3.1 Declaring IPMI Fields

As with other regions, IPMI operation regions are only accessible via the Field term. Each field element is
assigned a unique command value and represents a virtual command for the targeted network function.

The syntax for the Field term (from section 18.5.38, “Event (Declare Event Synchronization Object]”) is
described below.

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword - BufferAcc
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword – ignored

) {FieldUnitList}

Where:
 RegionName specifies the operation region name previously defined for the network function.
 AccessType must be set to BufferAcc. This indicates that access to field elements will be done using a

region-specific data buffer. For this access type, the field handler is not aware of the data buffer’s
contents which may be of any size. When a field of this type is used as the source argument in an
operation it simply evaluates to a buffer. When used as the destination, however, the buffer is passed
bi-directionally to allow data to be returned from write operations. The modified buffer then becomes
the response message of that command. This is slightly different than the normal case in which the

170 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

execution result is the same as the value written to the destination. Note that the source is never
changed, since it only represents a virtual register for a particular IPMI command.

 LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the BMC
via IPMI, and NoLock otherwise.

 UpdateRule is not applicable to IPMI operation regions since each virtual register is accessed in its
entirety. This field is ignored for all IPMI field definitions.

IPMI operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation is
imposed both to simplify the IPMI interface and to maintain consistency with the physical model defined
by the IPMI specification.

Since the system interface used for IPMI communication is determined by the _IFT object under the IPMI
device, there is no need for using of the AccessAs term within the field definition. In fact its usage will be
ignored by the operation handler.

For example, the register at command value 0xC1 for the power meter network function might represent
the command to set a BMC enforced power limit, while the register at command value 0xC2 for the same
network function might represent the current configured power limit. At the same time, the register at
command value 0xC8 might represent the latest power meter measurement.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms to represent these
virtual registers:

OperationRegion(POWR, IPMI, 0x3000, 0x100) // Power network function
Field(POWR, BufferAcc, NoLock, Preserve)
{

Offset(0xC1), // Skip to command value 0xC1
SPWL, 8, // Set power limit [command value 0xC1]
GPWL, 8, // Get power limit [command value 0xC2]
Offset(0xC8), // Skip to command value 0xC8
GPMM, 8 // Get power meter measurement [command value 0xC8]

}

Notice that command values are equivalent to the field element’s byte offset (for example, SPWL=0xC1,
GPWL=0xC2, GPMM=0xC8).

5.5.2.4.3.2 Declaring and Using IPMI Request and Response Buffer

Since each virtual register in the IPMI operation region represents an individual IPMI command, and the
operation relies on use of bi-directional buffer, a common buffer structure is required to represent the
request and response messages. The use of a data buffer for IPMI transactions allows AML to receive
status and data length values.

The IPMI data buffer is defined as a fixed-length 66-byte buffer that, if represented using a ‘C’-styled
declaration, would be modeled as follows:

typedef struct
{

BYTE Status; // Byte 0 of the data buffer
BYTE Length; // Byte 1 of the data buffer
BYTE[64] Data; // Bytes 2 through 65 of the data buffer

}

Where:
 Status (byte 0) indicates the status code of a given IPMI command. See section 5.5.2.4.3.3, “IPMI

Status Code,” for more information.
 Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Valid Length

values are 0 through 64. Before the operation is carried out, this value represents the length of the
request data buffer. Afterwards, this value represents the length of the result response data buffer.

ACPI Software Programming Model 171

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Data (bytes 2-65) represents a 64-byte buffer, and is the location where actual data is stored. Before
the operation is carried out, this represents the actual request message payload. Afterwards, this
represents the response message payload as returned by the IPMI command.

For example, the following ASL shows the use of the IPMI data buffer to carry out a command for a power
function. This code is based on the example ASL presented in section 5.5.2.4.3.1, “Declaring IPMI Fields,”
which lists the operation region and field definitions for relevant IPMI power metering commands.

/* Create the IPMI data buffer */

Name(BUFF, Buffer(66){}) // Create IPMI data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, LENG) // LENG = Length (Byte)
CreateByteField(BUFF, 0x02, MODE) // MODE = Mode (Byte)
CreateByteField(BUFF, 0x03, RESV) // RESV = Reserved (Byte)

Store(0x2, LENG) // Request message is 2 bytes long
Store(0x1, MODE) // Set Mode to 1

Store(Store(BUFF, GPMM), BUFF) // Write the request into the GPMM command,
// then read the results

CreateByteField(BUFF, 0x02, CMPC) // CMPC = Completion code (Byte)
CreateWordField(BUFF, 0x03, APOW) // APOW = Average power measurement (Word)

If(LAnd(LEqual(STAT, 0x0), LEqual(CMPC, 0x0))) // Successful?
{

Return(APOW) // Return the average power measurement
}
Else
{

Return(Ones) // Return invalid
}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 2-65) is ‘typecast’ into different fields (including the result completion code).

The example above demonstrates the use of the Store() operator and the bi-directional data buffer to invoke
the actual IPMI command represented by the virtual register. The inner Store() writes the request message
data buffer to the IPMI operation region handler, and invokes the command. The outer Store() takes the
result of that command and writes it back into the data buffer, this time representing the response message.

5.5.2.4.3.3 IPMI Status Code

Every IPMI command results in a status code returned as the first byte of the response message, contained
in the bi-directional data buffer. This status code can indicate success, various errors, and possibly timeout
from the IPMI operation handler. This is necessary because it is possible for certain IPMI commands to
take up to 5 seconds to carry out, and since an AML Store() operation is synchronous by nature, it is
essential to make sure the IPMI operation returns in a timely fashion so as not to block the AML interpreter
in the OSPM.

Note: This status code is different than the IPMI completion code, which is returned as the first byte of the
response message in the data buffer payload. The completion code is described in the complete IPMI
specification.

172 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-50 IPMI Status Codes

Status Code Name Description

00h IPMI OK Indicates the command has been successfully completed.

07h IPMI Unknown
Failure

Indicates failure because of an unknown IPMI error.

10h IPMI Command
Operation Timeout

Indicates the operation timed out.

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this
section.

5.6.1 ACPI Event Programming Model Components

The components of the ACPI event programming model are the following:
 OSPM
 FADT
 PM1a_STS, PM1b_STS and PM1a_EN, PM1b_EN fixed register blocks
 GPE0_BLK and GPE1_BLK register blocks
 GPE register blocks defined in GPE block devices
 SCI interrupt
 ACPI AML code general-purpose event model
 ACPI device-specific model events
 ACPI Embedded Controller event model

The role of each component in the ACPI event programming model is described in the following table.

Table 5-51 ACPI Event Programming Model Components

Component Description

OSPM Receives all SCI interrupts raised (receives all SCI events). Either handles the
event or masks the event off and later invokes an OEM-provided control method
to handle the event. Events handled directly by OSPM are fixed ACPI events;
interrupts handled by control methods are general-purpose events.

FADT Specifies the base address for the following fixed register blocks on an ACPI-
compatible platform: PM1x_STS and PM1x_EN fixed registers and the
GPEx_STS and GPEx_EN fixed registers.

PM1x_STS and
PM1x_EN fixed
registers

PM1x_STS bits raise fixed ACPI events. While a PM1x_STS bit is set, if the
matching PM1x_EN bit is set, the ACPI SCI event is raised.

GPEx_STS and
GPEx_EN fixed
registers

GPEx_STS bits that raise general-purpose events. For every event bit
implemented in GPEx_STS, there must be a comparable bit in GPEx_EN. Up to
256 GPEx_STS bits and matching GPEx_EN bits can be implemented. While a
GPEx_STS bit is set, if the matching GPEx_EN bit is set, then the general-
purpose SCI event is raised.

ACPI Software Programming Model 173

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Component Description

SCI interrupt A level-sensitive, shareable interrupt mapped to a declared interrupt vector. The
SCI interrupt vector can be shared with other low-priority interrupts that have a
low frequency of occurrence.

ACPI AML code
general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events. This includes
using GPEx_STS events as “wake” sources as well as other general service events
defined by the OEM (“button pressed,” “thermal event,” “device present/not
present changed,” and so on).

ACPI device-specific
model events

Devices in the ACPI namespace that have ACPI-specific device IDs can provide
additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.

ACPI Embedded
Controller event model

A model that allows OEM AML code to use the response from the Embedded
Controller Query command to provide general-service event defined by the OEM.

5.6.2 Types of ACPI Events

At the ACPI hardware level, two types of events can be signaled by an SCI interrupt:
1. Fixed ACPI events
2. General-purpose events

In turn, the general-purpose events can be used to provide further levels of events to the system. And, as in
the case of the embedded controller, a well-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’s designs, two first-level general-
purpose event blocks are defined, and the embedded controller construct allows a large number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM can
also build additional levels of event dispatching by using AML code on a general-purpose event to sub-
dispatch in an OEM defined manner.

174 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.3 Fixed Event Handling

When OSPM receives a fixed ACPI event, it directly reads and handles the event registers itself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see section 4, “ACPI
Hardware Specification.”

Table 5-52 Fixed ACPI Events

Event Comment

Power
management
timer carry bit
set.

For more information, see the description of the TMR_STS and TMR_EN bits of the
PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping,” as well as the
TMR_VAL register in the PM_TMR_BLK in section 4.7.3.3, “Power Management
Timer.”

Power button
signal

A power button can be supplied in two ways. One way is to simply use the fixed status
bit, and the other uses the declaration of an ACPI power device and AML code to
determine the event. For more information about the alternate-device based power
button, see section 4.7.2.2.1.2, Control Method Power Button.”

Notice that during the S0 state, both the power and sleep buttons merely notify OSPM
that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the power
button to initiate sleep operations as requested by the user.

Sleep button
signal

A sleep button can be supplied in one of two ways. One way is to simply use the fixed
status button. The other way requires the declaration of an ACPI sleep button device and
AML code to determine the event.

RTC alarm ACPI-defines an RTC wake alarm function with a minimum of one-month granularity.
The ACPI status bit for the device is optional. If the ACPI status bit is not present, the
RTC status can be used to determine when an alarm has occurred. For more information,
see the description of the RTC_STS and RTC_EN bits of the PM1x fixed register block
in section 4.7.3.1, “PM1 Event Grouping.”

Wake status The wake status bit is used to determine when the sleeping state has been completed. For
more information, see the description of the WAK_STS and WAK_EN bits of the PM1x
fixed register block in section 4.7.3.1, “PM1 Event Grouping.”

System bus
master request

The bus-master status bit provides feedback from the hardware as to when a bus master
cycle has occurred. This is necessary for supporting the processor C3 power savings
state. For more information, see the description of the BM_STS bit of the PM1x fixed
register block in section 4.7.3.1, “PM1 Event Grouping.”

Global release
status

This status is raised as a result of the Global Lock protocol, and is handled by OSPM as
part of Global Lock synchronization. For more information, see the description of the
GBL_STS bit of the PM1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.” For more information on Global Lock, see section 5.2.10.1, “Global Lock.”

ACPI Software Programming Model 175

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.4 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPI-aware driver, or uses an
OEM-supplied control method to handle the event. An OEM can implement up to 128 general-purpose
event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.

An example of a general-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPI-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a platform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (I/O space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event is from a GPEx_BLK STS bit), OSPM does the following:

1. Disables the interrupt source (GPEx_BLK EN bit).
2. If an edge event, clears the status bit.
3. Performs one of the following:

 Dispatches to an ACPI-aware device driver.
 Queues the matching control method for execution.
 Manages a wake event using device _PRW objects.

4. If a level event, clears the status bit.
5. Enables the interrupt source.

For OSPM to manage the bits in the GPEx_BLK blocks directly:
 Enable bits must be read/write.
 Status bits must be latching.
 Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name _GPE._TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’ for a level
event). The event values for status bits in GPE0_BLK start at zero (_T00) and end at the
(GPE0_BLK_LEN / 2) - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + (GPE1_BLK_LEN / 2) - 1. GPE0_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all
defined in the FADT.

The _Qxx methods are used for the Embedded Controller and SMBus (below.)

176 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.4.1.1 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EOI is to be handled. The GPEx_STS bits in the
GPEx_BLK are indexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form _GPE._Txx where xx is the event value and T
indicates the event EOI protocol to use (either ‘E’ for edge triggered, or ‘L’ for level triggered). The event
values for status bits in GPE0_BLK start at zero (_T00), end at the (GPE0_BLK_LEN / 2) - 1, and
correspond to each status bit index within GPE0_BLK. The event values for status bits in GPE1_BLK are
offset by GPE_BASE and therefore start at GPE1_BASE and end at GPE1_BASE + (GPE1_BLK_LEN /
2) - 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPE0_STS bits to raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name _GPE._L04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Method (_GPE._L04) { // GPE 4 level wake handler
Notify (_SB.PCIO.COM0, 2)

}

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a slot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object. Or, the cause of
the general-purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE bit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from 0 through FF, yielding event codes 01 through
FF. (A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The
name of the control method to queue is always of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Method(_Q34) { // embedded controller event for thermal
Notify (_SB.TZ0.THM1, 0x80)

}

When an SMBus alarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution. When
an alarm is received by the SMBus host controller, it generally receives the SMBus address of the device
issuing the alarm and one word of data. On implementations that use SMBALERT# for notifications, only
the device address will be received. The name of the control method to queue is always of the form _Qxx
where xx is the SMBus address of the device that issued the alarm. The SMBus address is 7 bits long
corresponding to hex values 0 through 7F, although some addresses are reserved and will not be used. The
control method will always be queued with one argument that contains the word of data received with the
alarm. An exception is the case of an SMBus using SMBALERT# for notifications, in this case the
argument will be 0. An example declaration for a control method that handles a SMBus alarm follows:

ACPI Software Programming Model 177

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method(_Q18, 1) { // Thermal sensor device at address 0011 000

// Arg0 contains notification value (if any)
// Arg0 = 0 if device supports only SMBALERT#

Notify (_SB.TZ0.THM1, 0x80)
}

5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for its
device. This driver services the embedded controller device and determines when events are to be reported
by the embedded controller by using the Query command. When an embedded controller event occurs, the
ACPI-aware driver dispatches the requests to other ACPI-aware drivers that have registered to handle the
embedded controller queries or queues control methods to handle each event. If there is no device driver to
handle specific queries, OEM AML code can perform OEM-specific functions that are customized to each
event on the particular platform by including specific control methods in the namespace to handle these
events. For an embedded controller event, OSPM will queue the control method of the name _QXX, where
XX is the hex format of the query code. Notice that each embedded controller device can have query event
control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue
control methods to handle these. Methods must be placed under the SMBus device with the name _QXX
where XX is the hex format of the SMBus address of the device sending the alarm.

5.6.4.2 GPE Wake Events

An important use of the general-purpose events is to implement device wake events. The components of the
ACPI event programming model interact in the following way:

 When a device asserts its wake signal, the general-purpose status event bit used to track that
device is set.

 While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

 If the system is sleeping, this will cause the hardware, if possible, to transition the system into the
S0 state.

 Once the system is running, OSPM will dispatch the corresponding GPE handler.

 The handler needs to determine which device object has signaled wake and performs a wake
Notify command on the corresponding device object(s) that have asserted wake.

 In turn OSPM will notify OSPM native driver(s) for each device that will wake its device to
service it.

Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input. The only
exception to this rule is made for the special devices below. Only the following devices are allowed to
utilize a single GPE for both wake and runtime events:

1) Button Devices

 PNP0C0C — Power Button Device

 PNP0C0D — Lid Device

 PNP0C0E — Sleep Button Device

2) PCI Bus Wakeup Event Reporting (PME)

 PNP0A03 — PCI Host Bridge

178 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) must have individual enable and status bits in order to properly handle the semantics used by
the system.

5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects

A device’s _PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general-purpose status bit from either GPE0_BLK or GPE1_BLK is used as the specific
device’s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general-purpose event bit by using OEM-specific hardware to
provide second-level status and enable bits. In this case, the OEM AML code is responsible for the second-
level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its _PSW control method (which is used to take care of the second-level enables). When the GPE
is asserted, OSPM still executes the corresponding GPE control method that determines which device
wakes are asserted and notifies the corresponding device objects. The native OS driver is then notified that
its device has asserted wake, for which the driver powers on its device to service it.

If the system is in a sleeping state when the enabled GPE bit is asserted the hardware will transition the
system into the S0 state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control
Methods

After a transition to the S0 state, OSPM may evaluate the _SWS object in the _GPE scope to determine the
index of the GPE that was the source of the transition event. When a single GPE is shared among multiple
devices, the platform provides a _Wxx control method, where xx is GPE index as described in Section
5.6.2.2.3, that allows the source device of the transition to be determined . If implemented, the _Wxx
control method must exist in the _GPE scope or in the scope of a GPE block device.

If _Wxx is implemented, either hardware or firmware must detect and save the source device as described
in Section 7.3.5, “_SWS (System Wake Source)”. During invocation, the _Wxx control method determines
the source device and issues a Notify(<device>,0x2) on the device that caused the system to transition to
the S0 state. If the device uses a bus-specific method of arming for wakeup, then the Notify must be issued
on the parent of the device that has a _PRW method. The _Wxx method must issue a Notify(<device>,0x2)
only to devices that contain a _PRW method within their device scope. OSPM’s evaluation of the _SWS
and _Wxx objects is indeterminate. As such, the platform must not rely on _SWS or _Wxx evaluation to
clear any hardware state, including GPEx_STS bits, or to perform any wakeup-related actions.

If the GPE index returned by the _SWS object is only referenced by a single _PRW object in the system, it
is implied that the device containing that _PRW is the wake source. In this case, it is not necessary for the
platform to provide a _Wxx method.

5.6.5 Device Object Notifications

During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal zone, or
processor object and a notification value that signifies the purpose of the notification. Notification values
from 0 through 0x7F are common across all device object types. Notification values of 0xC0 and above are
reserved for definition by hardware vendors for hardware specific notifications. Notification values from
0x80 to 0xBF are device-specific and defined by each such device. For more information on the Notify
operator, see section 18.5.85, “Notify (Notify).”

ACPI Software Programming Model 179

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-53 Device Object Notification Values

Value Description

0 Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform a Plug and Play re-enumeration operation on the device tree starting
from the point where it has been notified. OSPM will typically perform a full
enumeration automatically at boot time, but after system initialization it is the
responsibility of the ACPI AML code to notify OSPM whenever a re-enumeration
operation is required. The more accurately and closer to the actual change in the device
tree the notification can be done, the more efficient the operating system’s response will
be; however, it can also be an issue when a device change cannot be confirmed. For
example, if the hardware cannot recognize a device change for a particular location
during a system sleeping state, it issues a Bus Check notification on wake to inform
OSPM that it needs to check the configuration for a device change.

1 Device Check. Used to notify OSPM that the device either appeared or disappeared. If
the device has appeared, OSPM will re-enumerate from the parent. If the device has
disappeared, OSPM will invalidate the state of the device. OSPM may optimize out re-
enumeration. If _DCK is present, then Notify(object,1) is assumed to indicate an undock
request. If the device is a bridge, OSPM may re-enumerate the bridge and the child bus.

2 Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needs to notify OSPM native device driver for the device. This is only used for
devices that support _PRW.

3 Eject Request. Used to notify OSPM that the device should be ejected, and that OSPM
needs to perform the Plug and Play ejection operation. OSPM will run the _EJx method.

4 Device Check Light. Used to notify OSPM that the device either appeared or
disappeared. If the device has appeared, OSPM will re-enumerate from the device itself,
not the parent. If the device has disappeared, OSPM will invalidate the state of the
device.

5 Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the
bus. For example, this would be used if a user tried to hot-plug a 33 MHz PCI device
into a slot that was on a bus running at greater than 33 MHz.

6 Bus Mode Mismatch. Used to notify OSPM that a device has been inserted into a slot or
bay that cannot support the device in its current mode of operation. For example, this
would be used if a user tried to hot-plug a PCI device into a slot that was on a bus
running in PCI-X mode.

7 Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state
because of a power fault.

8 Capabilities Check. This notification is performed on a device object to indicate to
OSPM that it needs to re-evaluate the _OSC control method associated with the device.

9 Device _PLD Check. Used to notify OSPM to reevaluate the _PLD object, as the
Device’s connection point has changed.

0xA Reserved.

0xB System Locality Information Update. Dynamic reconfiguration of the system may
cause existing relative distance information to change. The platform sends the System
Locality Information Update notification to a point on a device tree to indicate to OSPM
that it needs to invoke the _SLI objects associated with the System Localities on the
device tree starting from the point notified.

180 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Description

0x0C-0x7F Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-54 Control Method Battery Device Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.

0x83-0xBF Reserved.

Table 5-55 Power Source Object Notification Values

Hex value Description

0x80 Power Source Status Changed. Used to notify OSPM that the power source status has
changed.

0x81 Power Source Information Changed. Used to notify OSPM that the power source
information has changed.

0x82-0xBF Reserved.

Table 5-56 Thermal Zone Object Notification Values

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone
temperature has changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip
points have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALx,
_PSL, _TZD) have changed.

0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that
values in the either the thermal relationship table or the active cooling relationship table
have changed.

0x84-0xBF Reserved.

ACPI Software Programming Model 181

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-57 Control Method Power Button Notification Values

Hex value Description

0x80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Table 5-58 Control Method Sleep Button Notification Values

Hex value Description

0x80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
while the system is in the S0 state. Notice that when the button is pressed while the
system is in the S1-S4 state, a Device Wake notification must be issued instead.

0x81-0xBF Reserved.

Table 5-59 Control Method Lid Notification Values

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.

0x81-0xBF Reserved.

Table 5-60 Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to
re-evaluate the _PPC object. See section 8, “Processor Configuration and Control,” for
more information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor
C States has changed. This notification causes OSPM to re-evaluate the _CST object.
See section 8, “Processor Configuration and Control,” for more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the _TPC object. See section 8, “Processor Configuration and Control,” for
more information.

0x83-0xBF Reserved.

Table 5-61 User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user
presence has occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF Reserved.

182 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-62 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 ALS Illuminance Changed. Used to notify OSPM that a meaningful change in ambient
light illuminance has occurred, causing OSPM to re-evaluate the _ALI object.

0x81 ALS Color Temperature Changed. Used to notify OSPM that a meaningful change in
ambient light color temperature or chromaticity has occurred, causing OSPM to re-
evaluate the _ALT and/or _ALC objects.

0x82 ALS Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF Reserved.

Table 5-63 Power Meter Object Notification Values

Hex value Description

0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter
information has changed.

0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter
trip points has been crossed.

0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit
has been changed by the platform.

0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit
has been enforced by the platform.

0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power
averaging interval has changed.

0x85-0xBF Reserved.

Table 5-64 Fan Device Notification Values

Hex value Description

0x80 Low Fan Speed. Used to notify OSPM of a low (errant) fan speed. Causes OSPM to re-
evaluate the _FSL object.

0x81-0xBF Reserved.

Table 5-65 Memory Device Notification Values

Hex value Description

0x80 Memory Bandwidth Low Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been reduced by the platform to less than
the low memory bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been increased by the platform to greater
than or equal to the high memory bandwidth threshold.

0x82-0xBF Reserved.

ACPI Software Programming Model 183

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.6 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 9, 10,
and 11. Section 5.6.7, “Predefined ACPI Names for Objects, Methods, and Resources,” lists all the generic
objects and control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The table below lists the Plug and Play IDs defined by the ACPI specification.

Note: Plug and Play IDs that are not defined by the ACPI specification are defined and described in the
following document:

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

Table 5-66 ACPI Device IDs

Plug and
Play ID

Description

PNP0C08 ACPI. Not declared in ACPI as a device. This ID is used by OSPM for the hardware
resources consumed by the ACPI fixed register spaces, and the operation regions used by
AML code. It represents the core ACPI hardware itself.

PNP0A05 Generic Container Device. A device whose settings are totally controlled by its ACPI
resource information, and otherwise needs no device or bus-specific driver support. This
was originally known as Generic ISA Bus Device. This ID should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNP0A05 device’s _CRS object must be consumed by the
container itself.

PNP0A06 Generic Container Device. This device behaves exactly the same as the PNP0A05
device. This was originally known as Extended I/O Bus. This ID should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNP0A06 device’s _CRS object must be consumed by the
container itself.

PNP0C09 Embedded Controller Device. A host embedded controller controlled through an ACPI-
aware driver.

PNP0C0A Control Method Battery. A device that solely implements the ACPI Control Method
Battery functions. A device that has some other primary function would use its normal
device ID. This ID is used when the devices primary function is that of a battery.

PNP0C0B Fan. A device that causes cooling when “on” (D0 device state).

PNP0C0C Power Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is only needed if the power button is not
supported using the fixed register space.

PNP0C0D Lid Device. A device controlled through an ACPI-aware driver that provides lid status
functionality. This device is only needed if the lid state is not supported using the fixed
register space.

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

184 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Plug and
Play ID

Description

PNP0C0E Sleep Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This device is optional.

PNP0C0F PCI Interrupt Link Device. A device that allocates an interrupt connected to a PCI
interrupt pin. See section 6., “Device Configuration,” for more details.

PNP0C80 Memory Device. This device is a memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 1.0
Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 10,
“Power Source Devices.”

ACPI0003 Power Source Device. The Power Source device specified in section 10, “Power Source
Devices.” This can represent either an AC Adapter (on mobile platforms) or a fixed
Power Supply.

ACPI0004 Module Device. This device is a container object that acts as a bus node in a namespace.
A Module Device without any of the _CRS, _PRS and _SRS methods behaves the same
way as the Generic Container Devices (PNP0A05 or PNP0A06). If the Module Device
contains a _CRS method, only these resources described in the _CRS are available for
consumption by its child devices. Also, the Module Device can support _PRS and _SRS
methods if _CRS is supported.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 2.0
Specification.

ACPI0006 GPE Block Device. This device allows a system designer to describe GPE blocks
beyond the two that are described in the FADT.

ACPI0007 Processor Device. This device provides an alternative to declaring processors using the
Processor ASL statement. See section 8.4, “Declaring Processors”, for more details.

ACPI0008 Ambient Light Sensor Device. This device is an ambient light sensor. See section 9.2,
“Ambient Light Sensor Device”.

ACPI0009 I/OxAPIC Device. This device is an I/O unit that complies with both the APIC and
SAPIC interrupt models.

ACPI000A I/O APIC Device. This device is an I/O unit that complies with the APIC interrupt
model.

ACPI000B I/O SAPIC Device. This device is an I/O unit that complies with the SAPIC interrupt
model.

ACPI000C Processor Aggregator Device. This device provides a control point for all processors in
the platform. See section 8.5, “Processor Aggregator Device”.

ACPI000D Power Meter Device. This device is a power meter. See section 10.4. “Power Meters”.

ACPI000E Wake Alarm Device. This device is a control method-based wake alarm. See section
9.18. “Wake Alarm Device”.

ACPI Software Programming Model 185

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.6.7 Predefined ACPI Names for Objects, Methods, and Resources

The following table summarizes the predefined names for the ACPI namespace objects, control methods,
and resource descriptor fields defined in this specification. Provided for each name is a short description
and a reference to the section number and page number of the actual definition of the name. ACPI names
that are predefined by other specifications are also listed along with their corresponding specification
reference.

Note: All names that begin with an underscore are reserved for ACPI use only.

Table 5-67 Predefined ACPI Names

Name Description Section Page

_ACx Active Cooling – returns the active cooling policy threshold values. 11.4.1 422

_ADR Address – (1) returns the address of a device on its parent bus.
(2) returns a unique ID for the display output device.
(3) resource descriptor field.

6.1.1
B.6.1
18.1.8

200
704
552

_ALC Ambient Light Chromaticity – returns the ambient light color chromaticity. 9.2.4 337

_ALI Ambient Light Illuminance – returns the ambient light brightness. 9.2.2 337

_ALN Alignment – base alignment, resource descriptor field. 18.1.8 552

_ALP Ambient Light Polling – returns the ambient light sensor polling frequency. 9.2.6 342

_ALR Ambient Light Response – returns the ambient light brightness to display
brightness mappings.

9.2.5 338

_ALT Ambient Light Temperature – returns the ambient light color temperature. 9.2.3 337

_ALx Active List – returns a list of active cooling device objects. 11.4.2 422

_ART Active cooling Relationship Table – returns thermal relationship information
between platform devices and fan devices.

11.4.3 423

_ASI Address Space Id – resource descriptor field. 18.1.8 552

_ASZ Access Size – resource descriptor field. 18.1.8 552

_ATT Type-Specific Attribute – resource descriptor field. 18.1.8 552

_BAS Base Address – range base address, resource descriptor field. 18.1.8 552

_BBN Bios Bus Number – returns the PCI bus number returned by the BIOS. 6.5.5 279

_BCL Brightness Control Levels – returns a list of supported brightness control
levels.

B.6.2 704

_BCM Brightness Control Method – sets the brightness level of the display device. B.6.3 704

_BCT Battery Charge Time – returns time remaining to complete charging battery. 10.2.2.9 395

_BDN Bios Dock Name – returns the Dock ID returned by the BIOS. 6.5.3 277

_BFS Back From Sleep – inform AML of a wake event. 7.3.1 296

_BIF Battery Information – returns a Control Method Battery information block. 10.2.2.1 387

_BIX Battery Information Extended – returns a Control Method Battery extended
information block.

10.2.2.2 388

_BLT Battery Level Threshold – set battery level threshold preferences. 9.1.3 335

_BM Bus Master – resource descriptor field. 18.1.8 552

186 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_BMA Battery Measurement Averaging Interval – Sets battery measurement
averaging interval.

10.2.2.4 392

_BMC Battery Maintenance Control – Sets battery maintenance and control
features.

10.2.2.11 397

_BMD Battery Maintenance Data – returns battery maintenance, control, and state
data.

10.2.2.10 395

_BMS Battery Measurement Sampling Time – Sets the battery measurement
sampling time.

10.2.2.5 392

_BQC Brightness Query Current – returns the current display brightness level. B.6.4 705

_BST Battery Status – returns a Control Method Battery status block. 10.2.2.6 393

_BTM Battery Time – returns the battery runtime. 10.2.2.8 394

_BTP Battery Trip Point – sets a Control Method Battery trip point. 10.2.2.7 394

_CBA Configuration Base Address – sets the CBA for a PCI Express host bridge.
See the PCI Firmware Specification, Revision 3.0 at http://pcisig.com

_CDM Clock Domain – returns a logical processor’s clock domain identifier. 6.2.1 211

_CID Compatible ID – returns a device’s Plug and Play Compatible ID list. 6.1.2 201

_CRS Current Resource Settings – returns the current resource settings for a device. 6.2.2 212

_CRT Critical Temperature – returns the shutdown critical temperature. 11.4.4 425

_CSD C State Dependencies – returns a list of C-state dependencies. 8.4.2.2 318

_CST C States – returns a list of supported C-states. 8.4.2.1 316

_DCK Dock – sets docking isolation. Presence indicates device is a docking station. 6.5.2 277

_DCS Display Current Status – returns status of the display output device. B.6.6 705

_DDC Display Data Current – returns the EDID for the display output device. B.6.5 705

_DDN Dos Device Name – returns a device logical name. 6.1.3 201

_DEC Decode – device decoding type, resource descriptor field. 18.1.8 552

_DGS Display Graphics State – return the current state of the output device. B.6.7 706

_DIS Disable – disables a device. 6.2.3 212

_DMA Direct Memory Access – returns a device’s current resources for DMA
transactions.

6.2.4 212

_DOD Display Output Devices – enumerate all devices attached to the display
adapter.

B.4.2 698

_DOS Disable Output Switching – sets the display output switching mode. B.4.1 697

_DSM Device Specific Method – executes device-specific functions. 9.14.1 366

_DSS Device Set State – sets the display device state. B.6.8 706

_DSW Device Sleep Wake – sets the sleep and wake transition states for a device. 7.2.1 287

_DTI Device Temperature Indication – conveys native device temperature to the
platform.

11.4.5 425

_Exx Edge GPE – method executed as a result of a general-purpose event. 5.6.4.1 175

_EC Embedded Controller – returns EC offset and query information. 12.12 463

ACPI Software Programming Model 187

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_EDL Eject Device List – returns a list of devices that are dependent on a device
(docking).

6.3.1 241

_EJD Ejection Dependent Device – returns the name of dependent (parent) device
(docking).

6.3.2 241

_EJx Eject – begin or cancel a device ejection request (docking). 6.3.3 243

_FDE Floppy Disk Enumerate – returns floppy disk configuration information. 9.9.1 350

_FDI Floppy Drive Information – returns a floppy drive information block. 9.9.2 351

_FDM Floppy Drive Mode – sets a floppy drive speed. 9.9.3 352

_FIF Fan Information – returns fan device information. 11.3.1.1 417

_FIX Fixed Register Resource Provider – returns a list of devices that implement
FADT register blocks.

6.2.5 215

_FPS Fan Performance States – returns a list of supported fan performance states. 11.3.1.2 418

_FSL Fan Set Level – Control method that sets the fan device’s speed level
(performance state).

11.3.1.3 420

_FST Fan Status – returns current status information for a fan device. 11.3.1.4 420

_GAI Get Averaging Interval – returns the power meter averaging interval. 10.4.5 403

_GHL Get Hardware Limit – returns the hardware limit enforced by the power
meter.

10.4.7 404

_GL Global Lock – OS-defined Global Lock mutex object. 5.7.1 193

_GLK Global Lock – returns a device’s Global Lock requirement for device access. 6.5.7 281

_GPD Get Post Data – returns the value of the VGA device that will be posted at
boot.

B.4.4 702

_GPE General Purpose Events – (1) predefined Scope (_GPE.)
(2) Returns the SCI interrupt associated with the Embedded Controller.

5.3.1
12.11

162
462

_GRA Granularity – address space granularity, resource descriptor field. 18.1.8 552

_GSB Global System Interrupt Base – returns the GSB for a I/O APIC device. 6.2.6 216

_GTF Get Task File – returns a list of ATA commands to restore a drive to default
state.

9.8.1.1 345

_GTM Get Timing Mode – returns a list of IDE controller timing information. 9.8.2.1.1 347

_GTS Going To Sleep – inform AML of pending sleep. 7.3.3 297

_HE High-Edge – interrupt triggering, resource descriptor field. 18.1.8 552

_HID Hardware ID – returns a device’s Plug and Play Hardware ID. 6.1.4 202

_HOT Hot Temperature – returns the critical temperature for sleep (entry to S4). 11.4.6 425

_HPP Hot Plug Parameters – returns a list of hot-plug information for a PCI device. 6.2.7 217

_HPX Hot Plug Parameter Extensions – returns a list of hot-plug information for a
PCI device. Supersedes _HPP.

6.2.8 219

_IFT IPMI Interface Type. See the Intelligent Platform Management Interface
Specification at http://www.intel.com/design/servers/ipmi/index.htm

_INI Initialize – performs device specific initialization. 6.5.1 276

188 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_INT Interrupts – interrupt mask bits, resource descriptor field. 18.1.8 552

_IRC Inrush Current – presence indicates that a device has a significant inrush
current draw.

7.2.13 292

_Lxx Level GPE – Control method executed as a result of a general-purpose event. 5.6.4.1 175

_LCK Lock – locks or unlocks a device (docking). 6.3.4 243

_LEN Length – range length, resource descriptor field. 18.1.8 552

_LID Lid – returns the open/closed status of the lid on a mobile system. 9.4.1 343

_LL Low Level – interrupt polarity, resource descriptor field. 18.1.8 552

_MAF Maximum Address Fixed – resource descriptor field. 18.1.8 552

_MAT Multiple Apic Table Entry – returns a list of MADT APIC structure entries. 6.2.9 224

_MAX Maximum Base Address – resource descriptor field. 18.1.8 552

_MBM Memory Bandwidth Monitoring Data – returns bandwidth monitoring data
for a memory device.

9.12.2.1 358

_MEM Memory Attributes – resource descriptor field. 18.1.8 552

_MIF Minimum Address Fixed – resource descriptor field. 18.1.8 552

_MIN Minimum Base Address – resource descriptor field. 18.1.8 552

_MLS Multiple Language String – returns a device description in multiple
languages.

6.1.5 202

_MSG Message – sets the system message waiting status indicator. 9.1.2 335

_MSM Memory Set Monitoring – sets bandwidth monitoring parameters for a
memory device.

9.12.2.2 359

_MTP Memory Type – resource descriptor field. 18.1.8 552

_NTT Notification Temperature Threshold – returns a threshold for device
temperature change that requires platform notification.

11.4.7 426

_OFF Off – sets a power resource to the off state. 7.1.2 284

_ON On – sets a power resource to the on state. 7.1.3 285

_OS Operating System – returns a string that identifies the operating system. 5.7.3 196

_OSC Operating System Capabilities – inform AML of host features and
capabilities.

6.2.10 225

_OSI Operating System Interfaces – returns supported interfaces, behaviors, and
features.

5.7.2 193

_OST Ospm Status Indication – inform AML of event processing status. 6.3.5 244

_PAI Power Averaging Interval – sets the averaging interval for a power meter. 10.4.4 403

_PCL Power Consumer List – returns a list of devices powered by a power source. 10.3.2 399

_PCT Performance Control – returns processor performance control and status
registers.

8.4.4.1 327

_PDC Processor Driver Capabilities – inform AML of processor driver capabilities. 8.4.1 314

_PDL P-state Depth Limit – returns the lowest available performance P-state. 8.4.4.6 332

_PIC PIC – inform AML of the interrupt model in use. 5.8.1 197

ACPI Software Programming Model 189

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_PIF Power Source Information – returns a Power Source information block. 10.3.3 399

_PLD Physical Device Location – returns a device’s physical location information. 6.1.6 203

_PMC Power Meter Capabilities – returns a list of Power Meter capabilities info. 10.4.1 400

_PMD Power Metered Devices – returns a list of devices that are measured by the
power meter device.

10.4.8 404

_PMM Power Meter Measurement – returns the current value of the Power Meter. 10.4.3 403

_PPC Performance Present Capabilites – returns a list of the performance states
currently supported by the platform.

8.4.4.3 328

_PPE Polling for Platform Error – returns the polling interval to retrieve Corrected
Platform Error information.

8.4.5 333

_PR Processor – predefined scope for processor objects. 5.3.1 162

_PR0 Power Resources for D0 – returns a list of dependent power resources to
enter state D0 (fully on).

7.2.7 289

_PR1 Power Resources for D1 – returns a list of dependent power resources to
enter state D1.

7.2.8 289

_PR2 Power Resources for D2 – returns a list of dependent power resources to
enter state D2.

7.2.9 290

_PR3 Power Resources for D3hot – returns a list of dependent power resources to
enter state D3hot.

7.2.10 290

_PRL Power Source Redundancy List – returns a list of power source devices in the
same redundancy grouping.

10.3.4 400

_PRS Possible Resource Settings – returns a list of a device’s possible resource
settings.

6.2.11 233

_PRT Pci Routing Table – returns a list of PCI interrupt mappings. 6.2.12 233

_PRW Power Resources for Wake – returns a list of dependent power resources for
waking.

7.2.11 290

_PS0 Power State 0 – sets a device’s power state to D0 (device fully on). 7.2.2 287

_PS1 Power State 1 – sets a device’s power state to D1. 7.2.3 288

_PS2 Power State 2 – sets a device’s power state to D2. 7.2.4 288

_PS3 Power State 3 – sets a device’s power state to D3 (device off). 7.2.5 288

_PSC Power State Current – returns a device’s current power state. 7.2.6 288

_PSD Processor State Dependencies – returns processor P-State dependencies. 8.4.4.5 330

_PSL Passive List – returns a list of passive cooling device objects. 11.4.8 426

_PSR Power Source – returns the power source device currently in use. 10.3.1 398

_PSS Performance Supported States – returns a list of supported processor
performance states.

8.4.4.2 327

_PSV Passive – returns the passive trip point temperature. 11.4.9 426

_PSW Power State Wake – sets a device’s wake function. 7.2.12 291

_PTC Processor Throttling Control – returns throttling control and status registers. 8.4.3.1 320

190 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_PTP Power Trip Points – sets trip points for the Power Meter device. 10.4.2 402

_PTS Prepare To Sleep – inform the platform of an impending sleep transition. 7.3.2 297

_PUR Processor Utilization Request – returns the number of processors that the
platform would like to idle.

8.5.1.1 334

_PXM Proximity – returns a device’s proximity domain identifier. 6.2.13 236

_Qxx Query – Embedded Controller query and SMBus Alarm control method. 5.6.4.1 175

_RBO Register Bit Offset – resource descriptor field. 18.1.8 552

_RBW Register Bit Width – resource descriptor field. 18.1.8 552

_REG Region – inform AML code of an operation region availability change. 6.5.4 277

_REV Revision – returns the revision of the ACPI specification that is implemented. 5.7.4 197

_RMV Remove – returns a device’s removal ability status (docking). 6.3.6 248

_RNG Range – memory range type, resource descriptor field. 18.1.8 552

_ROM Read-Only Memory – returns a copy of the ROM data for a display device. B.4.3 701

_RT Resource Type – resource descriptor field. 18.1.8 552

_RTV Relative Temperature Values – returns temperature value information. 11.4.10 426

_RW Read-Write Status – resource descriptor field. 18.1.8 552

_S0 S0 System State – returns values to enter the system into the S0 state. 7.3.4.1 300

_S1 S1 System State – returns values to enter the system into the S1 state. 7.3.4.2 300

_S2 S2 System State – returns values to enter the system into the S2 state. 7.3.4.3 300

_S3 S3 System State – returns values to enter the system into the S3 state. 7.3.4.4 301

_S4 S4 System State – returns values to enter the system into the S4 state. 7.3.4.5 301

_S5 S5 System State – returns values to enter the system into the S5 state. 7.3.4.6 302

_S1D S1 Device State – returns the highest D-state supported by a device when in
the S1 state.

7.2.14 292

_S2D S2 Device State – returns the highest D-state supported by a device when in
the S2 state.

7.2.15 293

_S3D S3 Device State – returns the highest D-state supported by a device when in
the S3 state.

7.2.16 293

_S4D S4 Device State – returns the highest D-state supported by a device when in
the S4 state.

7.2.17 294

_S0W S0 Device Wake State – returns the lowest D-state that the device can wake
itself from S0.

7.2.18 295

_S1W S1 Device Wake State – returns the lowest D-state for this device that can
wake the system from S1.

7.2.19 295

_S2W S2 Device Wake State – returns the lowest D-state for this device that can
wake the system from S2.

7.2.20 295

_S3W S3 Device Wake State – returns the lowest D-state for this device that can
wake the system from S3.

7.2.21 295

_S4W S4 Device Wake State – returns the lowest D-state for this device that can 7.2.22 296

ACPI Software Programming Model 191

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

wake the system from S4.

_SB System Bus – scope for device and bus objects. 5.3.1 162

_SBS Smart Battery Subsystem – returns the subsystem configuration. 10.1.3 382

_SCP Set Cooling Policy – sets the cooling policy (active or passive). 11.4.11 427

_SDD Set Device Data – sets data for a SATA device. 9.8.3.3.1 350

_SEG Segment – returns a device’s PCI Segment Group number. 6.5.6 279

_SHL Set Hardware Limit – sets the hardware limit enforced by the Power Meter. 10.4.6 404

_SHR Sharable – interrupt share status, resource descriptor field. 18.1.8 552

_SI System Indicators – predefined scope. 5.3.1 162

_SIZ Size – DMA transfer size, resource descriptor field. 18.1.8 552

_SLI System Locality Information – returns a list of NUMA system localities. 6.2.14 236

_SPD Set Post Device – sets which video device will be posted at boot. B.4.5 702

_SRS Set Resource Settings – sets a device’s resource allocation. 6.2.15 239

_SRV IPMI Spec Revision. See the Intelligent Platform Management Interface
Specification at http://www.intel.com/design/servers/ipmi/index.htm

_SST System Status – sets the system status indicator. 9.1.1 335

_STA Status – (1) returns the current status of a device.
(2) Returns the current on or off state of a Power Resource.

6.3.7
7.1.4

248
285

_STM Set Timing Mode – sets an IDE controller transfer timings. 9.8.2.1.2 348

_STP Set Expired Timer Wake Policy – sets expired timer policies of the wake
alarm device.

9.18.2 375

_STR String – returns a device’s description string. 6.1.7 209

_STV Set Timer Value – set timer values of the wake alarm device. 9.18.3 376

_SUN Slot User Number – returns the slot unique ID number. 6.1.8 210

_SWS System Wake Source – returns the source event that caused the system to
wake.

7.3.5 302

_T_x Temporary – reserved for use by ASL compilers. 18.2.1.1 558

_TC1 Thermal Constant 1 – returns TC1 for the passive cooling formula. 11.4.12 429

_TC2 Thermal Constant 2 – returns TC2 for the passive cooling formula. 11.4.13 430

_TDL T-State Depth Limit – returns the _TSS entry number of the lowest power
throttling state.

8.4.3.5 326

_TIP Expired Timer Wake Policy – returns timer policies of the wake alarm device. 9.18.5 376

_TIV Timer Values – returns remaining time of the wake alarm device. 9.18.4 376

_TMP Temperature – returns a thermal zone’s current temperature. 11.4.14 430

_TPC Throttling Present Capabilities – returns the current number of supported
throttling states.

8.4.3.3 322

_TPT Trip Point Temperature – inform AML that a devices’ embedded temperature
sensor has crossed a temperature trip point.

11.4.15 430

192 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 5-67 Predefined ACPI Names

Name Description Section Page

_TRA Translation – address translation offset, resource descriptor field. 18.1.8 552

_TRS Translation Sparse – sparse/dense flag, resource descriptor field. 18.1.8 552

_TRT Thermal Relationship Table – returns thermal relationships between platform
devices.

11.4.16 430

_TSD Throttling State Dependencies – returns a list of T-state dependencies. 8.4.3.4 323

_TSF Type-Specific Flags – resource descriptor field. 18.1.8 552

_TSP Thermal Sampling Period – returns the thermal sampling period for passive
cooling.

11.4.17 431

_TSS Throttling Supported States – returns supported throttling state information. 8.4.3.2 321

_TST Temperature Sensor Threshold – returns the minimum separation for a
device’s temperature trip points.

11.4.18 431

_TTP Translation Type – translation/static flag, resource descriptor field. 18.1.8 552

_TTS Transition To State – inform AML of an S-state transition. 7.3.6 303

_TYP Type – DMA channel type (speed), resource descriptor field. 18.1.8 552

_TZ Thermal Zone – predefined scope: ACPI 1.0. 5.3.1 162

_TZD Thermal Zone Devices – returns a list of device names associated with a
Thermal Zone.

11.4.19 432

_TZM Thermal Zone Member – returns a reference to the thermal zone of which a
device is a member.

11.4.20 432

_TZP Thermal Zone Polling – returns a Thermal zone’s polling frequency. 11.4.21 432

_UID Unique ID – return a device’s unique persistent ID. 6.1.9 210

_UPC USB Port Capabilities – returns a list of USB port capabilities. 9.13 360

_UPD User Presence Detect – returns user detection information. 9.16.1 372

_UPP User Presence Polling – returns the recommended user presence polling
interval.

9.16.2 372

_VPO Video Post Options – returns the implemented video post options. B.4.6 703

_WAK Wake – inform AML that the system has just awakened. 7.3.7 303

_Wxx Wake Event – method executed as a result of a wake event. 5.6.4.2.2 178

ACPI Software Programming Model 193

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.7 Predefined Objects

The AML interpreter of an ACPI compatible operating system supports the evaluation of a number of
predefined objects. The objects are considered “built in” to the AML interpreter on the target operating
system.

A list of predefined object names are shown in the following table.

Table 5-68 Predefined Object Names

Name Description

_GL Global Lock mutex

_OS Name of the operating system

_OSI Operating System Interface support

_REV Revision of the ACPI specification that is implemented

5.7.1 _GL (Global Lock Mutex)

This predefined object is a Mutex object that behaves like a Mutex as defined in section 18.5.79, “Mutex
(Declare Synchronization/Mutex Object),” with the added behavior that acquiring this Mutex also acquires
the shared environment Global Lock defined in section 5.2.10.1, “Global Lock.” This allows Control
Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 _OSI (Operating System Interfaces)

This object provides the platform with the ability to query OSPM to determine the set of ACPI related
interfaces, behaviors, or features that the operating system supports.

The _OSI method has one argument and one return value. The argument is an OS vendor defined string
representing a set of OS interfaces and behaviors or an ACPI defined string representing an operating
system and an ACPI feature group of the form, “OSVendorString-FeatureGroupString”.

Arguments: (1)
Arg0 – A String containing the OS interface / behavior compatibility string or the Feature Group

string, as defined in Table 5-70, or the “OS Vendor String Prefix – OS Vendor Specific
String”. OS Vendor String Prefixes are defined in Table 5-69

Return Value:
An Integer containing a Boolean that indicates whether the requested feature is supported:

0x0 – The interface, behavior, or feature is not supported
0xFFFFFFFF – The interface, behavior, or feature is supported

OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports
the behaviors. For example, a newer version of an operating system may indicate support for strings from
all or some of the prior versions of that operating system.

_OSI provides the platform with the ability to support new operating system versions and their associated
features when they become available. OSPM can choose to expose new functionality based on the _OSI
argument string. That is, OSPM can use the strings passed into _OSI to ensure compatibility between older
platforms and newer operating systems by maintaining known compatible behavior for a platform. As such,
it is recommended that _OSI be evaluated by the _SB.INI control method so that platform compatible
behavior or features are available early in operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that OS
vendor-defined strings be checked before feature group strings.

194 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Platform developers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating system
and an ACPI feature group are listed in the following tables.

Table 5-69 Operating System Vendor Strings

Operating System Vendor String Prefix Description

“FreeBSD” Free BSD

“HP-UX” HP Unix Operating Environment

“Linux” GNU/Linux Operating system

“OpenVMS” HP OpenVMS Operating Environment

“Windows” Microsoft Windows

Table 5-70 Feature Group Strings

Feature Group String Description

“Module Device” OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device” OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model” OSPM supports the extensions to the ACPI thermal model in Revision
3.0.

“Extended Address Space
Descriptor”

OSPM supports the Extended Address Space Descriptor

“3.0 _SCP Extensions” OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator
Device”

OSPM supports the declaration of the processor aggregator device in the
namespace using the ACPI000C processor aggregator device HID.

ACPI Software Programming Model 195

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_OSI Example ASL using OS vendor defined string:

Scope (_SB) //Scope
{

Name (TOOS, 0) // Global variable for type of OS.
// This methods sets the "TOOS" variable depending on the type of OS
// installed on the system.
// TOOS = 1 // Windows 98 & SE
// TOOS = 2 // Windows Me.
// TOOS = 3 // Windows 2000 OS or above version.
// TOOS = 4 // Windows XP OS or above version.
Method (_INI)
{

If (CondRefOf (_OSI,Local0))
{

If (_OSI ("Windows 2001"))
{

Store(4, TOOS)
}

}
Else
{

Store (_OS, local0)
If (LEqual (local0, "Microsoft Windows NT"))
{

Store (3, TOOS)
}
ElseIf (LEqual (Local0, "Microsoft Windows"))
{

Store (1, TOOS)
}
ElseIf (LEqual (Local0, "Microsoft WindowsME:Millennium Edition"))
{

Store (2, TOOS)
}

}
}

}

196 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_OSI Example ASL using an ACPI defined string:

Scope (_SB) {
Method (_INI) {
If (CondRefOf (_OSI,Local0)) {
If (_OSI ("Module Device")) {

//Expose PCI Root Bridge under Module Device
LoadTable(“OEM1", “OEMID", “Table1",,,)}

Else {
// Expose PCI Root Bridge under _SB – OS does not support Module Device
LoadTable(“OEM1", “OEMID", “Table2",,,)}

}
Else {

// Default Behavior
LoadTable(“OEM1", “OEMID", “Table2",,,)}

} //_INI Method
} //_SB scope

DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
“OEMID", "Table1", 0) {

Scope(_SB) {
Device (_SB.NOD0) {

Name (_HID, "ACPI0004") // Module device
Name (_UID, 0)
Name (_PRS, ResourceTemplate() {...})
Method (_SRS, 1) {...}
Method (_CRS, 0) {...}
Device (PCI0) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {...})

} // end of PCI Root Bridge
} // end of Module device

} // end of _SB Scope
} // end of Definition Block

DefinitionBlock (“MD1SSDT.aml",“OEM1",0x02,
“OEMID", "Table2", 0) {

Scope(_SB) {
Device (PCI0) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {...})

} // end of PCI Root Bridge
} // end of _SB Scope

} // end of Definition Block

5.7.3 _OS (OS Name Object)

This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, _OS evaluates differently for each OS release. This may allow AML code to
accommodate differences in OSPM implementations. This value does not change with different revisions
of the AML interpreter.

Arguments:
None

Return Value:
A String containing the operating system name

ACPI Software Programming Model 197

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

5.7.4 _REV (Revision Data Object)

This predefined object evaluates to the revision of the ACPI Specification that the specified _OS
implements as a DWORD. Larger values are newer revisions of the ACPI specification.

Arguments:
None

Return Value:
An Integer containing the revision of the currently executing ACPI implementation

5.8 System Configuration Objects

5.8.1 _PIC Method

The _PIC optional method is used to report to the BIOS the current interrupt model used by the OS. This
control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM.
If the method is never called, the BIOS must assume PIC mode. It is important that the BIOS save the value
passed in by OSPM for later use during wake operations.

Arguments: (1)
Arg0 – An Integer containing a code for the current interrupt model:

0 – PIC mode
1 – APIC mode
2 – SAPIC mode
Other values – Reserved

Return Value:
None

198 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device Configuration 199

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6 Device Configuration

This section specifies the objects OSPM uses to configure devices. There are three types of configuration
objects:
 Device identification objects associate platform devices with Plug and Play IDs.
 Device configuration objects declare and configure hardware resources and characteristics for devices

enumerated via ACPI.
 Device insertion and removal objects provide mechanisms for handling dynamic insertion and removal

of devices.

This section also defines the ACPI device–resource descriptor formats. Device–resource descriptors are
used as parameters by some of the device configuration objects.

6.1 Device Identification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed Table 6-1:

Table 6-1 Device Identification Objects

Object Description

_ADR Object that evaluates to a device’s address on its parent bus.

_CID Object that evaluates to a device’s Plug and Play-compatible ID list.

_DDN Object that associates a logical software name (for example, COM1) with a device.

_HID Object that evaluates to a device’s Plug and Play hardware ID.

_MLS Object that provides a human readable description of a device in multiple languages.

_PLD Object that provides physical location description information.

_SUN Object that evaluates to the slot-unique ID number for a slot.

_STR Object that contains a Unicode identifier for a device.

_UID Object that specifies a device’s unique persistent ID, or a control method that generates it.

For any device that is not on an enumerable type of bus (for example, an ISA bus), OSPM enumerates the
devices’ Plug and Play ID(s) and the ACPI BIOS must supply an _HID object (plus an optional _CID
object) for each device to enable OSPM to do that. For devices on an enumerable type of bus, such as a PCI
bus, the ACPI system must identify which device on the enumerable bus is identified by a particular Plug
and Play ID; the ACPI BIOS must supply an _ADR object for each device to enable this. A device object
must contain either an _HID object or an _ADR object, but can contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be evaluated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region provider.
(_REG methods notify the BIOS of the presence of operation region providers.) When a control method
cannot determine the current state of the hardware due to a lack of operation region provider, it is
recommended that the control method should return the condition that was true at the time that control
passed from the BIOS to the OS. (The control method should return a default, boot value).

200 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.1 _ADR (Address)

This object is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used when specifying the address of any device on a bus that has a standard enumeration algorithm (see
3.7, “Configuration and Plug and Play”, for the situations when these devices do appear in the ACPI
namespace).

Arguments:
None

Return Value:
An Integer containing the address of the device

An _ADR object can be used to provide capabilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a slot on the parent bus.

OSPM infers the parent bus from the location of the _ADR object’s device package in the ACPI
namespace. For more information about the positioning of device packages in the ACPI namespace, see
section 18.5.28, “Device (Declare Bus/Device Package)”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-2.

Table 6-2 _ADR Object Address Encodings

BUS Address Encoding

EISA EISA slot number 0–F

Floppy Bus Drive select values used for programming the floppy controller to access the specified
INT13 unit number. The _ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller 0–Primary Channel, 1–Secondary Channel

IDE Channel 0–Master drive, 1–Slave drive

Intel® High
Definition Audio

High word – SDI (Serial Data In) ID of the codec that contains the function group.

Low word – Node ID of the function group.

PCI High word–Device #, Low word–Function #. (for example, device 3, function 2 is
0x00030002). To refer to all the functions on a device #, use a function number of
FFFF).

PCMCIA Socket #; 0–First Socket

PC CARD Socket #; 0–First Socket

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port
multiplier, or 0xFFFF if no port multiplier attached. (For example, root port 2 would be
0x0002FFFF. If instead a port multiplier had been attached to root port 2, the ports
connected to the multiplier would be encoded 0x00020000, 0x00020001, etc.) The
value 0xFFFFFFFF is reserved.

SMBus Lowest Slave Address

USB Root HUB Only one child of the host controller. It must have an _ADR of 0. No other children or
values of _ADR are allowed.

USB Ports Port number (1-n)

Device Configuration 201

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.2 _CID (Compatible ID)

This optional object is used to supply OSPM with a device’s Plug and Play-Compatible Device ID. Use
_CID objects when a device has no other defined hardware standard method to report its compatible IDs.

Arguments:
None

Return Value:
An Integer or String containing a single CID or a Package containing a list of CIDs

A _CID object evaluates to either:

 A single Compatible Device ID

 A package of Compatible Device IDs for the device — in the order of preference, highest preference
first.

Each Compatible Device ID must be either:

 A valid HID value (a 32-bit compressed EISA type ID or a string such as “ACPI0004”).

 A string that uses a bus-specific nomenclature. For example, _CID can be used to specify the PCI ID.
The format of a PCI ID string is one of the following:

“PCI\CC_ccss”
“PCI\CC_ccsspp”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss&REV_rr”
“PCI\VEN_vvvv&DEV_dddd&SUBSYS_ssssssss”
“PCI\VEN_vvvv&DEV_dddd&REV_rr”
“PCI\VEN_vvvv&DEV_dddd”

Where:
cc – hexadecimal representation of the Class Code byte
ss – hexadecimal representation of the Subclass Code byte
pp – hexadecimal representation of the Programming Interface byte
vvvv – hexadecimal representation of the Vendor ID
dddd – hexadecimal representation of the Device ID
ssssssss – hexadecimal representation of the Subsystem ID
rr – hexadecimal representation of the Revision byte

A compatible ID retrieved from a _CID object is only meaningful if it is a non-NULL value.

Example ASL:

Device (XYZ) {
Name (_HID, EISAID ("PNP0303")) // PC Keyboard Controller
Name (_CID, EISAID ("PNP030B"))

}

6.1.3 _DDN (DOS Device Name)

This object is used to associate a logical name (for example, COM1) with a device. This name can be used
by applications to connect to the device.

Arguments:
None

Return Value:
A String containing the DOS device name

202 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.4 _HID (Hardware ID)

This object is used to supply OSPM with the device’s Plug and Play hardware ID.8 When describing a
platform, use of any _HID objects is optional. However, a _HID object must be used to describe any device
that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, devices on an ISA bus are enumerated by OSPM. Use the _ADR object to describe
devices enumerated by bus enumerators other than OSPM.

Arguments:
None

Return Value:
An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If a string, the
format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading characters.

A valid PNP ID must be of the form “AAA####” where A is an uppercase letter and # is a hex digit. A
valid ACPI ID must be of the form “ACPI####” where # is a hex digit.

Example ASL:
Name (_HID, EISAID ("PNP0C0C")) // Control-Method Power Button
Name (_HID, EISAID ("INT0800")) // Firmware Hub
Name (_HID, "ACPI0003") // AC adapter device

6.1.5 _MLS (Multiple Language String)

The _MLS object provides OSPM a human readable description of a device in multiple languages. This
information may be provided to the end user when the OSPM is unable to get any other information about
this device. Although this functionality is also provided by the _STR object, _MLS expands that
functionality and provides vendors with the capability to provide multiple strings in multiple languages.
The _MLS object evaluates to a package of packages. Each sub-package consists of a Language identifier
and corresponding unicode string for a given locale. Specifying a language identifier allows OSPM to
easily determine if support for displaying the Unicode string is available. OSPM can use this information to
determine whether or not to display the device string, or which string is appropriate for a user’s preferred
locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for
displaying device text.

Arguments:
None

Return Value:
A variable-length Package containing a list of language descriptor Packages as described below.

8A Plug and Play (EISA) ID can be obtained by sending e-mail to pnpid@microsoft.com.

Device Configuration 203

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value Information

Package {
LanguageDescriptor[0] // Package

LanguageDescriptor[n] // Package
}

Each Language Descriptor sub-Package contains the elements described below:

Package {
LanguageId // String
UnicodeDescription // String

}

LanguageId is a string identifying the language. This string follows the format specified in the Internet
RFC 3066 document (Tags for the Identification of Languages). In addition to supporting the existing
strings in RFC 3066, Table 6-3 lists aliases that are also supported.

Table 6-3 Additional Language ID Alias Strings

RFC String Supported Alias String

zh-Hans zh-chs

zh-Hant zh-cht

UnicodeDescription is a Unicode (UTF-16) string. This string contains the language-specific description of
the device corresponding to the LanguageID.

Example:

Device (XYZ) {
Name (_ADR, 0x00020001)
Name (_MLS, Package(){(2){“en”, Unicode("ACME super DVD controller")}})

}

6.1.6 _PLD (Physical Device Location)

This optional object is a method that conveys to OSPM a general description of the physical location of a
device’s external connection point. The _PLD may be child object for any ACPI Namespace object the
system wants to describe. This information can be used by system software to describe to the user which
specific connector or device input mechanism may be used for a given task or may need user intervention
for correct operation. The _PLD should only be evaluated when its parent device is present as indicated by
the device’s presence mechanism (i.e. _STA or other)

An externally exposed device connection point can reside on any surface of a system’s housing. The
respective surfaces of a system’s housing are identified by the “Panel” field (described below). The _PLD
method returns data to describe the location of where the device’s connection point resides and a Shape
(described below) that may be rendered at that position. One physical device may have several connection
points. A _PLD describes the offset and rotation of a single device connection point from an “origin” that
resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the front of
the system. For example, the Right Panel is the right side of the system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower left corner when the user is facing the
respective Panel. The Top Panel shall be viewed with the system is viewed resting on its Front Panel, and
the Bottom Panel shall be viewed with the system resting on its Back Panel. All other Panels shall be
viewed with the system resting on its Bottom Panel. Refer to Figure 6-1 for more information.

204 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 6-1 System Panel and Panel Origin Positions

The data bits also assume that if the system is capable of opening up like a laptop that the device may exist
on the base of the laptop system or on the lid. In the case of the latter, the “Lid” bit (described below)
should be set indicating the device connection point is on the lid. If the device is on the lid, the description
describes the device’s connection point location when the system is opened with the lid up. If the device
connection point is not on the lid, then the description describes the device’s connection point location
when the system with the lid closed.

Figure 6-2 Laptop Panel and Panel Origin Positions

Front
Panel

Lid

Lid
Front Panel

Origin

(base)
Front Panel

Origin

(base)
Top Panel

Origin

To render a view of a system Panel, all _PLDs that define the same Panel and Lid values are collected. The
_PLDs are then sorted by the value of their Order field and the view of the panel is rendered by drawing the
shapes of each connection point (in their correct Shape, Color, Horizontal Offset, Vertical Offset, Width,
Height, and Orientation) starting with all Order = 0 _PLDs first. Refer to Figure 6-4 for an example.

The location of a device connection point may change as a result of the system connecting or disconnecting
to a docking station or a port replicator. As such, Notify event of type 0x08 will cause OSPM to re-evaluate
the _PLD object residing under the particular device notified. If a platform is unable to detect the change of
connecting or disconnecting to a docking station or port replicator, a _PLD object should not be used to
describe the device connection points that will change location after such an event.

Arguments:
None

Return Value:
A variable-length Package containing a list of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer entry must
be returned using the bit definitions below.

Device Configuration 205

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Buffer 0 Return Value:

Bit 6:0 – Revision. The current revision is 0x2
Bit 7 – Ignore Color. If this bit is set, the Color field is ignored, as the color is unknown.
Bit 31:8 – Color – 24bit RGB value for the color of the device connection point. (bits 8:15 = red, bits
16:23 = green, bits 24:31 = blue)
Bit 47:32 – Width: Describes, in millimeters, the width (widest point) of the device connection point.
Bit 63:48 – Height: Describes, in millimeters, the height (tallest point) of the device connection point.

Bit 64 – User Visible: Set if the device connection point can be seen by the user without disassembly.
Bit 65 – Dock: Set if the device connection point resides in a docking station or port replicator.
Bit 66 – Lid: Set if this device connection point resides on the lid of laptop system.

Bit 69:67 – Panel: Describes which panel surface of the system’s housing the device connection point
resides on.

0 – Top
1 – Bottom
2 – Left
3 – Right
4 – Front
5 – Back
6 – Unknown (Vertical Position and Horizontal Position will be ignored)

Bit 71:70 – Vertical Position on the panel where the device connection point resides.
0 – Upper
1 – Center
2 – Lower

Bit 73:72 – Horizontal Position on the panel where the device connection point resides.
0 – Left
1 – Center
2 – Right

Bit 77:74 – Shape: Describes the shape of the device connection point. The Width and Height fields
may be used to distort a shape, e.g. A Round shape will look like an Oval shape if the Width and
Height are not equal. And a Vertical Rectangle or Horizontal Rectangle may look like a square if
Width and Height are equal. Refer to Figure 6-3.

0 – Round
1 – Oval
2 – Square
3 – Vertical Rectangle
4 – Horizontal Rectangle
5 – Vertical Trapezoid
6 – Horizontal Trapezoid
7 – Unknown – Shape rendered as a Rectangle with dotted lines
8 – Chamfered
15:9 – Reserved

206 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 6-3 Default Shape Definitions

H
e
ig

h
t

H
e

ig
h
t

Bit 78 – Group Orientation: if Set, indicates vertical grouping, otherwise horizontal is assumed.
Bit 86:79 – Group Token: Unique numerical value identifying a group.
Bit 94:87 – Group Position: Identifies this device connection point’s position in the group (i.e. 1st, 2nd)
Bit 95 – Bay: Set if describing a device in a bay or if device connection point is a bay.
Bit 96 – Ejectable: Set if the device is ejectable. Indicates ejectability in the absence of _EJx objects.
Bit 97 – OSPM Ejection required: Set if OSPM needs to be involved with ejection process. User-
operated physical hardware ejection is not possible.
Bit 105:98 – Cabinet Number. For single cabinet system, this field is always 0.
Bit 113:106 – Card cage Number. For single card cage system, this field is always 0.
Bit 114 – Reference: if Set, this _PLD defines a “reference” shape that is used to help orient the user
with respect to the other shapes when rendering _PLDs.
Bit 118:115 – Rotation: Rotates the Shape clockwise in 45 degree steps around its origin where:

0 – 0°
1 – 45°
2 – 90°
3 – 135°
4 – 180°
5 – 225°
6 – 270°
7 – 315°

Bit 123:119 – Order: Identifies the drawing order of the connection point described by a _PLD. Order
= 0 connection points are drawn before Order = 1 connection points. Order = 1 before Order = 2, and
so on. Order = 31 connection points are drawn last. Order should always start at 0 and be consecutively
assigned.
Bit 127:124 – Reserved, must contain a value of 0.
Bit 143:128 – Vertical Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
0xFFFFFFFF indicates that this field is not supplied.
Bit 159:144 – Horizontal Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
0xFFFFFFFF indicates that this field is not supplied.

Device Configuration 207

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All additional buffer entries returned, may contain OEM specific data, but must begin in a {GUID, data}
pair. These additional data may provide complimentary physical location information specific to certain
systems or class of machines.

Buffers 1 – N Return Value (Optional):

Buffer 1 Bit 127:0 – GUID 1
Buffer 2 Bit 127:0 – Data 1
Buffer 3 Bit 127:0 – GUID 2
Buffer 4 Bit 127:0 – Data 2
……

Figure 6-4 provides an example of a rendering of the external device connection points that may be
conveyed to the user by _PLD information. Note that three _PLDs (System Back Panel, Power Supply, and
Motherboard (MB) Connector Area) that are associated with the System Bus tree (_SB) object. Their
Reference flag is set indicating that are used to provide the user with visual queues for identifying the
relative locations of the other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and 0, respectively. And the
Reference flag of the System Back Panel, Power Supply, and MB Connector Area connection points are set
to 1. in this example are used to render Figure 6-4:

Table 6-4 _PLD Back Panel Example Settings

Name Ignore
Color

R G B Width Height VOff HOff Shape Nota-
tion

Goup
Position

Rota-
tion

Back
Panel

Yes 0 0 0 2032 4318 0 0 V
Rect

1 0

MB
Conn
area

Yes 0 0 0 445 1556 1588 127 V
Rect

2 0

Power
Supply

Yes 0 0 0 1524 889 3302 127 H
Rect

2 0

USB
Port 1

No 0 0 0 125 52 2223 159 H
Rect

C1 3 90

USB
Port 2

No 0 0 0 125 52 2223 254 H
Rect

C2 3 90

USB
Port 3

No 0 0 0 125 52 2223 350 H
Rect

C3 3 90

USB
Port 4

No 0 0 0 125 52 2223 445 H
Rect

C4 3 90

USB
Port 5

No 0 0 0 125 52 2007 159 H
Rect

C5 3 90

USB
Port 6

No 0 0 0 125 52 2007 254 H
Rect

C6 3 90

Ethernet No 0 0 0 157 171 2007 350 V
Rect

C7 3 90

208 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Name Ignore
Color

R G B Width Height VOff HOff Shape Nota-
tion

Goup
Position

Rota-
tion

Audio 1 No FF FF FF 127 127 1945 151 Round C8 3 90

Audio 2 No 151 247 127 127 127 1945 286 Round C9 3 90

Audio 3 No 0 0 0 127 127 1945 427 Round C10 3 90

SPDIF No 0 0 0 112 126 1756 176 V
Trap

C11 3 90

Audio 4 No 0 FF 0 127 127 1765 288 Round C12 3 90

Audio 5 No 0 0 FF 127 127 1765 429 Round C13 3 90

SATA No 0 0 0 239 88 3091 159 H
Rect

C14 3 90

1394 No 0 0 0 112 159 2890 254 H
Trap

C15 3 0

Coax No 0 0 0 159 159 2842 143 Round C16 3 90

PCI 1 No 0 0 0 1016 127 127 127 H
Rect

1 3 0

PCI 2 No 0 0 0 1016 127 334 127 H
Rect

2 3 0

PCI 3 No 0 0 0 1016 127 540 127 H
Rect

3 3 0

PCI 4 No 0 0 0 1016 127 747 127 H
Rect

4 3 0

PCI 5 No 0 0 0 1016 127 953 127 H
Rect

5 3 0

PCI 6 No 0 0 0 1016 127 1159 127 H
Rect

6 3 0

PCI 7 No 0 0 0 1016 127 1366 127 H
Rect

7 3 0

Note that the origin is in the lower left hand corner of the Back Panel, where positive Horizontal and
Vertical Offset values are to the right and up, respectively.

Device Configuration 209

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 6-4 _PLD Back Panel Rendering Example

6.1.7 _STR (String)

The _STR object evaluates to a Unicode string that describes the device. It may be used by an OS to
provide information to an end user. This information is particularly valuable when no other information is
available.

Arguments:
None

Return Value:
A Buffer containing a Unicode string that describes the device

Example ASL:

Device (XYZ) {
Name (_ADR, 0x00020001)
Name (_STR, Unicode ("ACME super DVD controller"))

}

Then, when all else fails, an OS can use the info included in the _STR object to describe the hardware to
the user.

210 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.1.8 _SUN (Slot User Number)

_SUN is an object that evaluates to the slot-unique ID number for a slot. _SUN is used by OSPM UI to
identify slots for the user. For example, this can be used for battery slots, PCI slots, PCMCIA slots, or
swappable bay slots to inform the user of what devices are in each slot. _SUN evaluates to an integer that is
the number to be used in the user interface.

Arguments:
None

Return Value:
An Integer containing the slot’s unique ID

The _SUN value is required to be unique among the slots of the same type. It is also recommended that this
number match the slot number printed on the physical slot whenever possible.

6.1.9 _UID (Unique ID)

This object provides OSPM with a logical device ID that does not change across reboots. This object is
optional, but is required when the device has no other way to report a persistent unique device ID. The
_UID must be unique across all devices with either a common _HID or _CID. This is because a device
needs to be uniquely identified to the OSPM, which may match on either a _HID or a _CID to identify the
device. The uniqueness match must be true regardless of whether the OSPM uses the _HID or the _CID.
OSPM typically uses the unique device ID to ensure that the device-specific information, such as network
protocol binding information, is remembered for the device even if its relative location changes. For most
integrated devices, this object contains a unique identifier.

A _UID object evaluates to either a numeric value or a string.

Arguments:
None

Return Value:
An Integer or String containing the Unique ID

6.2 Device Configuration Objects

This section describes objects that provide OSPM with device specific information and allow OSPM to
configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via
ACPI. Device configuration objects provide information about current and possible resource requirements,
the relationship between shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls _PRS to determine the resource requirements of the device. It
may also call _CRS to find the current resource settings for the device. Using this information, the Plug and
Play system determines what resources the device should consume and sets those resources by calling the
device’s _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
a proprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.

Device Configuration 211

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource producer)
that claims the shared resource in its _PRS. This allows OSPM to clearly understand the resource
dependencies in the system and move all related devices together if it needs to change resources.
Furthermore, it allows OSPM to allocate resources only to resource producers when devices that consume
that resource appear.

The device configuration objects are listed in Table 6-5.

Table 6-5 Device Configuration Objects

Object Description

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies a device’s current resource settings, or a control method that generates
such an object.

_DIS Control method that disables a device.

_DMA Object that specifies a device’s current resources for DMA transactions.

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the
FADT and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged I/O APIC device.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration
of a PCI device at system boot.

_HPX Object that provides device parameters when configuring a PCI device inserted into a hot-plug
slot or initial configuration of a PCI device at system boot. Supersedes _HPP.

_MAT Object that evaluates to a buffer of MADT APIC Structure entries.

_OSC An object OSPM evaluates to convey specific software support / capabilities to the platform
allowing the platform to configure itself appropriately.

_PRS An object that specifies a device’s possible resource settings, or a control method that
generates such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

_SLI Object that provides updated distance information for a system locality.

_SRS Control method that sets a device’s settings.

6.2.1 _CDM (Clock Domain)

This optional object conveys the processor clock domain to which a processor belongs. A processor clock
domain is a unique identifier representing the hardware clock source providing the input clock for a given
set of processors. This clock source drives software accessible internal counters, such as the Time Stamp
Counter, in each processor. Processor counters in the same clock domain are driven by the same hardware
clock source. In multi-processor platforms that utilize multiple clock domains, such counters may exhibit
drift when compared against processor counters on different clock domains.

The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock domain.
OSPM assumes that two devices in the same clock domain are connected to the same hardware clock.

212 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM via the SRAT or the
_CDM object, OSPM assumes all logical processors to be on a common clock domain. If the platform
defines _CDM object under a logical processor then it must define _CDM objects under all logical
processors whose clock domain information is not provided via the SRAT.

6.2.2_CRS (Current Resource Settings)

This required object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If a device is disabled, then _CRS returns a valid resource template for the device, but the actual
resource assignments in the return byte stream are ignored. If the device is disabled when _CRS is called, it
must remain disabled.

The format of the data contained in a _CRS object follows the formats defined in section 6.4, “Resource
Data Types for ACPI,” a compatible extension of the formats specified in the PNPBIOS specification.9 The
resource data is provided as a series of data structures, with each of the resource data structures having a
unique tag or identifier. The resource descriptor data structures specify the standard PC system resources,
such as memory address ranges, I/O ports, interrupts, and DMA channels.

Arguments:
None

Return Value:
A Buffer containing a resource descriptor byte stream

6.2.3 _DIS (Disable)

This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, OSPM will have already put the device in the D3 state.

When a device is disabled via the _DIS, the _STA control method for this device must return with the
Disabled bit set.

Arguments:
None

Return Value:
None

6.2.4 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format as a _CRS object. _DMA is only defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-
side of its interface. (This is analogous to the _CRS object, which describes the resources that the bus
controller decodes on the parent-side of its interface.) Any ranges described in the resources of a _DMA
object can be used by child devices for DMA or bus master transactions.

9 Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compaq Computer Corp., Intel Corp.,
Phoenix Technologies Ltd.

Device Configuration 213

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The _DMA object is only valid if a _CRS object is also defined. OSPM must re-evaluate the _DMA object
after an _SRS object has been executed because the _DMA ranges resources may change depending on
how the bridge has been configured.

If the _DMA object is not present for a bus device, the OS assumes that any address placed on a bus by a
child device will be decoded either by a device on the bus or by the bus itself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCI bus that cannot access all of physical memory, it has a _DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices on
that bus.

A _DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _SRS method.

Arguments:
None

Return Value:
A Buffer containing a resource descriptor byte stream

214 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_DMA Example ASL:

Device(BUS0)
{

//
// The _DMA method returns a resource template describing the
// addresses that are decoded on the child side of this
// bridge. The contained resource descriptors thus indicate
// the address ranges that bus masters living below this
// bridge can use to send accesses through the bridge toward a
// destination elsewhere in the system (e.g. main memory).
//
// In our case, any bus master addresses need to fall between
// 0 and 0x80000000 and will have 0x200000000 added as they
// cross the bridge. Furthermore, any child-side accesses
// falling into the range claimed in our _CRS will be
// interpreted as a peer-to-peer traffic and will not be
// forwarded upstream by the bridge.
//
// Our upstream address decoder will only claim one range from
// 0x20000000 to 0x5fffffff in the _CRS. Therefore _DMA
// should return two QWORDMemory descriptors, one describing
// the range below and one describing the range above this
// "peer-to-peer" address range.
//

Method(_DMA, ResourceTemplate()
{

QWORDMemory(
ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0, // _MIN
0x1fffffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN
,
,
,

)
QWORDMemory(

ResourceConsumer,
PosDecode, // _DEC
MinFixed, // _MIF
MaxFixed, // _MAF
Prefetchable, // _MEM
ReadWrite, // _RW
0, // _GRA
0x60000000, // _MIN
0x7fffffff, // _MAX
0x200000000, // _TRA
0x20000000, // _LEN
,
,
,

)
})

}

Device Configuration 215

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.5 _FIX (Fixed Register Resource Provider)

This optional object is used to provide a correlation between the fixed-hardware register blocks defined in
the FADT and the devices in the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible IDs (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays a role in the implementation of the fixed-hardware (for example, implements the hardware or decodes
the hardware’s address). _FIX conveys to OSPM whether a given device can be disabled, powered off, or
should be treated specially by conveying its role in the implementation of the ACPI fixed-hardware register
interfaces. This object takes no arguments.

The _CRS object describes a device’s resources. That _CRS object may contain a superset of the resources
in the FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,
in a machine that performs translation of resources within I/O bridges, the processor-relative resources in
the FADT may not be the same as the bus-relative resources in the _CRS.

Arguments:
None

Return Value:
A variable-length Package containing a list of Integers, each containing a PNP ID

Each of fields in the FADT has its own corresponding Plug and Play ID, as shown below:

PNP0C20 - SMI_CMD
PNP0C21 - PM1a_EVT_BLK / X_ PM1a_EVT_BLK
PNP0C22 - PM1b_EVT_BLK / X_PM1b_EVT_BLK
PNP0C23 - PM1a_CNT_BLK / X_PM1a_CNT_BLK
PNP0C24 - PM1b_CNT_BLK / X_ PM1b_CNT_BLK
PNP0C25 - PM2_CNT_BLK / X_ PM2_CNT_BLK
PNP0C26 - PM_TMR_BLK / X_ PM_TMR_BLK
PNP0C27 - GPE0_BLK / X_GPE0_BLK
PNP0C28 - GPE1_BLK / X_ GPE1_BLK
PNP0B00 – FIXED_RTC
PNP0B01 – FIXED_RTC
PNP0B02 – FIXED_RTC

Example ASL for _FIX usage:

Scope(_SB) {
Device(PCI0) { // Root PCI Bus

Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
Name(_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root device

// Return current resources for root bridge 0
}
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information
})
Name(_FIX, Package(1) {

EISAID("PNP0C25")} // PM2 control ID
)

216 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device (PX40) { // ISA
Name(_ADR,0x00070000)
Name(_FIX, Package(1) {

EISAID("PNP0C20")} // SMI command port
)
Device (NS17) { // NS17 (Nat. Semi 317, an ACPI part)

Name(_HID, EISAID("PNP0C02"))
Name(_FIX, Package(3) {

EISAID("PNP0C22"), // PM1b event ID
EISAID("PNP0C24"), // PM1b control ID
EISAID("PNP0C28")} // GPE1 ID

}
} // end PX40

Device (PX43) { // PM Control
Name(_ADR,0x00070003)
Name(_FIX, Package(4) {

EISAID("PNP0C21"), // PM1a event ID
EISAID("PNP0C23"), // PM1a control ID
EISAID("PNP0C26"), // PM Timer ID
EISAID("PNP0C27")} // GPE0 ID

)
} // end PX43

} // end PCI0
} // end scope SB

6.2.6 _GSB (Global System Interrupt Base)

_GSB is an optional object that evaluates to an integer that corresponds to the Global System Interrupt Base
for the corresponding I/O APIC device. The I/O APIC device may either be bus enumerated (e.g. as a PCI
device) or enumerated in the namespace as described in Section 9.18,”I/O APIC Device”. Any I/O APIC
device that either supports hot-plug or is not described in the MADT must contain a _GSB object.

If the I/O APIC device also contains a _MAT object, OSPM evaluates the _GSB object first before
evaluating the _MAT object. By providing the Global System Interrupt Base of the I/O APIC, this object
enables OSPM to process only the _MAT entries that correspond to the I/O APIC device. See section 6.2.8,
“_MAT (Multiple APIC Table Entry)”. Since _MAT is allowed to potentially return all the MADT entries
for the entire platform, _GSB is needed in the I/O APIC device scope to enable OSPM to identify the
entries that correspond to that device.

If an I/O APIC device is activated by a device-specific driver, the physical address used to access the I/O
APIC will be exposed by the driver and cannot be determined from the _MAT object. In this case, OSPM
cannot use the _MAT object to determine the Global System Interrupt Base corresponding to the I/O APIC
device and hence requires the _GSB object.

The Global System Interrupt Base is a 64-bit value representing the corresponding I/OAPIC device as
defined in Section 5.2.13, “Global System Interrupts”.

Arguments:
None

Return Value:
An Integer containing the interrupt base

Device Configuration 217

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example ASL for _GSB usage for a non-PCI based I/O APIC Device:

Scope(_SB) {
…
Device(APIC) { // I/O APIC Device

Name(_HID, “ACPI0009”) // ACPI ID for I/O APIC
Name(_CRS, ResourceTemplate()

{ …}) // only one resource pointing to I/O APIC register base
Method(_GSB){

Return (0x10) // Global System Interrupt Base for I/O APIC starts at 16
}

} // end APIC
} // end scope SB

Example ASL for _GSB usage for a PCI-based I/O APIC Device:

Scope(_SB) {
Device(PCI0) // Host bridge

Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
Name(_ADR, 0)
Device(PCI1) { // I/O APIC PCI Device

Name(_ADR,0x00070000)
Method(_GSB){

Return (0x18) // Global System Interrupt Base for I/O APIC starts at 24
}

} // end PCI1
} // end PCI0

} // end scope SB

6.2.7 _HPP (Hot Plug Parameters)

This optional object evaluates to a package containing the cache-line size, latency timer, SERR enable, and
PERR enable values to be used when configuring a PCI device inserted into a hot-plug slot or for
performing configuration of a PCI devices not configured by the BIOS at system boot. The object is placed
under a PCI bus where this behavior is desired, such as a bus with hot-plug slots. _HPP provided settings
apply to all child buses, until another _HPP object is encountered.

Arguments:
None

Return Value:
A Package containing the Integer hot-plug parameters

Example:

Method (_HPP, 0) {
Return (Package(4){

0x08, // CacheLineSize in DWORDS
0x40, // LatencyTimer in PCI clocks
0x01, // Enable SERR (Boolean)
0x00 // Enable PERR (Boolean)

})
}

218 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-6 _HPP Package Contents

Field Object Type Definition

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.

6.2.7.1 Example: Using _HPP

Scope(_SB) {
Device(PCI0) { // Root PCI Bus

Name(_HID, EISAID("PNP0A03")) // _HID for root device
Name(_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root dev

// Return current resources for root bridge 0
}
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information
})

Device (P2P1) { // First PCI-to-PCI bridge (No Hot Plug slots)
Name(_ADR,0x000C0000) // Device#Ch, Func#0 on bus PCI0
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information
})

} // end P2P1

Device (P2P2) { // Second PCI-to-PCI bridge (Bus contains Hot plug slots)
Name(_ADR,0x000E0000) // Device#Eh, Func#0 on bus PCI0
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information
})
Name(_HPP, Package(){0x08,0x40, 0x01, 0x00})

// Device definitions for Slot 1- HOT PLUG SLOT
Device (S1F0) { // Slot 1, Func#0 on bus P2P2

Name(_ADR,0x00020000)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S1F1) { // Slot 1, Func#1 on bus P2P2

Name(_ADR,0x00020001)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S1F2) { // Slot 1, Func#2 on bus P2P2

Name(_ADR,0x000200 02)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S1F3) { // Slot 1, Func#3 on bus P2P2

Name(_ADR,0x00020003)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S1F4) { // Slot 1, Func#4 on bus P2P2

Name(_ADR,0x00020004)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S1F5) { // Slot 1, Func#5 on bus P2P2

Name(_ADR,0x00020005)
Method(_EJ0, 1) { // Remove all power to device}

}

Device Configuration 219

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device (S1F6) { // Slot 1, Func#6 on bus P2P2
Name(_ADR,0x00020006)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S1F7) { // Slot 1, Func#7 on bus P2P2

Name(_ADR,0x00020007)
Method(_EJ0, 1) { // Remove all power to device}

}

// Device definitions for Slot 2- HOT PLUG SLOT
Device (S2F0) { // Slot 2, Func#0 on bus P2P2

Name(_ADR,0x00030000)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F1) { // Slot 2, Func#1 on bus P2P2

Name(_ADR,0x00030001)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F2) { // Slot 2, Func#2 on bus P2P2

Name(_ADR,0x00030002)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F3) { // Slot 2, Func#3 on bus P2P2

Name(_ADR,0x00030003)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F4) { // Slot 2, Func#4 on bus P2P2

Name(_ADR,0x00030004)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F5) { // Slot 2, Func#5 on bus P2P2

Name(_ADR,0x00030005)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F6) { // Slot 2, Func#6 on bus P2P2

Name(_ADR,0x00030006)
Method(_EJ0, 1) { // Remove all power to device}

}
Device (S2F7) { // Slot 2, Func#7 on bus P2P2

Name(_ADR,0x00030007)
Method(_EJ0, 1) { // Remove all power to device}

}
} // end P2P2

} // end PCI0
} // end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32
(Notice this field is in DWORDs), latency timer of 64, enable SERR, but leave PERR alone.

6.2.8 _HPX (Hot Plug Parameter Extensions)

This optional object provides platform-specific information to the OSPM PCI driver component
responsible for configuring hot-add PCI, PCI-X, or PCI Express devices. The information conveyed applies
to the entire hierarchy downward from the scope containing the _HPX object. If another _HPX object is
encountered downstream, the settings conveyed by the lower-level object apply to that scope downward.

OSPM uses the information returned by _HPX to determine how to configure PCI devices that are hot-
plugged into the system, and to configure devices not configured by the platform firmware during initial
system boot. The _HPX object is placed within the scope of a PCI-compatible bus (see Note 2 below for
restrictions) where this behavior is desired, such as a bus with hot-plug slots. It returns a single package
that contains one or more sub-packages, each containing a single Setting Record. Each such Setting Record
contains a Setting Type (INTEGER), a Revision number (INTEGER) and type/revision specific contents.

220 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The format of data returned by the _HPX object is extensible. The Setting Type and Revision number
determine the format of the Setting Record. OSPM ignores Setting Records of types that it does not
understand. A Setting Record with higher Revision number supersedes that with lower revision number,
however, the _HPX method can return both together, OSPM shall use the one with highest revision number
that it understands.

_HPX may return multiple types or Record Settings (each setting in a single sub-package.) OSPM is
responsible for detecting the type of hot plugged device and for applying the appropriate settings. OSPM is
also responsible for detecting the device / port type of the PCI Express device and applying the appropriate
settings provided. For example, the Secondary Uncorrectable Error Severity and Secondary Uncorrectable
Error Mask settings of Type 2 record are only applicable to PCI Express to PCI-X/PCI Bridge whose
device / port type is 1000b. Similarly, AER settings are only applicable to hot plug PCI Express devices
that support the optional AER capability.

Arguments:
None

Return Value:
A variable-length Package containing a list of Packages, each containing a single PCI or PCI-X
Record Setting as described below

The _HPX object supersedes the _HPP object. If the _HPP and _HPX objects exist within a device’s scope,
OSPM will only evaluate the _HPX object.

Notes:

1) OSPM may override the settings provided by the _HPX object’s Type2 record (PCI Express Settings)
when OSPM has assumed native control of the corresponding feature. For example, if OSPM has
assumed ownership of AER (via _OSC), OSPM may override AER related settings returned by _HPX.

2) The _HPX object may exist under PCI compatible buses including host bridges except when the host
bridge spawns a PCI Express hierarchy. For PCI Express hierarchies, the _HPX object may only exist
under a root port or a switch downstream port.

3) Since error status registers do not drive error signaling, OSPM is not required to clear error status
registers as part of _HPX handling.

6.2.8.1 PCI Setting Record (Type 0)

The PCI setting record contains the setting type 0, the current revision 1 and the type/revision specific
content: cache-line size, latency timer, SERR enable, and PERR enable values.

Table 6-7 PCI Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x00: Type 0 (PCI) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Cache-line size Integer Cache-line size reported in number of DWORDs.

Latency timer Integer Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.

Device Configuration 221

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If the hot plug device includes bridge(s) in the hierarchy, the above settings apply to the primary side
(command register) of the hot plugged bridge(s). The settings for the secondary side of the bridge(s)
(Bridge Control Register) are assumed to be provided by the bridge driver.

The Type 0 record is applicable to hot plugged PCI, PCI-X and PCI Express devices. OSPM will ignore
settings provided in the Type0 record that are not applicable (for example, Cache-line size and Latency
Timer are not applicable to PCI Express).

6.2.8.2 PCI-X Setting Record (Type 1)

The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision specific
content: the maximum memory read byte count setting, the average maximum outstanding split
transactions setting and the total maximum outstanding split transactions to be used when configuring PCI-
X command registers for PCI-X buses and/or devices.

Table 6-8 PCI-X Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x01: Type 1 (PCI-X) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Maximum memory
read byte count

Integer Maximum memory read byte count reported:

Value 0: Maximum byte count 512

Value 1: Maximum byte count 1024

Value 2: Maximum byte count 2048

Value 3: Maximum byte count 4096

Average maximum
outstanding split
transactions

Integer The following values are defined:

Value 0: Maximum outstanding split transaction 1

Value 1: Maximum outstanding split transaction 2

Value 2: Maximum outstanding split transaction 3

Value 3: Maximum outstanding split transaction 4

Value 4: Maximum outstanding split transaction 8

Value 5: Maximum outstanding split transaction 12

Value 6: Maximum outstanding split transaction 16

Value 7: Maximum outstanding split transaction 32

Total maximum
outstanding split
transactions

Integer See the definition for the average maximum outstanding split
transactions.

For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value as the
Maximum Outstanding Split Transactions register value in the PCI-X command register for each PCI-X
device. Another alternative is to use a more sophisticated policy and the Total Maximum Outstanding Split
Transactions Value to gain even more performance. In this case, the OS would examined each PCI-X
device that is directly attached to the host bridge, determine the number of outstanding split transactions
supported by each device, and configure each device accordingly. The goal is to ensure that the aggregate
number of concurrent outstanding split transactions does not exceed the Total Maximum Outstanding Split
Transactions Value: an integer denoting the number of concurrent outstanding split transactions the host
bridge can support (the minimum value is 1).

222 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

This object does not address providing additional information that would be used to configure registers in
bridge devices, whether architecturally-defined or specification-defined registers or device specific
registers. It is expected that a driver for a bridge would be the proper implementation mechanism to address
both of those issues. However, such a bridge driver should have access to the data returned by the _HPX
object for use in optimizing its decisions on how to configure the bridge. Configuration of a bridge is
dependent on both system specific information such as that provided by the _HPX object, as well as bridge
specific information.

6.2.8.3 PCI Express Setting Record (Type 2)

The PCI Express setting record contains the setting type 2, the current revision 1 and the type/revision
specific content (the control registers as listed in the table below) to be used when configuring registers in
the Advanced Error Reporting Extended Capability Structure or PCI Express Capability Structure for the
PCI Express devices.

The Type 2 Setting Record allows a PCI Express-aware OS that supports native hot plug to configure the
specified registers of the hot plugged PCI Express device. A PCI Express-aware OS that has assumed
ownership of native hot plug (via _OSC) but does not support or does not have ownership of the AER
register set must use the data values returned by the _HPX object‘s Type 2 record to program the AER
registers of a hot-added PCI Express device. However, since the Type 2 record also includes register bits
that have functions other than AER, OSPM must ignore values contained within this setting record that are
not applicable.

To support PCIe RsvdP semantics for reserved bits, two values for each register are provided: an “AND
mask” and an “OR mask”. Each bit understood by firmware to be RsvdP shall be set to 1 in the “AND
mask” and 0 in the “OR mask”. Each bit that firmware intends to be configured as 0 shall be set to 0 in both
the “AND mask” and the “OR mask”. Each bit that firmware intends to be configured a 1 shall be set to 1
in both the “AND mask” and the “OR mask”.

When configuring a given register, OSPM uses the following algorithm:

1. Read the register’s current value, which contains the register’s default value.

2. Perform a bit-wise AND operation with the “AND mask” from the table below.

3. Perform a bit-wise OR operation with the “OR mask” from the table below.

4. Override the computed settings for any bits if deemed necessary. For example, if OSPM is aware
of an architected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to
override the computed setting for that bit. Note that firmware sets the “AND value” to 1 and the
“OR value” to 0 for each bit that it considers to be RsvdP.

5. Write the end result value back to the register.

Note that the size of each field in the following table matches the size of the corresponding PCI Express
register.

Table 6-9 PCI Express Setting Record Content

Field Object Type Definition

Header:

Type Integer 0x02: Type 2 (PCI Express) setting record.

Revision Integer 0x01: Revision 1, defining the set of fields below.

Uncorrectable Error Mask Register
AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in
the OSPM algorithm described above.

Uncorrectable Error Mask Register
OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Device Configuration 223

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Object Type Definition

Uncorrectable Error Severity Register
AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in
the OSPM algorithm described above.

Uncorrectable Error Severity Register
OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Correctable Error Mask Register
AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in
the OSPM algorithm described above.

Correctable Error Mask Register OR
Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Advanced Error Capabilities and
Control Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in
the OSPM algorithm described above.

Advanced Error Capabilities and
Control Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above.

Device Control Register AND Mask Integer Bits 0 to 15 contain the “AND mask” to be used in
the OSPM algorithm described above.

Device Control Register OR Mask Integer Bits 0 to 15 contain the “OR mask” to be used in the
OSPM algorithm described above.

Link Control Register AND Mask Integer Bits 0 to 15 contain the “AND mask” to be used in
the OSPM algorithm described above.

Link Control Register OR Mask Integer Bits 0 to 15 contain the “OR mask” to be used in the
OSPM algorithm described above.

Secondary Uncorrectable Error
Severity Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in
the OSPM algorithm described above

Secondary Uncorrectable Error
Severity Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above

Secondary Uncorrectable Error Mask
Register AND Mask

Integer Bits 0 to 31 contain the “AND mask” to be used in
the OSPM algorithm described above

Secondary Uncorrectable Error Mask
Register OR Mask

Integer Bits 0 to 31 contain the “OR mask” to be used in the
OSPM algorithm described above

6.2.8.4 _HPX Example

Method (_HPX, 0) {
Return (Package(2){

Package(6){ // PCI Setting Record
0x00, // Type 0
0x01, // Revision 1
0x08, // CacheLineSize in DWORDS
0x40, // LatencyTimer in PCI clocks
0x01, // Enable SERR (Boolean)
0x00 // Enable PERR (Boolean)

},
Package(5){ // PCI-X Setting Record

0x01, // Type 1
0x01, // Revision 1
0x03, // Maximum Memory Read Byte Count
0x04, // Average Maximum Outstanding Split Transactions
0x07 // Total Maximum Outstanding Split Transactions

}
})

}

224 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.9 _MAT (Multiple APIC Table Entry)

This optional object evaluates to a buffer returning data in the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an I/O APIC or processor
object definition as processors may contain Local APICs. Specific types of MADT entries are meaningful
to (in other words, is processed by) OSPM when returned via the evaluation of this object as described
below. Other entry types returned by the evaluation of _MAT are ignored by OSPM.

When _MAT appears under a Processor object, OSPM processes Local APIC (section 5.2.12.2, “Processor
Local APIC Structure”), Local SAPIC Structure (section 5.2.12.10, “Local SAPIC Structure”), and local
APIC NMI (section 5.2.12.7, “Local APIC NMI Structure”) entries returned from the object’s evaluation.
Other entry types are ignored by OSPM. OSPM uses the ACPI processor ID in the entries returned from the
object’s evaluation to identify the entries corresponding to either the ACPI processor ID of the Processor
object or the value returned by the _UID object under a Processor device.

When _MAT appears under an I/O APIC, OSPM processes I/O APIC (section 5.2.12.3, “I/O APIC
Structure”), I/O SAPIC (section 5.2.12.9, “I/O SAPIC Structure”), non-maskable interrupt sources (section
5.2.12.6, “Non-Maskable Interrupt Source Structure”), interrupt source overrides (section 5.2.12.5,
“Interrupt Source Override Structure”), and platform interrupt source structure (section 5.2.12.11,
“Platform Interrupt Source Structure”) entries returned from the object’s evaluation. Other entry types are
ignored by OSPM.

Arguments:
None

Return Value:
A Buffer containing a list of APIC structure entries

Example ASL for _MAT usage:

Scope(_SB) {
Device(PCI0) { // Root PCI Bus

Name(_HID, EISAID("PNP0A03")) // Need _HID for root device
Name(_ADR,0) // Device 0 on this bus
Method (_CRS,0){ // Need current resources for root device

// Return current resources for root bridge 0
}
Name(_PRT, Package(){ // Need PCI IRQ routing for PCI bridge

// Package with PCI IRQ routing table information
})

Device (P64A) { // P64A ACPI
Name(_ADR,0)
OperationRegion(TABD, SystemMemory, //Physical address of first

// data byte of multiple ACPI table, Length of tables)
Field (TABD, ByteAcc, NoLock, Preserve){

MATD, Length of tables x 8
}
Method(_MAT, 0){

Return (MATD)
}

} // end P64A
} // end PCI0

} // end scope SB

Device Configuration 225

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.10 _OSC (Operating System Capabilities)

This optional object is a control method that is used by OSPM to communicate to the platform the feature
support or capabilities provided by a device’s driver. This object is a child object of a device and may also
exist in the _SB scope, where it can be used to convey platform wide OSPM capabilities. When supported,
_OSC is invoked by OSPM immediately after placing the device in the D0 power state. Device specific
objects are evaluated after _OSC invocation. This allows the values returned from other objects to be
predicated on the OSPM feature support / capability information conveyed by _OSC. OSPM may evaluate
_OSC multiple times to indicate changes in OSPM capability to the device but this may be precluded by
specific device requirements. As such, _OSC usage descriptions in section 9, “ACPI-Defined Devices and
Device Specific Objects”, or other governing specifications describe superseding device specific _OSC
capabilities and / or preclusions.

_OSC enables the platform to configure its ACPI namespace representation and object evaluations to match
the capabilities of OSPM. This enables legacy operating system support for platforms with new features
that make use of new namespace objects that if exposed would not be evaluated when running a legacy OS.
_OSC provides the capability to transition the platform to native operating system support of new features
and capabilities when available through dynamic namespace reconfiguration. _OSC also allows devices
with Compatible IDs to provide superset functionality when controlled by their native (For example, _HID
matched) driver as appropriate objects can be exposed accordingly as a result of OSPM’s evaluation of
_OSC.

Arguments: (4)
Arg0 – A Buffer containing a UUID
Arg1 – An Integer containing a Revision ID of the buffer format
Arg2 – An Integer containing a count of entries in Arg3
Arg3 – A Buffer containing a list of DWORD capabilities

Return Value:
A Buffer containing a list of capabilities

Argument Information

Arg0: UUID – Universal Unique Identifier (16 Byte Buffer) used by the platform in conjunction with
Revision ID to ascertain the format of the Capabilities buffer.

Arg1: Revision ID – The revision of the Capabilities Buffer format. The revision level is specific to the
UUID.

Arg2: Count – Number of DWORDs in the Capabilities Buffer in Arg3

Arg3: Capabilities Buffer – Buffer containing the number of DWORDs indicated by Count. The first
DWORD of this buffer contains standard bit definitions as described below. Subsequent DWORDs contain
UUID-specific bits that convey to the platform the capabilities and features supported by OSPM.
Successive revisions of the Capabilities Buffer must be backwards compatible with earlier revisions. Bit
ordering cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions. See
section 9, “ACPI Devices and Device Specific Objects” for any _OSC definitions for ACPI devices. The
format of the Capabilities Buffer and behavior rules may also be specified by OEMs and IHVs for custom
devices and other interface or device governing bodies for example, the PCI SIG.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

 Bit 0- Query Support Flag. If set, the _OSC invocation is a query by OSPM to determine or
negotiate with the platform the combination of capabilities for which OSPM may take control. In
this case, OSPM sets bits in the subsequent DWORDs to specify the capabilities for which OSPM
intends to take control. If clear, OSPM is attempting to take control of the capabilities
corresponding to the bits set in subsequent DWORDs. OSPM may only take control of capabilities
as indicated by the platform by the result of the query.

226 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Bit 1 – Always clear (0).
 Bit 2 – Always clear (0).
 Bit 3 – Always clear (0).
 All others – reserved.

Return Value Information

Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgement that OSPM may take control of the
capability and cleared bits indicate that the platform either does not support the capability or that OSPM
may not assume control.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

 Bit 0 – Reserved (not used)
 Bit 1 – _OSC failure. Platform Firmware was unable to process the request or query. Capabilities

bits may have been masked.
 Bit 2 – Unrecognized UUID. This bit is set to indicate that the platform firmware does not

recognize the UUID passed in via Arg0. Capabilities bits are preserved.
 Bit 3 – Unrecognized Revision. This bit is set to indicate that the platform firmware does not

recognize the Revision ID passed in via Arg1. Capabilities bits beyond those comprehended by the
firmware will be masked.

 Bit 4 – Capabilities Masked. This bit is set to indicate that capabilities bits set by driver software
have been cleared by platform firmware.

 All others – reserved.

Note: OSPM must not use the results of _OSC evaluation to choose a compatible device driver. OSPM
must use _HID, _CID, or native enumerable bus device identification mechanisms to select an appropriate
driver for a device.

The platform may issue a Notify(device, 0x08) to inform OSPM to re-evaluate _OSC when the availability
of feature control changes. Platforms must not rely, however, on OSPM to evaluate _OSC after issuing a
Notify for proper operation as OSPM cannot guarantee the presence of a target entity to receive and
process the Notify for the device. For example, a device driver for the device may not be loaded at the time
the Notify is signaled. Further, the issuance and processing rules for notification of changes in the
Capabilities Buffer is device specific. As such, the allowable behavior is governed by device specifications
either in section 9, “ ACPI-Specific Device Objects”, for ACPI-define devices, or other OEM, IHV, or
device governing body’s’ device specifications.

It is permitted for _OSC to return all bits in the Capabilities Buffer cleared. An example of this is when
significant time is required to disable platform-based feature support. The platform may then later issue a
Notify to tell OSPM to re-evaluate _OSC to take over native control. This behavior is also device specific
but may also rely on specific OS capability.

In general, platforms should support both OSPM taking and relinquishing control of specific feature
support via multiple invocations of _OSC but the required behavior may vary on a per device basis.

Since platform context is lost when the platform enters the S4 sleeping state, OSPM must re-evaluate _OSC
upon wake from S4 to restore the previous platform state. This requirement will vary depending on the
device specific _OSC functionality.

Device Configuration 227

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.10.1 Rules for Evaluating _OSC

This section defines when and how the OS must evaluate _OSC, as well as restrictions on firmware
implementation.

6.2.10.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when evaluating _OSC, no
hardware settings are permitted to be changed by firmware in the context of the _OSC call. It is strongly
recommended that the OS evaluate _OSC with the Query Support Flag set until _OSC returns the
Capabilities Masked bit clear, to negotiate the set of features to be granted to the OS for native support; a
platform may require a specific combination of features to be supported natively by an OS before granting
native control of a given feature.

6.2.10.1.2 Evaluation Conditions

The OS must evaluate _OSC under the following conditions:

During initialization of any driver that provides native support for features described in the section above.
These features may be supported by one or many drivers, but should only be evaluated by the main bus
driver for that hierarchy. Secondary drivers must coordinate with the bus driver to install support for these
features. Drivers may not relinquish control of features previously obtained (i.e., bits set in Capabilities
DWORD3 after the negotiation process must be set on all subsequent negotiation attempts.)

When a Notify(<device>, 8) is delivered to the PCI Host Bridge device.

Upon resume from S4. Platform firmware will handle context restoration when resuming from S1-S3.

6.2.10.1.3 Sequence of _OSC calls

The following rules govern sequences of calls to _OSC that are issued to the same host bridge and occur
within the same boot.

 The OS is permitted to evaluate _OSC an arbitrary number of times.

 If the OS declares support of a feature in the Status Field in one call to _OSC, then it must
preserve the set state of that bit (declaring support for that feature) in all subsequent calls.

 If the OS is granted control of a feature in the Control Field in one call to _OSC, then it must
preserve the set state of that bit (requesting that feature) in all subsequent calls.

 Firmware may not reject control of any feature it has previously granted control to.

 There is no mechanism for the OS to relinquish control of a feature previously requested and
granted.

6.2.10.2 Platform-Wide OSPM Capabilities

OSPM evaluates _SB._OSC to convey platform-wide OSPM capabilities to the platform. Argument
definitions are as follows:

Arguments: (4)
Arg0 – UUID (Buffer): 0811B06E-4A27-44F9-8D60-3CBBC22E7B48
Arg1 – Revision ID (Integer): 1
Arg2 – Count of Entries in Arg3 (Integer): 2
Arg3 – DWORD capabilities (Buffer): First DWORD: as described in section 6.2.9, Second DWORD:

See Table 6-10

228 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-10 Platform-Wide _OSC Capabilities DWORD 2

Bits Field Name Definition

0 Processor Aggregator
Device Support

This bit is set if OSPM supports the Processor Aggregator device as
described in Section 8.5, “Processor Aggregator Device”

1 _PPC _OST Processing
Support

This bit is set if OSPM will evaluate the _OST object defined under
a processor as a result of _PPC change notification (Notify 0x80)

2 _PR3 Support This bit is set if OSPM supports reading _PR3and using power
resources to switch power. Note this handshake translates to an
operating model that the platform and OSPM supports both the
power model containing both D3hot and D3.

3 Insertion / Ejection _OST
Processing Support

This bit is set if OSPM will evaluate the _OST object defined under
a device when processing insertion and ejection source event codes.

4 APEI Support This bit is set if OSPM supports the ACPI Platform Error Interfaces.
See Section 17, “ACPI Platform Error Interfaces”.

31:5 Reserved (must be 0)

Return Value Information

Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgement and cleared bits indicate that the platform
does not support the capability.

6.2.10.3 _OSC Implementation Example for PCI Host Bridge Devices

The following section is an excerpt from the PCI Firmware Specification Revision 3.0 and is reproduced
with the permission of the PCI SIG. Note: The PCI SIG owns the definition of _OSC behavior and
parameter bit definitions for PCI devices. In the event of a discrepancy between the following
example and the PCI Firmware Specification, the latter has precedence.

The _OSC interface defined in this section applies only to “Host Bridge” ACPI devices that originate PCI,
PCI-X or PCI Express hierarchies. These ACPI devices must have a _HID of (or _CID including) either
EISAID(“PNP0A03”) or EISAID(“PNP0A08”). For a host bridge device that originates a PCI Express
hierarchy, the _OSC interface defined in this section is required. For a host bridge device that originates a
PCI/PCI-X bus hierarchy, inclusion of an _OSC object is optional.

The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is identified by the following Universal
Uniform Identifier (UUID):

33DB4D5B-1FF7-401C-9657-7441C03DD766

A revision ID of 1 encompasses fields defined in this section of this revision of this specification,
comprised of 3 DWORDs, including the first DWORD described by the generic ACPI definition of _OSC.

The first DWORD in the _OSC Capabilities Buffer contain bits are generic to _OSC and include status and
error information.

The second DWORD in the _OSC capabilities buffer is the Support Field. Bits defined in the Support Field
provide information regarding OS supported features. Contents in the Support Field are passed one-way;
the OS will disregard any changes to this field when returned. See Table 6-8 for descriptions of capabilities
bits in this field passed as a parameter into the _OSC control method.

Device Configuration 229

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The third DWORD in the _OSC Capabilities Buffer is the Control Field. Bits defined in the Control Field
are used to submit request by the OS for control/handling of the associated feature, typically (but not
excluded to) those features that utilize native interrupts or events handled by an OS-level driver. See Table
6-10 for descriptions of capabilities bits in this field passed as a parameter into the _OSC control
method. If any bits in the Control Field are returned cleared (masked to zero) by the _OSC control method,
the respective feature is designated unsupported by the platform and must not be enabled by the OS. Some
of these features may be controlled by platform firmware prior to OS boot or during runtime for a legacy
OS, while others may be disabled/inoperative until native OS support is available. See Table 6-11 for
descriptions of capabilities bits in this returned field.

If the _OSC control method is absent from the scope of a host bridge device, then the OS must not enable
or attempt to use any features defined in this section for the hierarchy originated by the host bridge. Doing
so could contend with platform firmware operations, or produce undesired results. It is recommended that a
machine with multiple host bridge devices should report the same capabilities for all host bridges, and also
negotiate control of the features described in the Control Field in the same way for all host bridges.

Table 6-11 Interpretation of _OSC Support Field

Support Field
bit offset

Interpretation

0 Extended PCI Config operation regions supported

The OS sets this bit to 1 if it supports ASL accesses through PCI Config operation
regions to extended configuration space (offsets greater than 0xFF). Otherwise, the
OS sets this bit to 0.

1 Active State Power Management supported

The OS sets this bit to 1 if it natively supports configuration of Active State Power
Management registers in PCI Express devices. Otherwise, the OS sets this bit to 0.

2 Clock Power Management Capability supported

The OS sets this bit to 1 if it supports the Clock Power Management Capability, and
will enable this feature during a native hot plug insertion event if supported by the
newly added device. Otherwise, the OS sets this bit to 0.

Note: The Clock Power Management Capability is defined in an errata to the PCI
Express Base Specification, 1.0.

3 PCI Segment Groups supported

The OS sets this bit to 1 if it supports PCI Segment Groups as defined by the _SEG
object, and access to the configuration space of devices in PCI Segment Groups as
described by this specification. Otherwise, the OS sets this bit to 0.

4 MSI supported

The OS sets this bit to 1 if it supports configuration of devices to generate message-
signaled interrupts, either through the MSI Capability or the MSI-X Capability.
Otherwise, the OS sets this bit to 0.

5-31 Reserved

230 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-12 Interpretation of _OSC Control Field, Passed in via Arg3

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control

The OS sets this bit to 1 to request control over PCI Express native hot plug. If the
OS successfully receives control of this feature, it must track and update the status of
hot plug slots and handle hot plug events as described in the PCI Express Base
Specification.

1 SHPC Native Hot Plug control

The OS sets this bit to 1 to request control over PCI/PCI-X Standard Hot-Plug
Controller (SHPC) hot plug. If the OS successfully receives control of this feature, it
must track and update the status of hot plug slots and handle hot plug events as
described in the SHPC Specification.

2 PCI Express Native Power Management Events control

The OS sets this bit to 1 to request control over PCI Express native power
management event interrupts (PMEs). If the OS successfully receives control of this
feature, it must handle power management events as described in the PCI Express
Base Specification.

3 PCI Express Advanced Error Reporting control

The OS sets this bit to 1 to request control over PCI Express Advanced Error
Reporting. If the OS successfully receives control of this feature, it must handle error
reporting through the Advanced Error Reporting Capability as described in the PCI
Express Base Specification.

4 PCI Express Capability Structure control

The OS sets this bit to 1 to request control over the PCI Express Capability
Structures (standard and extended) defined in the PCI Express Base Specification
version 1.1. These capability structures are the PCI Express Capability, the virtual
channel extended capability, the power budgeting extended capability, the advanced
error reporting extended capability, and the serial number extended capability. If the
OS successfully receives control of this feature, it is responsible for configuring the
registers in all PCI Express Capabilities in a manner that complies with the PCI
Express Base Specification. Additionally, the OS is responsible for saving and
restoring all PCI Express Capability register settings across power transitions when
register context may have been lost.

5-31 Reserved

Device Configuration 231

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-13 Interpretation of _OSC Control Field, Returned Value

Control Field
bit offset

Interpretation

0 PCI Express Native Hot Plug control

The firmware sets this bit to 1 to grant control over PCI Express native hot plug
interrupts. If firmware allows the OS control of this feature, then in the context of the
_OSC method it must ensure that all hot plug events are routed to device interrupts as
described in the PCI Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not update the state of hot plug slots, including
the state of the indicators and power controller. If control of this feature was
requested and denied or was not requested, firmware returns this bit set to 0.

1 SHPC Native Hot Plug control

The firmware sets this bit to 1 to grant control over control over PCI/PCI-X Standard
Hot-Plug Controller (SHPC)hot plug. If firmware allows the OS control of this
feature, then in the context of the _OSC method it must ensure that all hot plug
events are routed to device interrupts as described in the SHPC Specification.
Additionally, after control is transferred to the OS, firmware must not update the
state of hot plug slots, including the state of the indicators and power controller. If
control of this feature was requested and denied or was not requested, firmware
returns this bit set to 0.

2 PCI Express Native Power Management Events control

The firmware sets this bit to 1 to grant control over control over PCI Express native
power management event interrupts (PMEs). If firmware allows the OS control of
this feature, then in the context of the _OSC method it must ensure that all PMEs are
routed to root port interrupts as described in the PCI Express Base Specification.
Additionally, after control is transferred to the OS, firmware must not update the
PME Status field in the Root Status register or the PME Interrupt Enable field in the
Root Control register. If control of this feature was requested and denied or was not
requested, firmware returns this bit set to 0.

3 PCI Express Advanced Error Reporting control

The firmware sets this bit to 1 to grant control over PCI Express Advanced Error
Reporting. If firmware allows the OS control of this feature, then in the context of
the _OSC method it must ensure that error messages are routed to device interrupts
as described in the PCI Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not modify the Advanced Error Reporting
Capability. If control of this feature was requested and denied or was not requested,
firmware returns this bit set to 0.

4 PCI Express Capability Structure control

The firmware sets this bit to 1 to grant control over the PCI Express Capability. If the
firmware does not grant control of this feature, firmware must handle configuration
of the PCI Express Capability Structure.

If firmware grants the OS control of this feature, any firmware configuration of the
PCI Express Capability may be overwritten by an OS configuration, depending on
OS policy.

5-31 Reserved

6.2.10.4 ASL Example

A sample _OSC implementation for a mobile system incorporating a PCI Express hierarchy is shown
below:

232 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device(PCI0) // Root PCI bus
{

Name(_HID,EISAID("PNP0A08")) // PCI Express Root Bridge
Name(_CID,EISAID("PNP0A03")) // Compatible PCI Root Bridge
Name(SUPP,0) // PCI _OSC Support Field value
Name(CTRL,0) // PCI _OSC Control Field value

Method(_OSC,4)
{ // Check for proper UUID

If(LEqual(Arg0,ToUUID("33DB4D5B-1FF7-401C-9657-7441C03DD766")))
{

// Create DWord-adressable fields from the Capabilities Buffer
CreateDWordField(Arg3,0,CDW1)
CreateDWordField(Arg3,4,CDW2)
CreateDWordField(Arg3,8,CDW3)

// Save Capabilities DWord2 & 3
Store(CDW2,SUPP)
Store(CDW3,CTRL)

// Only allow native hot plug control if OS supports:
// * ASPM
// * Clock PM
// * MSI/MSI-X
If(LNotEqual(And(SUPP, 0x16), 0x16))
{

And(CTRL,0x1E) // Mask bit 0 (and undefined bits)
}

// Always allow native PME, AER (no dependencies)

// Never allow SHPC (no SHPC controller in this system)
And(CTRL,0x1D,CTRL)

If(Not(And(CDW1,1))) // Query flag clear?
{ // Disable GPEs for features granted native control.

If(And(CTRL,0x01)) // Hot plug control granted?
{

Store(0,HPCE) // clear the hot plug SCI enable bit
Store(1,HPCS) // clear the hot plug SCI status bit

}
If(And(CTRL,0x04)) // PME control granted?
{

Store(0,PMCE) // clear the PME SCI enable bit
Store(1,PMCS) // clear the PME SCI status bit

}
If(And(CTRL,0x10)) // OS restoring PCIe cap structure?
{ // Set status to not restore PCIe cap structure

// upon resume from S3
Store(1,S3CR)

}
}

If(LNotEqual(Arg1,One))
{ // Unknown revision

Or(CDW1,0x08,CDW1)
}

If(LNotEqual(CDW3,CTRL))
{ // Capabilities bits were masked

Or(CDW1,0x10,CDW1)
}
// Update DWORD3 in the buffer
Store(CTRL,CDW3)
Return(Arg3)

} Else {
Or(CDW1,4,CDW1) // Unrecognized UUID
Return(Arg3)

}
} // End _OSC

} // End PCI0

Device Configuration 233

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.11 _PRS (Possible Resource Settings)

This optional object evaluates to a byte stream that describes the possible resource settings for the device.
When describing a platform, specify a _PRS for all the configurable devices. Static (non-configurable)
devices do not specify a _PRS object. The information in this package is used by OSPM to select a
conflict-free resource allocation without user intervention. This method must not reference any operation
regions that have not been declared available by a _REG method.

The format of the data in a _PRS object follows the same format as the _CRS object (for more information,
see the _CRS object definition in section 6.2.2, “_CRS (Current Resource Settings)”).

If the device is disabled when _PRS is called, it must remain disabled.

Arguments:
None

Return Value:
A Buffer containing a Resource Descriptor byte stream

6.2.12 _PRT (PCI Routing Table)

PCI interrupts are inherently non-hierarchical. PCI interrupt pins are wired to interrupt inputs of the
interrupt controllers. The _PRT object provides a mapping from PCI interrupt pins to the interrupt inputs of
the interrupt controllers. The _PRT object is required under all PCI root bridges. _PRT evaluates to a
package that contains a list of packages, each of which describes the mapping of a PCI interrupt pin.

Arguments:
None

Return Value:
A Package containing variable-length list of PCI interrupt mapping packages, as described below

Note: The PCI function number in the Address field of the _PRT packages must be 0xFFFF, indicating
“any” function number or “all functions”.

The _PRT mapping packages have the fields listed in Table 6-14.

Table 6-14 Mapping Fields

Field Type Description

Address DWORD The address of the device (uses the same format as _ADR).

Pin BYTE The PCI pin number of the device (0–INTA, 1–INTB, 2–INTC, 3–INTD).

Source NamePath

Or

BYTE

Name of the device that allocates the interrupt to which the above pin is
connected. The name can be a fully qualified path, a relative path, or a simple
name segment that utilizes the namespace search rules. Note: This field is a
NamePath and not a String literal, meaning that it should not be surrounded by
quotes. If this field is the integer constant Zero (or a BYTE value of 0), then the
interrupt is allocated from the global interrupt pool.

Source
Index

DWORD Index that indicates which resource descriptor in the resource template of the
device pointed to in the Source field this interrupt is allocated from. If the
Source field is the BYTE value zero, then this field is the global system
interrupt number to which the pin is connected.

There are two ways that _PRT can be used. Typically, the interrupt input that a given PCI interrupt is on is
configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCI Interrupt
Link Device.

234 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

These objects have _PRS, _CRS, _SRS, and _DIS control methods to allocate the interrupt. Then, OSPM
handles the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The driver
looks up the device’s pins in the _PRT to determine which device objects allocate the interrupts. To move
the PCI interrupt to a different interrupt input on the interrupt controller, OSPM uses _PRS, _CRS, _SRS,
and _DIS control methods for the PCI Interrupt Link Device.

In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt controller
and are not configurable. In this case, the Source field in _PRT does not reference a device, but instead
contains the value zero, and the Source Index field contains the global system interrupt to which the PCI
interrupt is hardwired.

Device Configuration 235

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.12.1 Example: Using _PRT to Describe PCI IRQ Routing

The following example describes two PCI slots and a PCI video chip. Notice that the interrupts on the two
PCI slots are wired differently (barber-poled).

Scope(_SB) {
Device(LNKA){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 1)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {10,11} // IRQs 10,11
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(LNKB){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 2)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {11,12} // IRQs 11,12
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(LNKC){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 3)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {12,14} // IRQs 12,14
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(LNKD){

Name(_HID, EISAID("PNP0C0F")) // PCI interrupt link
Name(_UID, 4)
Name(_PRS, ResourceTemplate(){

Interrupt(ResourceProducer,…) {10,15} // IRQs 10,15
})
Method(_DIS) {…}
Method(_CRS) {…}
Method(_SRS, 1) {…}

}
Device(PCI0){

…
Name(_PRT, Package{

Package{0x0004FFFF, 0, _SB_.LNKA, 0}, // Slot 1, INTA // A fully
Package{0x0004FFFF, 1, _SB_.LNKB, 0}, // Slot 1, INTB // qualified
Package{0x0004FFFF, 2, _SB_.LNKC, 0}, // Slot 1, INTC // pathname
Package{0x0004FFFF, 3, _SB_.LNKD, 0}, // Slot 1, INTD // can be used,
Package{0x0005FFFF, 0, LNKB, 0}, // Slot 2, INTA // or a simple
Package{0x0005FFFF, 1, LNKC, 0}, // Slot 2, INTB // name segment
Package{0x0005FFFF, 2, LNKD, 0}, // Slot 2, INTC // utilizing the
Package{0x0005FFFF, 3, LNKA, 0}, // Slot 2, INTD // search rules
Package{0x0006FFFF, 0, LNKC, 0} // Video, INTA

})
}

}

236 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.2.13 _PXM (Proximity)

This optional object is used to describe proximity domains within a machine. _PXM evaluates to an integer
that identifies the device as belonging to a specific proximity domain. OSPM assumes that two devices in
the same proximity domain are tightly coupled. OSPM could choose to optimize its behavior based on this.
For example, in a system with four processors and six memory devices, there might be two separate
proximity domains (0 and 1), each with two processors and three memory devices. In this case, the OS may
decide to run some software threads on the processors in proximity domain 0 and others on the processors
in proximity domain 1. Furthermore, for performance reasons, it could choose to allocate memory for those
threads from the memory devices inside the proximity domain common to the processor and the memory
device rather than from a memory device outside of the processor’s proximity domain. _PXM can be used
to identify any device belonging to a proximity domain. Children of a device belong to the same proximity
domain as their parent unless they contain an overriding _PXM. Proximity domains do not imply any
ejection relationships.

An OS makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance between
the proximity domains (in other words, proximity domain 1 is not assumed to be closer to proximity
domain 0 than proximity domain 6).

If the Local APIC ID / Local SAPIC ID / Local x2APIC ID of a dynamically added processor is not present
in the System Resource Affinity Table (SRAT), a _PXM object must exist for the processor’s device or one
of its ancestors in the ACPI Namespace.

Arguments:
None

Return Value:
An Integer (DWORD) containing a proximity domain identifier.

6.2.14 _SLI (System Locality Information)

The System Locality Information Table (SLIT) table defined in Section 5.2.17, “System Locality Distance
Information Table (SLIT)” provides relative distance information between all System Localities for use
during OS initialization.

The value of each Entry[i,j] in the SLIT table, where i represents a row of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

The i,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace.
See section 6.2.13, “_PXM (Proximity)” for more information.

Dynamic runtime reconfiguration of the system may cause the distance between System Localities to
change.

_SLI is an optional object that enables the platform to provide the OS with updated relative System
Locality distance information at runtime. _SLI provide OSPM with an update of the relative distance from
System Locality i to all other System Localities in the system.

Arguments:
None

Return Value:
A Buffer containing a system locality information table

Device Configuration 237

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If System Locality i ≥ N, where N is the number of System Localities, the _SLI method returns a buffer
that contains these relative distances:

[(i, 0), (i, 1), …, (i, i-1), (i, i), (0, i), (1, i), …(i-1, i), (i, i)]

If System Locality i < N, the _SLI method returns a buffer that contains these relative distances:

[(i, 0), (i, 1), …, (i, i), …,(i, N-1), (0, i), (1, i),…(i, i), …, (N-1, i)]

Note: (i, i) is always a value of 10.

Example

The figure above diagrams a 4-node system where the nodes are numbered 0 through 3 (Node n = Node 3)
and the granularity is at the node level for the NUMA distance information. In this example we assign
System Localities / Proximity Domain numbers equal to the node numbers (0-3). The NUMA relative
distances between proximity domains as implemented in this system are described in the matrix represented
in Table 6-15. Proximity Domains are represented by the numbers in the top row and left column.
Distances are represented by the values in cells internal in the table from the domains.

Table 6-15 Example Relative Distances Between Proximity Domains

Proximity
Domain

0 1 2 3

0 10 15 20 18

1 15 10 16 24

2 20 16 10 12

3 18 24 12 10

An example of these distances between proximity domains encoded in a System Locality Information
Table for consumption by OSPM at boot time is described in Table 6-16.

238 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-16 Example System Locality Information Table

Field Byte
Length

Byte
Offset

Description

Header

Signature 4 0 ‘SLIT’.

Length 4 4 60

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the System Locality Information Table, the table ID
is the manufacturer model ID.

OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For the
DSDT, RSDT, SSDT, and PSDT tables, this is the ID
for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, this is the revision for
the ASL Compiler.

Number of System
Localities

8 36 4

Entry[0][0] 1 44 10

Entry[0][1] 1 45 15

Entry[0][2] 1 46 20

Entry[0][3] 1 47 18

Entry[1][0] 1 48 15

Entry[1][1] 1 49 10

Entry[1][2] 1 50 16

Entry[1][3] 1 51 24

Entry[2][0] 1 52 20

Entry[2][1] 1 53 16

Entry[2][2] 1 54 10

Entry[2][3] 1 55 12

Entry[3][0] 1 56 18

Entry[3][1] 1 57 24

Entry[3][2] 1 58 12

Entry[3][3] 1 59 10

Device Configuration 239

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If a new node, “Node 4”, is added, then Table 6-17 represents the updated system’s NUMA relative
distances of proximity domains.

Table 6-17 Example Relative Distances Between Proximity Domains - 5 Node

Proximity
Domain

0 1 2 3 4

0 10 15 20 18 17

1 15 10 16 24 21

2 20 16 10 12 14

3 18 24 12 10 23

4 17 21 14 23 10

The new node’s _SLI object would evaluate to a buffer containing [17,21,14,23,10,17,21,14,23,10].

Note: some systems support interleave memory across the nodes. The SLIT representation of these systems
is implementation specific.

6.2.15 _SRS (Set Resource Settings)

This optional control method takes one byte stream argument that specifies a new resource allocation for a
device. The resource descriptors in the byte stream argument must be specified exactly as listed in the
_CRS byte stream – meaning that the identical resource descriptors must appear in the identical order,
resulting in a buffer of exactly the same length. Optimizations such as changing an IRQ descriptor to an
IRQNoFlags descriptor (or vice-versa) must not be performed. Similarly, changing StartDependentFn to
StartDependentFnNoPri is not allowed. A _CRS object can be used as a template to ensure that the
descriptors are in the correct format. For more information, see the _CRS object definition.

The settings must take effect before the _SRS control method returns.

This method must not reference any operation regions that have not been declared available by a _REG
method.

If the device is disabled, _SRS enables the device at the specified resources. _SRS is not used to disable a
device; use the _DIS control method instead.

Arguments: (1)
Arg0 – A Buffer containing a Resource Descriptor byte stream

Return Value:
None

6.3 Device Insertion, Removal, and Status Objects

The objects defined in this section provide mechanisms for handling dynamic insertion and removal of
devices and for determining device and notification processing status.

Device insertion and removal objects are also used for docking and undocking mobile platforms to and
from a peripheral expansion dock. These objects give information about whether or not devices are present,
which devices are physically in the same device (independent of which bus the devices live on), and
methods for controlling ejection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style ejection
mechanism instead of a “surprise-style” ejection mechanism. In this system, the eject button for a device
does not immediately remove the device, but simply signals the operating system. OSPM then shuts down
the device, closes open files, unloads the driver, and sends a command to the hardware to eject the device.

240 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

In ACPI, the sequence of events for dynamically inserting a device follows the process below. Notice that
this process supports hot, warm, and cold insertion of devices.

1. If the device is physically inserted while the computer is in the working state (in other words, hot
insertion), the hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of the bus
that the new device is on or the device object for the new device. If the Notify command points to the
device object for the new device, the control method must have changed the device’s status returned by
_STA to indicate that the device is now present. The performance of this process can be optimized by
having the object of the Notify as close as possible, in the namespace hierarchy, to where the new
device resides. The Notify command can also be used from the _WAK control method (for more
information about _WAK, see section 7.3.7 “_WAK (System Wake)”) to indicate device changes that
may have occurred while the computer was sleeping. For more information about the Notify command,
see section 5.6.3 “Device Object Notification.”

3. OSPM uses the identification and configuration objects to identify, configure, and load a device driver
for the new device and any devices found below the device in the hierarchy.

4. If the device has a _LCK control method, OSPM may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be a whole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. OSPM will then load and configure all
devices it found below that bridge. The control method can also point to several different devices in the
hierarchy if the new devices do not all live under the same bus. (in other words, more than one bus goes
through the connector).

For removing devices, ACPI supports both hot removal (system is in the S0 state), and warm removal
(system is in a sleep state: S1-S4). This is done using the _EJx control methods. Devices that can be ejected
include an _EJx control method for each sleeping state the device supports (a maximum of 2 _EJx objects
can be listed). For example, hot removal devices would supply an _EJ0; warm removal devices would use
one of _EJ1-EJ4. These control methods are used to signal the hardware when an eject is to occur.

The sequence of events for dynamically removing a device goes as follows:

1. The eject button is pressed and generates a general-purpose event. (If the system was in a sleeping
state, it should wake the computer).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which specific
device the user has requested to eject. Notify does not need to be called for every device that may be
ejected, but for the top-level device. Any child devices in the hierarchy or any ejection-dependent
devices on this device (as described by _EJD, below) are automatically removed.

3. The OS shuts down and unloads devices that will be removed.

4. If the device has a _LCK control method, OSPM runs this control method to unlock the device.

5. The OS looks to see what _EJx control methods are present for the device. If the removal event will
cause the system to switch to battery power (in other words, an undock) and the battery is low, dead, or
not present, OSPM uses the lowest supported sleep state _EJx listed; otherwise it uses the highest state
_EJx. Having made this decision, OSPM runs the appropriate _EJx control method to prepare the
hardware for eject.

6. Warm removal requires that the system be put in a sleep state. If the removal will be a warm removal,
OSPM puts the system in the appropriate Sx state. If the removal will be a hot removal, OSPM skips to
step 8, below.

7. For warm removal, the system is put in a sleep state. Hardware then uses any motors, and so on, to
eject the device. Immediately after ejection, the hardware transitions the computer to S0. If the system
was sleeping when the eject notification came in, the OS returns the computer to a sleeping state
consistent with the user’s wake settings.

8. OSPM calls _STA to determine if the eject successfully occurred. (In this case, control methods do not
need to use the Notify(device,3) command to tell OSPM of the change in _STA) If there were any
mechanical failures, _STA returns 3: device present and not functioning, and OSPM informs the user
of the problem.

Device Configuration 241

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Note: This mechanism is the same for removing a single device and for removing several devices, as in an
undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not
recommended because system and data integrity cannot be guaranteed when a surprise-style removal
occurs. Because the OS is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal, a general-purpose
event must be raised. Its associated control method must use the Notify command to indicate which bus the
device was removed from.

The device insertion and removal objects are listed in Table 6-18.

Table 6-18 Device Insertion, Removal, and Status Objects

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing _EDL.

_EJD Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is ejected, the dependent device must receive an ejection notification.

_EJx Control method that ejects a device.

_LCK Control method that locks or unlocks a device.

_OST Control method invoked by OSPM to convey processing status to the platform.

_RMV Object that indicates that the given device is removable.

_STA Control method that returns a device’s status.

6.3.1 _EDL (Eject Device List)

This object evaluates to a package of namespace references containing the names of device objects that
depend on the device under which the _EDL object is declared. This is primarily used to support docking
stations. Before the device under which the _EDL object is declared may be ejected, OSPM prepares the
devices listed in the _EDL object for physical removal.

Arguments:
None

Return Value:
A variable-length Package containing a list of namespace references

Before OSPM ejects a device via the device’s _EJx methods, all dependent devices listed in the package
returned by _EDL are prepared for removal. Notice that _EJx methods under the dependent devices are not
executed.

When describing a platform that includes a docking station, an _EDL object is declared under the docking
station device. For example, if a mobile system can attach to two different types of docking stations, _EDL
is declared under both docking station devices and evaluates to the packaged list of devices that must be
ejected when the system is ejected from the docking station.

An ACPI-compliant OS evaluates the _EDL method just prior to ejecting the device.

6.3.2 _EJD (Ejection Dependent Device)

This object is used to specify the name of a device on which the device, under which this object is declared,
is dependent. This object is primarily used to support docking stations. Before the device indicated by
_EJD is ejected, OSPM will prepare the dependent device (in other words, the device under which this
object is declared) for removal.

242 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
A String containing the device name

_EJD is evaluated once when the ACPI table loads. The EJx methods of the device indicated by _EJD will
be used to eject all the dependent devices. A device’s dependents will be ejected when the device itself is
ejected.

Note: OSPM will not execute a dependent device’s _EJx methods when the device indicated by _EJD is
ejected.

When describing a platform that includes a docking station, usually more than one _EJD object will be
needed. For example, if a dock attaches both a PCI device and an ACPI-configured device to a mobile
system, then both the PCI device description package and the ACPI-configured device description package
must include an _EJD object that evaluates to the name of the docking station (the name specified in an
_ADR or _HID object in the docking station’s description package). Thus, when the docking connector
signals an eject request, OSPM first attempts to disable and unload the drivers for both the PCI and ACPI
configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This greatly
restricts a table designer’s freedom to describe dynamic dependencies such as those created in scenarios
with multiple docking stations. This restriction is illustrated in the example below; the _EJD information
supplied via and ACPI 1.0-compatible namespace omits the IDE2 device from DOCK2’s list of ejection
dependencies. Starting in ACPI 2.0, OSPM is presented with a more in-depth view of the ejection
dependencies in a system by use of the _EDL methods.

Example

An example use of _EJD and _EDL is as follows:

Scope(_SB.PCI0) {

Device(DOCK1) { // Pass through dock – DOCK1
Name(_ADR, …)
Method(_EJ0, 0) {…}
Method(_DCK, 1) {…}
Name(_BDN, …)
Method(_STA, 0) {0xF}
Name(_EDL, Package() { // DOCK1 has two dependent devices – IDE2 and CB2

_SB.PCI0.IDE2,
_SB.PCI0.CB2})

}
Device(DOCK2) { // Pass through dock – DOCK2

Name(_ADR, …)
Method(_EJ0, 0) {…}
Method(_DCK, 1) {…}
Name(_BDN, …)
Method(_STA, 0) {0x0}
Name(_EDL, Package() { // DOCK2 has one dependent device – IDE2

_SB.PCI0.IDE2})
}

Device(IDE1) { // IDE Drive1 not dependent on the dock
Name(_ADR, …)

}

Device(IDE2) { // IDE Drive2
Name(_ADR, …)
Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1

}

Device Configuration 243

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device(CB2) { // CardBus Controller
Name(_ADR, …)
Name(_EJD,”_SB.PCI0.DOCK1”) // Dependent on DOCK1

}
} // end _SB.PCIO

6.3.3 _EJx (Eject)

These control methods are optional and are supplied for devices that support a software-controlled VCR-
style ejection mechanism or that require an action be performed such as isolation of power/data lines before
the device can be removed from the system. To support warm (system is in a sleep state) and hot (system is
in S0) removal, an _EJx control method is listed for each sleep state from which the device supports
removal, where x is the sleeping state supported. For example, _EJ0 indicates the device supports hot
removal; _EJ1–EJ4 indicate the device supports warm removal.

Arguments: (1)
Arg0 – An Integer containing a device ejection control

0 – Cancel a mark for ejection request (EJ0 will never be called with this value)
1 – Hot eject or mark for ejection

Return Value:
None

For hot removal, the device must be immediately ejected when OSPM calls the _EJ0 control method. The
_EJ0 control method does not return until ejection is complete. After calling _EJ0, OSPM verifies the
device no longer exists to determine if the eject succeeded. For _HID devices, OSPM evaluates the _STA
method. For _ADR devices, OSPM checks with the bus driver for that device.

For warm removal, the _EJ1–_EJ4 control methods do not cause the device to be immediately ejected.
Instead, they set proprietary registers to prepare the hardware to eject when the system goes into the given
sleep state. The hardware ejects the device only after OSPM has put the system in a sleep state by writing
to the SLP_EN register. After the system resumes, OSPM calls _STA to determine if the eject succeeded.

A device object may have multiple _EJx control methods. First, it lists an EJx control method for the
preferred sleeping state to eject the device. Optionally, the device may list an EJ4 control method to be
used when the system has no power (for example, no battery) after the eject. For example, a hot-docking
notebook might list _EJ0 and _EJ4.

6.3.4 _LCK (Lock)

This control method is optional and is required only for a device that supports a software-controlled locking
mechanism. When the OS invokes this control method, the associated device is to be locked or unlocked
based upon the value of the argument that is passed. On a lock request, the control method must not
complete until the device is completely locked.

Arguments: (1)
Arg0 – An Integer containing a device lock control

0 – Unlock the device
1 – Lock the device

Return Value:
None

When describing a platform, devices use either a _LCK control method or an _EJx control method for a
device.

244 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.3.5 _OST (OSPM Status Indication)

This object is an optional control method that is invoked by OSPM to indicate processing status to the
platform. During device ejection, device hot add, or other event processing, OSPM may need to perform
specific handshaking with the platform. OSPM may also need to indicate to the platform its inability to
complete a requested operation; for example, when a user presses an ejection button for a device that is
currently in use or is otherwise currently incapable of being ejected. In this case, the processing of the
ACPI Eject Request notification by OSPM fails. OSPM may indicate this failure to the platform through
the invocation of the _OST control method. As a result of the status notification indicating ejection failure,
the platform may take certain action including reissuing the notification or perhaps turning on an
appropriate indicator light to signal the failure to the user.

Arguments: (3)
Arg0 – An Integer containing the source event
Arg1 – An Integer containing the status code
Arg2 – A Buffer containing status information

Return Value:
None

Argument Information:

Arg0 – source_event: DWordConst

If the value of source_event is <= 0xFF, this argument is the ACPI notification value whose processing
generated the status indication. This is the value that was passed into the Notify operator.

If the value of source_event is 0x100 or greater then the OSPM status indication is a result of an OSPM
action as indicated in Table 6-19. For example, a value of 0x103 will be passed into _OST for this
argument upon the failure of a user interface invoked device ejection.

If OSPM is unable to identify the originating notification value, OSPM invokes _OST with a value that
contains all bits set (ones) for this parameter.

Arg1 – Status Code: DWordConst. OSPM indicates a notification value specific status. See Tables 6-20, 6-
21, and 6-22 for status code descriptions.

Arg2 – A buffer containing detailed OSPM-specific information about the status indication. This argument
may be null.

Table 6-19 _OST Source Event Codes

Source Event Code Description

0-0xFF Reserved for Notification Values

0x100-0x102 Reserved

0x103 Ejection Processing

0x104-0x1FF Reserved

0x200 Insertion Processing

0x201-0xFFFFFFFF Reserved

Device Configuration 245

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-20 General Processing Status Codes

Status Code Description

0 Success

1 Non-specific failure

2 Unrecognized Notify Code

3-0x7F Reserved

0x80-0xFFFFFFFF Notification value specific status codes

Table 6-21 Ejection Request / Ejection Processing (Source Events: 0x03 and 0x103) Status Codes

Status Code Description

0x80 Device ejection not supported by OSPM

0x81 Device in use by application

0x82 Device Busy

0x83 Ejection dependency is busy or not supported for ejection by OSPM

0x84 Ejection is in progress (pending)

0x85-0xFFFFFFFF Reserved

Table 6-22 Insertion Processing (Source Event: 0x200) Status Codes

Status Code Description

0x80 Device insertion in progress (pending)

0x81 Device driver load failure

0x82 Device insertion not supported by OSPM

0x83-0x8F Reserved

0x90-0x9F Insertion failure – Resources Unavailable as described by the following bit
encodings:

Bit[3] Bus Numbers
Bit[2] Interrupts
Bit[1] I/O
Bit[0] Memory

0xA0-0xFFFFFFFF Reserved

It is possible for the platform to issue multiple notifications to OSPM and for OSPM to process the
notifications asynchronously. As such, OSPM may invoke _OST for notifications independent of the order
the notification are conveyed by the platform or by software to OSPM.

The figure below provides and example event flow of device ejection on a platform employing the _OST
object.

246 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

User interacts with
OSPM to request
device ejection

OSPM evaluates
_OST(0x103,84,””)

OSPM Processes
Ejection Request

OS Ejection
Successful?

Evaluate _EJx

OSPM evaluates
_OST(0x103,81,””)

or
_OST(0x03,81,””)

Application connections to device closed.

Yes

No

Platform turns off
Ejection Progress
Light and turns on
Ejection Failure

Light

Platform blinks
Ejection Progress

Light

Platform ejection
occurs

Yes

OSPM places
system into sleep

state
x = 0 in _EJx? No

Platform wakeup
occurs

Platform turns off
Ejection Progress

Light

Done

Done

User Presses
Hardware Eject

Button

OSPM evaluation of GPE
Status method generates

Notify(device,3(eject))

Platform generates GPE/SCI

Figure 6-5 Device Ejection Flow Example Using _OST

NOTE: To maintain compatibility with OSPM implementations of previous revisions of the ACPI
specification, the platform must not rely on OSPM’s evaluation of the _OST object for proper platform
operation.

Device Configuration 247

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example ASL for _OST usage:

External (_SB.PCI4, DeviceObj)

Scope(_SB.PCI4) {
OperationRegion(LED1, SystemIO, 0x10C0, 0x20)
Field(LED1, AnyAcc, NoLock, Preserve)
{ // LED controls

S0LE, 1, // Slot 0 Ejection Progress LED
S0LF, 1, // Slot 0 Ejection Failure LED
S1LE, 1, // Slot 1 Ejection Progress LED
S1LF, 1, // Slot 1 Ejection Failure LED
S2LE, 1, // Slot 2 Ejection Progress LED
S2LF, 1, // Slot 2 Ejection Failure LED
S3LE, 1, // Slot 3 Ejection Progress LED
S3LF, 1 // Slot 3 Ejection Failure LED

}

Device(SLT3) { // hot plug device
Name(_ADR, 0x000C0003)
Method(_OST, 3, Serialized) { // OS calls _OST with notify code 3 or 0x103

// and status codes 0x80-0x83
// to indicate a hot remove request failure.
// Status code 0x84 indicates an ejection
// request pending.

If(LEqual(Arg0,Ones)) // Unspecified event
{

// Perform generic event processing here
}

Switch(And(Arg0,0xFF)) // Mask to retain low byte
{

Case(0x03) // Ejection request
{

Switch(Arg1)
{

Case(Package(){0x80, 0x81, 0x82, 0x83})
{ // Ejection Failure for some reason

Store(Zero, ^^S3LE) // Turn off Ejection Progress LED
Store(One, ^^S3LF) // Turn on Ejection Failure LED

}
Case(0x84) // Eject request pending
{

Store(One, ^^S3LE) // Turn on Ejection Request LED
Store(Zero, ^^S3LF) // Turn off Ejection Failure LED

}
}

}
}

} // end _OST

Method(_EJ0, 1) // Successful ejection sequence
{

Store(Zero, ^^S3LE) // Turn off Ejection Progress LED
}

} // end SLT3
} // end scope _SB.PCI4

Scope (_GPE)
{

Method(_E13)
{

Store(One, _SB.PCI4.S3LE) // Turn on ejection request LED
Notify(_SB.PCI4.SLT3, 3) // Ejection request driven from GPE13

}
}

248 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.3.6 _RMV (Remove)

The optional _RMV object indicates to OSPM whether the device can be removed while the system is in
the working state and does not require any ACPI system firmware actions to be performed for the device to
be safely removed from the system (in other words, any device that only supports surprise-style removal).
Any such removable device that does not have _LCK or _EJx control methods must have an _RMV object.
This allows OSPM to indicate to the user that the device can be removed and to provide a way for shutting
down the device before removing it. OSPM will transition the device into D3 before telling the user it is
safe to remove the device.

This method is reevaluated after a device-check notification.

Arguments:
None

Return Value:
An Integer containing the device removal status

0 – The device cannot be removed
1 – The device can be removed

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
device is removable.

6.3.7 _STA (Status)

This object returns the current status of a device, which can be one of the following: enabled, disabled, or
removed.

OSPM evaluates the _STA object before it evaluates a device _INI method. The return values of the
Present and Functioning bits determines whether _INI should be evaluated and whether children of the
device should be enumerated and initialized. See section 6.5.1, “_INI (Init)”.

If a device object (including the processor object) does not have an _STA object, then OSPM assumes that
the device is present, enabled, shown in the UI, and functioning.

This method must not reference any operation regions that have not been declared available by a _REG
method.

Arguments:
None

Return Value:
An Integer containing a device status bitmap:

Bit 0 – Set if the device is present.
Bit 1 – Set if the device is enabled and decoding its resources.
Bit 2 – Set if the device should be shown in the UI.
Bit 3 – Set if the device is functioning properly (cleared if device failed its diagnostics).
Bit 4 – Set if the battery is present.
Bits 5–31 – Reserved (must be cleared).

Return Value Information

If bit 0 is cleared, then bit 1 must also be cleared (in other words, a device that is not present cannot be
enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit
0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

Device Configuration 249

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If a device is present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared.
For example, a notebook could have joystick hardware (thus it is present and decoding its resources), but
the connector for plugging in the joystick requires a port replicator. If the port replicator is not plugged in,
the joystick should not appear in the UI, so bit 2 is cleared.

_STA may return bit 0 clear (not present) with bit 3 set (device is functional). This case is used to indicate a
valid device for which no device driver should be loaded (for example, a bridge device.) Children of this
device may be present and valid. OSPM should continue enumeration below a device whose _STA returns
this bit combination.

If a device object (including the processor object) does not have an _STA object, then OSPM assumes that
all of the above bits are set (i.e., the device is present, enabled, shown in the UI, and functioning).

6.4 Resource Data Types for ACPI

The _CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined
in section 18.5, “ASL Operator Reference”, along with the other ASL operators.

6.4.2 Small Resource Data Type

A small resource data type may be 2 to 8 bytes in size and adheres to the following format:

Table 6-23 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]

Type–0 (Small item) Small item name Length–n bytes

Bytes 1 to n Data bytes (Length 0 – 7)

The following small information items are currently defined for Plug and Play devices:

Table 6-24 Small Resource Items

Small Item Name Value

Reserved 0x00-0x03

IRQ Format Descriptor 0x04

DMA Format Descriptor 0x05

Start Dependent Functions Descriptor 0x06

End Dependent Functions Descriptor 0x07

I/O Port Descriptor 0x08

Fixed Location I/O Port Descriptor 0x09

Reserved 0x0A–0x0D

Vendor Defined Descriptor 0x0E

End Tag Descriptor 0x0F

250 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.2.1 IRQ Descriptor

Type 0, Small Item Name 0x4, Length = 2 or 3

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so a two-byte field is used. This structure is repeated for each separate interrupt required.

Table 6-25 IRQ Descriptor Definition

Offset Field Name

Byte 0 Value = 0x22 or 0x23 (0010001nB) – Type = 0, Small item name = 0x4, Length = 2 or 3

Byte 1 IRQ mask bits[7:0], _INT

Bit[0] represents IRQ0, bit[1] is IRQ1, and so on.

Byte 2 IRQ mask bits[15:8], _INT

Bit[0] represents IRQ8, bit[1] is IRQ9, and so on.

Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of
interrupt. (Optional—if not included then assume edge sensitive, high true interrupts.) These bits
can be used both for reporting and setting IRQ resources.

Note: This descriptor is meant for describing interrupts that are connected to PIC-compatible
interrupt controllers, which can only be programmed for Active-High-Edge-Triggered or Active-
Low-Level-Triggered interrupts. Any other combination is invalid. The Extended Interrupt
Descriptor can be used to describe other combinations.

Bit[7:5] Reserved (must be 0)
Bit[4] Interrupt is sharable, _SHR
Bit[3] Interrupt Polarity, _LL

0 Active-High – This interrupt is sampled when the signal is high, or true
1 Active-Low – This interrupt is sampled when the signal is low, or false.

Bit[2:1] Ignored
Bit[0] Interrupt Mode, _HE

0 Level-Triggered – Interrupt is triggered in response to signal in a low state.
1 Edge-Triggered – Interrupt is triggered in response to a change in signal state

from low to high.

Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work is beyond the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See section 18.5.57, “IRQ (Interrupt Resource Descriptor Macro),” and section 18.5.58, “IRQNoFlags
(Interrupt Resource Descriptor Macro),” for a description of the ASL macros that create an IRQ descriptor.

6.4.2.2 DMA Descriptor

Type 0, Small Item Name 0x5, Length = 2

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table 6-26 DMA Descriptor Definition

Offset Field Name

Byte 0 Value = 0x2A (00101010B) – Type = 0, Small item name = 0x5, Length = 2

Device Configuration 251

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name

Byte 1 DMA channel mask bits[7:0] (channels 0 – 7), _DMA

Bit[0] is channel 0, etc.

Byte 2 Bit[7] Reserved (must be 0)
Bits[6:5] DMA channel speed supported, _TYP

00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA
10 Indicates Type B DMA
11 Indicates Type F

Bits[4:3] Ignored
Bit[2] Logical device bus master status, _BM

0 Logical device is not a bus master
1 Logical device is a bus master

Bits[1:0] DMA transfer type preference, _SIZ
00 8-bit only
01 8- and 16-bit
10 16-bit only
11 Reserved

See section 18.5.30, “DMA (DMA Resource Descriptor Macro),” for a description of the ASL macro that
creates a DMA descriptor.

6.4.2.3 Start Dependent Functions Descriptor

Type 0, Small Item Name 0x6, Length = 0 or 1

Each logical device requires a set of resources. This set of resources may have interdependencies that need
to be expressed to allow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to express these interdependencies. The data structure definitions for
dependent functions are shown here. For a detailed description of the use of dependent functions refer to
the next section.

Table 6-27 Start Dependent Functions Descriptor Definition

Offset Field Name

Byte 0 Value = 0x30 or 0x31 (0011000nB) – Type = 0, small item name = 0x6, Length = 0 or 1

Start Dependent Function fields may be of length 0 or 1 bytes. The extra byte is optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority is a ranking of configurations for compatibility with legacy operating systems. This is
the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM1 is IRQ4, I/O 3F8-3FF. The performance/robustness performance is a
ranking of configurations for performance and robustness reasons. For example, a device may have a high-
performance, bus mastering configuration that may not be supported by legacy operating systems. The bus-
mastering configuration would have the highest performance/robustness priority while its polled I/O mode
might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byte is
defined as:

252 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-28 Start Dependent Function Priority Byte Definition

Bits Definition

1:0 Compatibility priority. Acceptable values are:
0 Good configuration: Highest Priority and preferred configuration
1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal
3 Reserved

3:2 Performance/robustness. Acceptable values are:
0 Good configuration: Highest Priority and preferred configuration
1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal
3 Reserved

7:4 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the order
in which they appear in the resource data structure. The Dependent Function that appears earliest (nearest
the beginning) in the structure has the highest priority, and so on.

See section 18.5.111, “StartDependentFn (Start Dependent Function Resource Descriptor Macro),” for a
description of the ASL macro that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions Descriptor

Type 0, Small Item Name 0x7, Length = 0

Only one End Dependent Function item is allowed per logical device. This enforces the fact that Dependent
Functions cannot be nested.

Table 6-29 End Dependent Functions Descriptor Definition

Offset Field Name

Byte 0 Value = 0x38 (00111000B) – Type = 0, Small item name = 0x7, Length =0

See section 18.5.37, “EndDependentFn (End Dependent Function Resource Descriptor Macro,” for a
description of the ASL macro that creates an End Dependent Functions descriptor.

6.4.2.5 I/O Port Descriptor

Type 0, Small Item Name 0x8, Length = 7

There are two types of descriptors for I/O ranges. The first descriptor is a full function descriptor for
programmable devices. The second descriptor is a minimal descriptor for old ISA cards with fixed I/O
requirements that use a 10-bit ISA address decode. The first type descriptor can also be used to describe
fixed I/O requirements for ISA cards that require a 16-bit address decode. This is accomplished by setting
the range minimum base address and range maximum base address to the same fixed I/O value.

Device Configuration 253

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-30 I/O Port Descriptor Definition

Offset Field Name Definition

Byte 0 I/O Port Descriptor Value = 0x47 (01000111B) –
Type = 0, Small item name = 0x8, Length = 7

Byte 1 Information Bits[7:1] Reserved and must be 0
Bit[0] (_DEC)

1 The logical device decodes 16-bit addresses
0 The logical device only decodes address bits[9:0]

Byte 2 Range minimum base
address, _MIN bits[7:0]

Address bits[7:0] of the minimum base I/O address that the card may
be configured for.

Byte 3 Range minimum base
address, _MIN bits[15:8]

Address bits[15:8] of the minimum base I/O address that the card may
be configured for.

Byte 4 Range maximum base
address, _MAX bits[7:0]

Address bits[7:0] of the maximum base I/O address that the card may
be configured for.

Byte 5 Range maximum base
address, _MAX bits[15:8]

Address bits[15:8] of the maximum base I/O address that the card may
be configured for.

Byte 6 Base alignment, _ALN Alignment for minimum base address, increment in 1-byte blocks.

Byte 7 Range length, _LEN The number of contiguous I/O ports requested.

See section 18.5.56, “IO (IO Resource Descriptor Macro,” for a description of the ASL macro that creates
an I/O Port descriptor.

6.4.2.6 Fixed Location I/O Port Descriptor

Type 0, Small Item Name 0x9, Length = 3

This descriptor is used to describe 10-bit I/O locations.

Table 6-31 Fixed-Location I/O Port Descriptor Definition

Offset Field Name Definition

Byte 0 Fixed Location I/O Port
Descriptor

Value = 0x4B (01001011B) –
Type = 0, Small item name = 0x9, Length = 3

Byte 1 Range base address,
_BAS bits[7:0]

Address bits[7:0] of the base I/O address that the card may be configured
for. This descriptor assumes a 10-bit ISA address decode.

Byte 2 Range base address,
_BAS bits[9:8]

Address bits[9:8] of the base I/O address that the card may be configured
for. This descriptor assumes a 10-bit ISA address decode.

Byte 3 Range length, _LEN The number of contiguous I/O ports requested.

See section 18.5.47, “FixedIO (Fixed I/O Resource Descriptor Macro,” for a description of the ASL macro
that creates a Fixed I/O Port descriptor.

254 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.2.7 Vendor-Defined Descriptor

Type 0, Small Item Name 0xE, Length = 1 to 7

The vendor defined resource data type is for vendor use.

Table 6-32 Vendor-Defined Resource Descriptor Definition

Offset Field Name

Byte 0 Value = 0x71 – 0x77 (01110nnnB) – Type = 0, small item name = 0xE, Length = 1–7

Byte 1 to 7 Vendor defined

See VendorShort (page 555) for a description of the ASL macro that creates a short vendor-defined
resource descriptor.

6.4.2.8 End Tag

Type 0, Small Item Name 0xF, Length = 1

The End tag identifies an end of resource data.

Note: If the checksum field is zero, the resource data is treated as if the checksum operation succeeded.
Configuration proceeds normally.

Table 6-33 End Tag Definition

Offset Field Name

Byte 0 Value = 0x79 (01111001B) – Type = 0, Small item name = 0xF, Length = 1

Byte 1 Checksum covering all resource data after the serial identifier. This checksum is generated
such that adding it to the sum of all the data bytes will produce a zero sum.

The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate
statement.

6.4.3 Large Resource Data Type

To allow for larger amounts of data to be included in the configuration data structure the large format is
shown below. This includes a 16-bit length field allowing up to 64 KB of data.

Table 6-34 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Value = 1xxxxxxxB – Type = 1 (Large item), Large item name = xxxxxxxB

Byte 1 Length of data items bits[7:0]

Byte 2 Length of data items bits[15:8]

Bytes 3 to
(Length + 2)

Actual data items

Device Configuration 255

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following large information items are currently defined for Plug and Play ISA devices:

Table 6-35 Large Resource Items

Large Item Name Value

Reserved 0x00

24-bit Memory Range Descriptor 0x01

Generic Register Descriptor 0x02

Reserved 0x03

Vendor Defined Descriptor 0x04

32-bit Memory Range Descriptor 0x05

32-bit Fixed Location Memory Range Descriptor 0x06

DWORD Address Space Descriptor 0x07

WORD Address Space Descriptor 0x08

Extended IRQ Descriptor 0x09

QWORD Address Space Descriptor 0x0A

Extended Address Space Descriptor 0x0B

Reserved 0x0C – 0x7F

256 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.3.1 24-Bit Memory Range Descriptor

Type 1, Large Item Name 0x1

The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address
space.

Table 6-36 24-bit Memory Range Descriptor Definition

Offset Field Name, ASL Field
Name

Definition

Byte 0 24-bit Memory Range
Descriptor

Value = 0x81 (10000001B) – Type = 1, Large item name = 0x01

Byte 1 Length, bits[7:0] Value = 0x09 (9)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.

Bit[7:1] Ignored

Bit[0] Write status, _RW
1 writeable (read/write)
0 non-writeable (read-only)

Byte 4 Range minimum base
address, _MIN, bits[7:0]

Address bits[15:8] of the minimum base memory address for
which the card may be configured.

Byte 5 Range minimum base
address, _MIN, bits[15:8]

Address bits[23:16] of the minimum base memory address for
which the card may be configured

Byte 6 Range maximum base
address, _MAX, bits[7:0]

Address bits[15:8] of the maximum base memory address for
which the card may be configured.

Byte 7 Range maximum base
address, _MAX, bits[15:8]

Address bits[23:16] of the maximum base memory address for
which the card may be configured

Byte 8 Base alignment, _ALN,
bits[7:0]

This field contains the lower eight bits of the base alignment.
The base alignment provides the increment for the minimum
base address. (0x0000 = 64 KB)

Byte 9 Base alignment, _ALN,
bits[15:8]

This field contains the upper eight bits of the base alignment.
The base alignment provides the increment for the minimum
base address. (0x0000 = 64 KB)

Byte 10 Range length, _LEN,
bits[7:0]

This field contains the lower eight bits of the memory range
length. The range length provides the length of the memory
range in 256 byte blocks.

Byte 11 Range length, _LEN,
bits[15:8]

This field contains the upper eight bits of the memory range
length. The range length field provides the length of the memory
range in 256 byte blocks.

Notes:

 Address bits [7:0] of memory base addresses are assumed to be 0.

 A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

 24-bit Memory Range descriptors are used for legacy devices.

 Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 18.5.72, “Memory24 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 24-bit Memory descriptor.

Device Configuration 257

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.3.2 Vendor-Defined Descriptor

Type 1, Large Item Name 0x4

The vendor defined resource data type is for vendor use.

Table 6-37 Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor Defined Descriptor Value = 0x84 (10000100B) – Type = 1, Large item name
= 0x04

Byte 1 Length, bits[7:0] Lower eight bits of data length (UUID and vendor data)

Byte 2 Length, bits[15:8] Upper eight bits of data length (UUID and vendor data)

Byte 3 UUID specific descriptor sub type UUID specific descriptor sub type value

Byte 4-19 UUID UUID Value

Byte 20-
(Length+20)

Vendor Defined Data Vendor defined data bytes

ACPI 3.0 defines the UUID specific descriptor subtype field and the UUID field to address potential
collision of the use of this descriptor. It is strongly recommended that all newly defined vendor descriptors
use these fields prior to Vendor Defined Data.

See VendorLong (page 555) for a description of the ASL macro that creates a long vendor-defined resource
descriptor.

6.4.3.3 32-Bit Memory Range Descriptor

Type 1, Large Item Name 0x5

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-38 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 32-bit Memory Range Descriptor Value = 0x85 (10000101B) – Type = 1, Large item name =
0x05

Byte 1 Length, bits[7:0] Value = 0x11 (17)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.

Bit[7:1] Ignored

Bit[0] Write status, _RW
1 writeable (read/write)
0 non-writeable (read-only)

Byte 4 Range minimum base address,
_MIN, bits[7:0]

Address bits[7:0] of the minimum base memory address for
which the card may be configured.

Byte 5 Range minimum base address,
_MIN, bits[15:8]

Address bits[15:8] of the minimum base memory address for
which the card may be configured.

Byte 6 Range minimum base address,
_MIN, bits[23:16]

Address bits[23:16] of the minimum base memory address for
which the card may be configured.

Byte 7 Range minimum base address,
_MIN, bits[31:24]

Address bits[31:24] of the minimum base memory address for
which the card may be configured.

258 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 8 Range maximum base address,
_MAX, bits[7:0]

Address bits[7:0] of the maximum base memory address for
which the card may be configured.

Byte 9 Range maximum base address,
_MAX, bits[15:8]

Address bits[15:8] of the maximum base memory address for
which the card may be configured.

Byte 10 Range maximum base address,
_MAX, bits[23:16]

Address bits[23:16] of the maximum base memory address for
which the card may be configured.

Byte 11 Range maximum base address,
_MAX, bits[31:24]

Address bits[31:24] of the maximum base memory address for
which the card may be configured.

Byte 12 Base alignment, _ALN bits[7:0]
This field contains Bits[7:0] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte 13 Base alignment, _ALN bits[15:8]
This field contains Bits[15:8] of the base alignment. The base
alignment provides the increment for the minimum base
address.

Byte 14 Base alignment, _ALN bits[23:16]
This field contains Bits[23:16] of the base alignment. The
base alignment provides the increment for the minimum base
address.

Byte 15 Base alignment, _ALN bits[31:24]
This field contains Bits[31:24] of the base alignment. The
base alignment provides the increment for the minimum base
address.

Byte 16 Range length, _LEN bits[7:0]
This field contains Bits[7:0] of the memory range length. The
range length provides the length of the memory range in 1-
byte blocks.

Byte 17 Range length, _LEN bits[15:8]
This field contains Bits[15:8] of the memory range length.
The range length provides the length of the memory range in
1-byte blocks.

Byte 18 Range length, _LEN bits[23:16]
This field contains Bits[23:16] of the memory range length.
The range length provides the length of the memory range in
1-byte blocks.

Byte 19 Range length, _LEN bits[31:24]
This field contains Bits[31:24] of the memory range length.
The range length provides the length of the memory range in
1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 18.5.73, “Memory32 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 32-bit Memory descriptor.

Device Configuration 259

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.3.4 32-Bit Fixed Memory Range Descriptor

Type 1, Large Item Name 0x6

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-39 32-bit Fixed-Location Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 32-bit Fixed Memory
Range Descriptor

Value = 0x86 (10000110B) – Type = 1, Large item name = 0x06

Byte 1 Length, bits[7:0] Value = 0x09 (9)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Information This field provides extra information about this memory.

Bit[7:1] Ignored

Bit[0] Write status, _RW
1 writeable (read/write)
0 non-writeable (read-only))

Byte 4 Range base address,
_BAS bits[7:0]

Address bits[7:0] of the base memory address for which the card may
be configured.

Byte 5 Range base address,
_BAS bits[15:8]

Address bits[15:8] of the base memory address for which the card may
be configured.

Byte 6 Range base address,
_BAS bits[23:16]

Address bits[23:16] of the base memory address for which the card
may be configured.

Byte 7 Range base address,
_BAS bits[31:24]

Address bits[31:24] of the base memory address for which the card
may be configured.

Byte 8 Range length, _LEN
bits[7:0]

This field contains Bits[7:0] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte 9 Range length, _LEN
bits[15:8]

This field contains Bits[15:8] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte 10 Range length, _LEN
bits[23:16]

This field contains Bits[23:16] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Byte 11 Range length, _LEN
bits[31:24]

This field contains Bits[31:24] of the memory range length. The range
length provides the length of the memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 18.5.74, “Memory32Fixed (Memory Resource Descriptor),” for a description of the ASL macro
that creates a 32-bit Fixed Memory descriptor.

6.4.3.5 Address Space Resource Descriptors

The QWORD, DWORD, WORD, and Extended Address Space Descriptors are general-purpose structures
for describing a variety of types of resources. These resources also include support for advanced server
architectures (such as multiple root buses), and resource types found on some RISC processors. These
descriptors can describe various kinds of resources. The following table defines the valid combination of
each field and how they should be interpreted.

260 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-40 Valid combination of Address Space Descriptors fields

6.4.3.5.1 QWord Address Space Descriptor

Type 1, Large Item Name 0xA

The QWORD address space descriptor is used to report resource usage in a 64-bit address space (like
memory and I/O).

Table 6-41 QWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 QWORD Address Space
Descriptor

Value = 0x8A (10001010B) – Type = 1, Large item name = 0x0A

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x2B (43)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

0 Memory range
1 I/O range
2 Bus number range
3–191 Reserved
192-255 Hardware Vendor Defined

_LEN _MIF _MAF Definition

0 0 0

0 0 1

0 1 0

Variable size, variable location resource descriptor for _PRS.

If _MIF is set, _MIN must be a multiple of (_GRA+1). If _MAF is set, _MAX must
be (a multiple of (_GRA+1))-1.

OS can pick the resource range that satisfies following conditions:

 If _MIF is not set, start address is a multiple of (_GRA+1) and greater or
equal to _MIN. Otherwise, start address is _MIN.

 If _MAF is not set, end address is (a multiple of (_GRA+1))-1 and less or
equal to _MAX. Otherwise, end address is _MAX.

0 1 1 (Invalid combination)

> 0 0 0 Fixed size, variable location resource descriptor for _PRS.

_LEN must be a multiple of (_GRA+1).

OS can pick the resource range that satisfies following conditions:

 Start address is a multiple of (_GRA+1) and greater or equal to _MIN.

 End address is (start address+_LEN-1) and less or equal to _MAX.

> 0 0 1 (Invalid combination)

> 0 1 0 (Invalid combination)

> 0 1 1 Fixed size, fixed location resource descriptor.

_GRA must be 0 and _LEN must be (_MAX - _MIN +1).

Device Configuration 261

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:

1 The specified maximum address is fixed
0 The specified maximum address is not fixed

and can be changed
Bit[2] Min Address Fixed,_MIF:

1 The specified minimum address is fixed
0 The specified minimum address is not fixed

and can be changed
Bit[1] Decode Type, _DEC:

1 This bridge subtractively decodes this address
(top level bridges only)

0 This bridge positively decodes this address
Bit[0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. That is, the
value of the full Address Space Granularity field (all 64 bits) must
be a number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]

Byte 8 Address space granularity,
_GRA bits[23:16]

Byte 9 Address space granularity,
_GRA bits[31:24]

Byte 10 Address space granularity,
_GRA bits[39:32]

Byte 11 Address space granularity,
_GRA bits[47:40]

Byte 12 Address space granularity,
_GRA bits[55:48]

Byte 13 Address space granularity,
_GRA bits[63:56]

Byte 14 Address range minimum,
_MIN bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 15 Address range minimum,
_MIN bits[15:8]

Byte 16 Address range minimum,
_MIN bits[23:16]

Byte 17 Address range minimum,
_MIN bits[31:24]

Byte 18 Address range minimum,
_MIN bits[39:32]

262 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 19 Address range minimum,
_MIN bits[47:40]

Byte 20 Address range minimum,
_MIN bits[55:48]

Byte 21 Address range minimum,
_MIN bits[63:56]

Byte 22 Address range maximum,
_MAX bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 23 Address range maximum,
_MAX bits[15:8]

Byte 24 Address range maximum,
_MAX bits[23:16]

Byte 25 Address range maximum,
_MAX bits[31:24]

Byte 26 Address range maximum,
_MAX bits[39:32]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 27 Address range maximum,
_MAX bits[47:40]

Byte 28 Address range maximum,
_MAX bits[55:48]

Byte 29 Address range maximum,
_MAX bits[63:56]

Byte 30 Address Translation offset,
_TRA bits[7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list
0 for all Address Translation offset bits.

Byte 31 Address Translation offset,
_TRA bits[15:8]

Byte 32 Address Translation offset,
_TRA bits[23:16]

Byte 33 Address Translation offset,
_TRA bits[31:24]

Byte 34 Address Translation offset,
_TRA bits[39:32]

Byte 35 Address Translation offset,
_TRA bits[47:40]

Byte 36 Address Translation offset,
_TRA bits[55:48]

Byte 37 Address Translation offset,
_TRA bits[63:56]

Byte 38 Address length, _LEN
bits[7:0]

Byte 39 Address length, _LEN,
bits[15:8]

Device Configuration 263

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 40 Address length, _LEN
bits[23:16]

Byte 41 Address length, _LEN
bits[31:24]

Byte 42 Address length, _LEN
bits[39:32]

Byte 43 Address length, _LEN
bits[47:40]

Byte 44 Address length, _LEN
bits[55:48]

Byte 45 Address length, _LEN
bits[63:56]

Byte 46 Resource Source Index (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes
its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool. If not present, the device consumes this resource from
its hierarchical parent.

See QWordIO (page 538), QWordMemory (page 539) and ASL_QWordAddressSpace for a description of
the ASL macros that creates a QWORD Address Space descriptor.

6.4.3.5.2 DWord Address Space Descriptor

Type 1, Large Item Name 0x7

The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like
memory and I/O).

Table 6-42 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Space
Descriptor

Value = 0x87 (10000111B) – Type = 1, Large item name = 0x07

Byte 1 Length, bits[7:0] Variable: Value = 23 (minimum)

Byte 2 Length, bits[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

0 Memory range
1 I/O range
2 Bus number range
3–191 Reserved

192-255 Hardware Vendor Defined

264 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:

1 The specified maximum address is fixed
0 The specified maximum address is not fixed

and can be changed
Bit[2] Min Address Fixed,_MIF:

1 The specified minimum address is fixed
0 The specified minimum address is not fixed

and can be changed
Bit[1] Decode Type, _DEC:

1 This bridge subtractively decodes this address
(top level bridges only)

0 This bridge positively decodes this address

Bit[0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. (in other
words, the value of the full Address Space Granularity field (all 32
bits) must be a number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]

Byte 8 Address space granularity,
_GRA bits [23:16]

Byte 9 Address space granularity,
_GRA bits [31:24]

Byte 10 Address range minimum,
_MIN bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 11 Address range minimum,
_MIN bits [15:8]

Byte 12 Address range minimum,
_MIN bits [23:16]

Byte 13 Address range minimum,
_MIN bits [31:24]

Byte 14 Address range maximum,
_MAX bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 15 Address range maximum,
_MAX bits [15:8]

Byte 16 Address range maximum,
_MAX bits [23:16]

Byte 17 Address range maximum,
_MAX bits [31:24]

Device Configuration 265

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 18 Address Translation offset,
_TRAbits [7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must
list 0 for all Address Translation offset bits.

Byte 19 Address Translation offset,
_TRA bits [15:8]

Byte 20 Address Translation offset,
_TRA bits [23:16]

Byte 21 Address Translation offset,
_TRA bits [31:24]

Byte 22 Address Length, _LEN, bits
[7:0]

Byte 23 Address Length, _LEN, bits
[15:8]

Byte 24 Address Length, _LEN, bits
[23:16]

Byte 25 Address Length, _LEN, bits
[31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is present.
This field gives an index to the specific resource descriptor that
this device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes
its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool.

If not present, the device consumes this resource from its
hierarchical parent.

See DWordIO (page 497), DWordMemory (page 499) and ASL_DWordAddressSpace for a description of
the ASL macro that creates a DWORD Address Space descriptor

6.4.3.5.3 Word Address Space Descriptor

Type 1, Large Item Name 0x8

The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and I/O).

Note: This descriptor is exactly the same as the DWORD descriptor specified in Table 6-29; the only
difference is that the address fields are 16 bits wide rather than 32 bits wide.

Table 6-43 WORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 WORD Address Space
Descriptor

Value = 0x88 (10001000B) – Type = 1, Large item name = 0x08

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x0D (13)

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

266 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

0 Memory range
1 I/O range
2 Bus number range
3–191 Reserved

192-255 Hardware Vendor Defined

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:

1 The specified maximum address is fixed
0 The specified maximum address is not fixed

and can be changed
Bit[2] Min Address Fixed,_MIF:

1 The specified minimum address is fixed
0 The specified minimum address is not fixed

and can be changed
Bit[1] Decode Type, _DEC:

1 This bridge subtractively decodes this address
(top level bridges only)

0 This bridge positively decodes this address
Bit[0] Ignored

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above).

Byte 6 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. (In other
words, the value of the full Address Space Granularity field (all 16
bits) must be a number (2n-1).

Byte 7 Address space granularity,
_GRA bits[15:8]

Byte 8 Address range minimum,
_MIN, bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 9 Address range minimum,
_MIN, bits [15:8]

Byte 10 Address range maximum,
_MAX, bits [7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 11 Address range maximum,
_MAX, bits [15:8]

Byte 12 Address Translation offset,
_TRA, bits [7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must
list 0 for all Address Translation offset bits.

Byte 13 Address Translation offset,
_TRA, bits [15:8]

Byte 14 Address Length, _LEN, bits
[7:0]

Device Configuration 267

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 15 Address Length, _LEN, bits
[15:8]

Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes
its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool. If not present, the device consumes this resource from
its hierarchical parent.

See WordIO (page 557), WordBusNumber (page 556) and ASL_WordAddressSpace for a description of
the ASL macros that create a Word address descriptor.

6.4.3.5.4 Extended Address Space Descriptor

Type 1, Large Item Name 0xB

The Extended Address Space descriptor is used to report resource usage in the address space (like memory
and I/O).

Table 6-44 Extended Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Address Space
Descriptor

Value = 0x8B (10001011B) – Type = 1, Large item name = 0x0B

Byte 1 Length, bits[7:0] Value = 0x35 (53)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are:

0 Memory range
1 I/O range
2 Bus number range
3–191 Reserved

192-255 Hardware Vendor Defined

268 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 4 General Flags Flags that are common to all resource types:

Bits[7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, _MAF:

1 The specified maximum address is fixed
0 The specified maximum address is not fixed

and can be changed
Bit[2] Min Address Fixed,_MIF:

1 The specified minimum address is fixed
0 The specified minimum address is not fixed

and can be changed
Bit[1] Decode Type, _DEC:

1 This bridge subtractively decodes this address
(top level bridges only)

0 This bridge positively decodes this address
Bit[0] Consumer/Producer:

1–This device consumes this resource
0–This device produces and consumes this resource

Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flags in this field depends on the value of the Resource Type field
(see above). For the Memory Resource Type, the definition is
defined in section 6.4.3.5.5. For other Resource Types, refer to the
existing definitions for the Address Space Descriptors.

Byte 6 Revision ID Indicates the revision of the Extended Address Space descriptor.
For ACPI 3.0, this value is 1.

Byte 7 Reserved 0

Byte 8 Address space granularity,
_GRA bits[7:0]

A set bit in this mask means that this bit is decoded. All bits less
significant than the most significant set bit must be set. That is, the
value of the full Address Space Granularity field (all 64 bits) must
be a number (2n-1).

Byte 9 Address space granularity,
_GRA bits[15:8]

Byte 10 Address space granularity,
_GRA bits[23:16]

Byte 11 Address space granularity,
_GRA bits[31:24]

Byte 12 Address space granularity,
_GRA bits[39:32]

Byte 13 Address space granularity,
_GRA bits[47:40]

Byte 14 Address space granularity,
_GRA bits[55:48]

Byte 15 Address space granularity,
_GRA bits[63:56]

Byte 16 Address range minimum,
_MIN bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Device Configuration 269

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-44 Extended Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 17 Address range minimum,
_MIN bits[15:8]

Byte 18 Address range minimum,
_MIN bits[23:16]

Byte 19 Address range minimum,
_MIN bits[31:24]

Byte 20 Address range minimum,
_MIN bits[39:32]

Byte 21 Address range minimum,
_MIN bits[47:40]

Byte 22 Address range minimum,
_MIN bits[55:48]

Byte 23 Address range minimum,
_MIN bits[63:56]

Byte 24 Address range maximum,
_MAX bits[7:0]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 25 Address range maximum,
_MAX bits[15:8]

Byte 26 Address range maximum,
_MAX bits[23:16]

Byte 27 Address range maximum,
_MAX bits[31:24]

Byte 28 Address range maximum,
_MAX bits[39:32]

For bridges that translate addresses, this is the address space on the
secondary side of the bridge.

Byte 29 Address range maximum,
_MAX bits[47:40]

Byte 30 Address range maximum,
_MAX bits[55:48]

Byte 31 Address range maximum,
_MAX bits[63:56]

Byte 32 Address Translation offset,
_TRA bits[7:0]

For bridges that translate addresses across the bridge, this is the
offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list
0 for all Address Translation offset bits.

Byte 33 Address Translation offset,
_TRA bits[15:8]

Byte 34 Address Translation offset,
_TRA bits[23:16]

Byte 35 Address Translation offset,
_TRA bits[31:24]

270 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 6-44 Extended Address Space Descriptor Definition (continued)

Offset Field Name Definition

Byte 36 Address Translation offset, _TRA
bits[39:32]

Byte 37 Address Translation offset, _TRA
bits[47:40]

Byte 38 Address Translation offset, _TRA
bits[55:48]

Byte 39 Address Translation offset, _TRA
bits[63:56]

Byte 40 Address length, _LEN bits[7:0]

Byte 41 Address length, _LEN, bits[15:8]

Byte 42 Address length, _LEN bits[23:16]

Byte 43 Address length, _LEN bits[31:24]

Byte 44 Address length, _LEN bits[39:32]

Byte 45 Address length, _LEN bits[47:40]

Byte 46 Address length, _LEN bits[55:48]

Byte 47 Address length, _LEN bits[63:56]

Byte 48 Type Specific Attribute, _ATT
bits[7:0]

Attributes that are specific to each resource type. The
meaning of the attributes in this field depends on the value of
the Resource Type field (see above). For the Memory
Resource Type, the definition is defined section <ref>. For
other Resource Types, this field is reserved to 0.

Byte 49 Type Specific Attribute, _ATT
bits[15:8]

Byte 50 Type Specific Attribute, _ATT
bits[23:16]

Byte 51 Type Specific Attribute, _ATT
bits[31:24]

Byte 52 Type Specific Attribute, _ATT
bits[39:32]

Byte 53 Type Specific Attribute, _ATT
bits[47:40]

Byte 54 Type Specific Attribute, _ATT
bits[55:48]

Byte 55 Type Specific Attribute, _ATT
bits[63:56]

See section 18.5.41, “ExtendedSpace (Extended Address Space Resource Descriptor Macro),” for a
description of the ASL macro that creates an Extended Address Space descriptor.

Device Configuration 271

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.3.5.4.1 Type Specific Attributes

The meaning of the Type Specific Attributes field of the Extended Address Space Descriptor depends on
the value of the Resource Type field in the descriptor. When Resource Type = 0 (memory resource), the
Type Specific Attributes field values are defined as follows:

// These attributes can be "ORed" together as needed.

#define ACPI_MEMORY_UC 0x0000000000000001
#define ACPI_MEMORY_WC 0x0000000000000002
#define ACPI_MEMORY_WT 0x0000000000000004
#define ACPI_MEMORY_WB 0x0000000000000008
#define ACPI_MEMORY_UCE 0x0000000000000010
#define ACPI_MEMORY_NV 0x0000000000008000

ACPI_MEMORY_UC – Memory cacheability attribute. The memory region supports being configured as
not cacheable.

ACPI_MEMORY_WC – Memory cacheability attribute. The memory region supports being configured
as write combining.

ACPI_MEMORY_WT – Memory cacheability attribute. The memory region supports being configured
as cacheable with a "write through "policy. Writes that hit in the cache will also be written to main
memory.

ACPI_MEMORY_WB – Memory cacheability attribute. The memory region supports being configured
as cacheable with a "write back "policy. Reads and writes that hit in the cache do not propagate to main
memory. Dirty data is written back to main memory when a new cache line is allocated.

ACPI_MEMORY_UCE – Memory cacheability attribute. The memory region supports being configured
as not cacheable, exported, and supports the "fetch and add "semaphore mechanism.

ACPI_MEMORY_NV – Memory non-volatile attribute. The memory region is non-volatile. Use of
memory with this attribute is subject to characterization.

Note: These bits are defined so as to match the UEFI definition when applicable.

6.4.3.5.5 Resource Type Specific Flags

The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends on the
value of the Resource Type field in the descriptor. The flags for each resource type are defined in the
following tables:

Table 6-45 Memory Resource Flag (Resource Type = 0) Definitions

Bits Meaning

Bits[7:6] Reserved (must be 0)

Bit[5] Memory to I/O Translation, _TTP

1 TypeTranslation: This resource, which is memory on the secondary side of the
bridge, is I/O on the primary side of the bridge.

0 TypeStatic: This resource, which is memory on the secondary side of the bridge, is
also memory on the primary side of the bridge.

272 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Bits Meaning

Bits[4:3] Memory attributes, _MTP. These bits are only defined if this memory resource describes
system RAM. For a definition of the labels described here, see section 15, “System Address
Map Interfaces.”

0 AddressRangeMemory
1 AddressRangeReserved
2 AddressRangeACPI
3 AddressRangeNVS

Bits[2:1] Memory attributes, _MEM

0 The memory is non-cacheable.
1 The memory is cacheable.
2 The memory is cacheable and supports write combining.
3 The memory is cacheable and prefetchable.

(Notice: OSPM ignores this field in the Extended address space descriptor. Instead it uses
the Type Specific Attributes field to determine memory attributes)

Bit[0] Write status, _RW
1 This memory range is read-write.
0 This memory range is read-only.

Table 6-46 I/O Resource Flag (Resource Type = 1) Definitions

Bits Meaning

Bits[7:6] Reserved (must be 0)

Bit[5] Sparse Translation, _TRS. This bit is only meaningful if Bit[4] is set.

1 SparseTranslation: The primary-side memory address of any specific I/O port within
the secondary-side range can be found using the following function.

address = (((port & 0xFFFc) << 10) || (port & 0xFFF)) + _TRA

In the address used to access the I/O port, bits[11:2] must be identical to
bits[21:12], this gives four bytes of I/O ports on each 4 KB page.

0 DenseTranslation: The primary-side memory address of any specific I/O port within
the secondary-side range can be found using the following function.

address = port + _TRA

Bit[4] I/O to Memory Translation, _TTP

1 TypeTranslation: This resource, which is I/O on the secondary side of the bridge, is
memory on the primary side of the bridge.

0 TypeStatic: This resource, which is I/O on the secondary side of the bridge, is also I/O
on the primary side of the bridge.

Bit[3:2] Reserved (must be 0)

Device Configuration 273

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Bits Meaning

Bit[1:0] _RNG

3 Memory window covers the entire range

2 ISARangesOnly. This flag is for bridges on systems with multiple bridges. Setting this
bit means the memory window specified in this descriptor is limited to the ISA I/O
addresses that fall within the specified window. The ISA I/O ranges are: n000-n0FF,
n400-n4FF, n800-n8FF, nC00-nCFF. This bit can only be set for bridges entirely
configured through ACPI namespace.

1 NonISARangesOnly. This flag is for bridges on systems with multiple bridges. Setting
this bit means the memory window specified in this descriptor is limited to the non-
ISA I/O addresses that fall within the specified window. The non-ISA I/O ranges are:
n100-n3FF, n500-n7FF, n900-nBFF, nD00-nFFF. This bit can only be set for bridges
entirely configured through ACPI namespace.

0 Reserved

Table 6-47 Bus Number Range Resource Flag (Resource Type = 2) Definitions

Bits Meaning

Bit[7:0] Reserved (must be 0)

6.4.3.6 Extended Interrupt Descriptor

Type 1, Large Item Name 0x9

The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for systems
that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendors to list an array of possible interrupt
numbers, any one of which can be used.

Table 6-48 Extended Interrupt Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Interrupt
Descriptor

Value = 0x89 (10001001B) – Type = 1, Large item name = 0x09

Byte 1 Length, bits[7:0] Variable length, minimum value = 0x06

Byte 2 Length, bits[15:8] Variable length, minimum value = 0x00

274 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Offset Field Name Definition

Byte 3 Interrupt Vector
Flags

Interrupt Vector Information.

Bit[7:4] Reserved (must be 0)
Bit[3] Interrupt is shareable, _SHR
Bit[2] Interrupt Polarity, _LL

0 Active-High: This interrupt is sampled when the signal
is high, or true.

1 Active-Low: This interrupt is sampled when the signal is
low, or false.

Bit[1] Interrupt Mode, _HE
0 Level-Triggered: Interrupt is triggered in response to the

signal being in either a high or low state.
1 Edge-Triggered: This interrupt is triggered in response

to a change in signal state, either high to low or low to
high.

Bit[0] Consumer/Producer:
1 This device consumes this resource
0 This device produces and consumes this resource

Byte 4 Interrupt table
length

Indicates the number of interrupt numbers that follow. When this
descriptor is returned from _CRS, or when OSPM passes this descriptor
to _SRS, this field must be set to 1.

Byte
4n+5

Interrupt Number,
_INT bits [7:0]

Interrupt number

Byte
4n+6

Interrupt Number,
_INT bits [15:8]

Byte
4n+7

Interrupt Number,
_INT bits [23:16]

Byte
4n+8

Interrupt Number,
_INT bits [31:24]

… … Additional interrupt numbers

Byte x Resource Source
Index

(Optional) Only present if Resource Source (below) is present. This field
gives an index to the specific resource descriptor that this device
consumes from in the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes its
resources from the resources produces by the named device object. If not
present, the device consumes its resources out of a global pool.

If not present, the device consumes this resource from its hierarchical
parent.

Note: Low true, level sensitive interrupts may be electrically shared, the process of how this might work is
beyond the scope of this specification.

If the OS is running using the 8259 interrupt model, only interrupt number values of 0-15 will be used, and
interrupt numbers greater than 15 will be ignored.

See Interrupt (page 518) for a description of the ASL macro that creates an Extended Interrupt descriptor.

Device Configuration 275

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.4.3.7 Generic Register Descriptor

Type 1, Large Item Name 0x2

The generic register descriptor describes the location of a fixed width register within any of the ACPI-
defined address spaces.

Table 6-49 Generic Register Descriptor Definition

Offset Field Name, ASL Field Name Definition

Byte 0 Generic Register Descriptor Value = 0x82 (10000010B)
Type = 1, Large item name = 0x02

Byte 1 Length, bits[7:0] Value = 0x0C (12)

Byte 2 Length, bits[15:8] Value = 0x00

Byte 3 Address Space ID, _ASI The address space where the data structure or register
exists. Defined values are:

0x00 System Memory
0x01 System I/O
0x02 PCI Configuration Space
0x03 Embedded Controller
0x04 SMBus
0x7F Functional Fixed Hardware

Byte 4 Register Bit Width, _RBW Indicates the register width in bits.

Byte 5 Register Bit Offset, _RBO Indicates the offset to the start of the register in bits from
the Register Address.

Byte 6 Address Size, _ASZ Specifies access size.
0 - Undefined (legacy reasons)
1 - Byte access
2 - Word access
3 - Dword access
4 - QWord access

Byte 7 Register Address, _ADR bits[7:0] Register Address

Byte 8 Register Address, _ADR bits[15:8]

Byte 9 Register Address, _ADR bits[23:16]

Byte 10 Register Address, _ADR bits[31:24]

Byte 11 Register Address, _ADR bits[39:32]

Byte 12 Register Address, _ADR bits[47:40]

Byte 13 Register Address, _ADR bits[55:48]

Byte 14 Register Address, _ADR bits[63:56]

See Register (page 542) for a description of the ASL macro that creates a Generic Register resource
descriptor.

276 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.5 Other Objects and Control Methods

Table 6-50 Other Objects and Methods

Object Description

_INI Device initialization method that is run shortly after ACPI has been enabled.

_DCK Indicates that the device is a docking station.

_BDN Correlates a docking station between ACPI and legacy interfaces.

_REG Notifies AML code of a change in the availability of an operation region.

_BBN PCI bus number set up by the BIOS.

_SEG Indicates a bus segment location.

_GLK Indicates the Global Lock must be acquired when accessing a device.

6.5.1 _INI (Init)

_INI is a device initialization object that performs device specific initialization. This control method is
located under a device object and is run only when OSPM loads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the _REG method. The
_REG method is described in section 6.5.4, “_REG (Region).” This control method is run before _ADR,
_CID, _HID, _SUN, and _UID are run.

Arguments:
None

Return Value:
None

Before evaluating the _INI object, OSPM evaluates the _STA object for the device. If the _STA object
does not exist for the device, the device is assumed to be both present and functional. If the _STA method
indicates that the device is present, OSPM will evaluate the _INI for the device (if the _INI method exists)
and will examine each of the children of the device for _INI methods. If the _STA method indicates that
the device is not present and is not functional, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the _STA object evaluation indicates that the device is not
present but is functional, OSPM will not evaluate the _INI object, but will examine each of the children of
the device for _INI objects (see the description of _STA for the explanation of this special case.) If the
device becomes present after the table has already been loaded, OSPM will not evaluate the _INI method,
nor examine the children for _INI methods.

The OSPM performed _INI object actions based upon the _STA Present and Functional bits are
summarized in the table below.

Table 6-51 OSPM _INI Object Actions

_STA Present Bit _STA Functional Bit Actions

0 0 Do not run _INI, do not examine device children

0 1 Do not run _INI, examine device children

1 0 Run _INI, examine device children

1 1 Run _INI, examine device children

Device Configuration 277

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The _INI control method is generally used to switch devices out of a legacy operating mode. For example,
BIOSes often configure CardBus controllers in a legacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an _INI object under the _SB
namespace, if present, at the beginning of namespace initialization.

6.5.2 _DCK (Dock)

This control method is located in the device object that represents the docking station (that is, the device
object with all the _EJx control methods for the docking station). The presence of _DCK indicates to the
OS that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS to prepare for docking
before the bus is activated and devices appear on the bus.

Arguments: (1)
Arg0 – An Integer containing a docking action code

0 – Undock (isolate from connector)
1 – Dock (remove isolation from connector)

Return Value:
An Integer containing the docking status code

1 – Successful
0 – Failed

Note: When _DCK is called with 0, OSPM will ignore the return value. The _STA object that follows the
_EJx control method will notify whether or not the portable has been ejected.

6.5.3 _BDN (BIOS Dock Name)

_BDN is used to correlate a docking station reported via ACPI and the same docking station reported via
legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

Arguments:
None

Return Value:
An Integer that contains the EISA Dock ID

_BDN must appear under a device object that represents the dock, that is, the device object with _Ejx
methods. This object must return a DWORD that is the EISA-packed DockID returned by the Plug and
Play BIOS Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 _REG (Region)

The OS runs _REG control methods to inform AML code of a change in the availability of an operation
region. When an operation region handler is unavailable, AML cannot access data fields in that region.
(Operation region writes will be ignored and reads will return indeterminate data.).

Arguments: (2)
Arg0 – An Integer containing the Operation Region address space ID
Arg1 – An Integer containing the handler connection code

0 – disconnect the handler
1 – connect the handler

Return Value:
None

278 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Valid Operation Region address space IDs:
0 – SystemMemory
1 – SystemIO
2 – PCI_Config
3 – Embedded Controller
4 – SMBus
5 – CMOS
6 – PCIBARTarget
7 – IPMI
0x08-0x7F – Reserved
0x80-0xFF – OEM (custom) region space

Except for the cases shown below, control methods must assume all operation regions inaccessible until the
_REG(RegionSpace, 1) method is executed. Once _REG has been executed for a particular operation
region, indicating that the operation region handler is ready, a control method can access fields in the
operation region. Conversely, control methods must not access fields in operation regions when _REG
method execution has not indicated that the operation region handler is ready.

For example, until the Embedded Controller driver is ready, the control methods cannot access the
Embedded Controller. Once OSPM has run _REG(EmbeddedControl, 1), the control methods can then
access operation regions in Embedded Controller address space. Furthermore, if OSPM executes
_REG(EmbeddedControl, 0), control methods must stop accessing operation regions in the Embedded
Controller address space.

The exceptions for this rule are:
1. OSPM must guarantee that the following operation regions must always be accessible:

 PCI_Config operation regions on a PCI root bus containing a _BBN object.
 I/O operation regions.
 Memory operation regions when accessing memory returned by the System Address Map

reporting interfaces.
2. OSPM must make Embedded Controller operation regions, accessed via the Embedded

Controllers described in ECDT, available before executing any control method. These operation
regions may become inaccessible after OSPM runs _REG(EmbeddedControl, 0).

Place _REG in the same scope as operation region declarations. The OS will run the _REG in a given scope
when the operation regions declared in that scope are available for use.

Example:

Scope(_SB.PCI0) {
OperationRegion(OPR1, PCI_Config, ...)
Method(_REG, 2) {...} // OSPM executes this when PCIO operation region handler

// status changes
Device(PCI1) {

Method(_REG, 2) {...}
Device(ETH0) {

OperationRegion(OPR2, PCI_Config, ...)
Method(_REG,2) {...}

}
}
Device(ISA0) {

OperationRegion(OPR3, I/O, ...)
Method(_REG, 2) {...} // OSPM executes this when ISAO operation region handler

// status changes

Device(EC0) {
Name(_HID, EISAID("PNP0C09"))
OperationRegion(OPR4, EC, ...)
Method(_REG, 2) {...} // OSPM executes this when EC operation region

// handler status changes

}
}

}

Device Configuration 279

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When the PCI0 operation region handler is ready, OSPM will run the _REG method declared in PCI0
scope to indicate that PCI Config space operation region access is available within the PCI0 scope (in other
words, OPR1 access is allowed). When the ISA0 operation handler is ready, OSPM will run the _REG
method in the ISA0 scope to indicate that the I/O space operation region access is available within that
scope (in other words, OPR3 access is allowed). Finally, when the Embedded Controller operation region
handler is ready, OSPM will run the _REG method in the EC0 scope to indicate that EC space operation
region access is available within the EC0 scope (in other words, OPR4 access is allowed). It should be
noted that PCI Config Space Operation Regions are ready as soon the host controller or bridge controller
has been programmed with a bus number. PCI1’s _REG method would not be run until the PCI-PCI bridge
has been properly configured. At the same time, the OS will also run ETH0’s _REG method since its PCI
Config Space would be also available. The OS will again run ETH0’s _REG method when the ETH0
device is started. Also, when the host controller or bridge controller is turned off or disabled, PCI Config
Space Operation Regions for child devices are no longer available. As such, ETH0’s _REG method will be
run when it is turned off and will again be run when PCI1 is turned off.

Note: The OS only runs _REG methods that appear in the same scope as operation region declarations that
use the operation region type that has just been made available. For example, _REG in the EC device
would not be run when the PCI bus driver is loaded since the operation regions declared under EC do not
use any of the operation region types made available by the PCI driver (namely, config space, I/O, and
memory).

6.5.5 _BBN (Base Bus Number)

For multi-root PCI platforms, the _BBN object evaluates to the PCI bus number that the BIOS assigns. This
is needed to access a PCI_Config operation region for the specific bus. The _BBN object is located under a
PCI host bridge and must be unique for every host bridge within a segment since it is the PCI bus number.

Arguments:
None

Return Value:
An Integer that contains the PCI bus number

6.5.6 _SEG (Segment)

The optional _SEG object is located under a PCI host bridge and evaluates to an integer that describes the
PCI Segment Group (see PCI Firmware Specification v3.0). If _SEG does not exist, OSPM assumes that all
PCI bus segments are in PCI Segment Group 0.

Arguments:
None

Return Value:
An Integer that contains the PCI segment group

PCI Segment Group is purely a software concept managed by system firmware and used by OSPM. It is a
logical collection of PCI buses (or bus segments). There is no tie to any physical entities. It is a way to
logically group the PCI bus segments and PCI Express Hierarchies. _SEG is a level higher than _BBN.

PCI Segment Group supports more than 256 buses in a system by allowing the reuse of the PCI bus
numbers. Within each PCI Segment Group, the bus numbers for the PCI buses must be unique. PCI buses
in different PCI Segment Group are permitted to have the same bus number.

A PCI Segment Group contains one or more PCI host bridges.

The lower 16 bits of _SEG returned integer is the PCI Segment Group number. Other bits are reserved.

280 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.5.6.1 Example

Device(ND0) { // this is a node 0
Name(_HID, “ACPI0004”)

// Returns the "Current Resources"
Name(_CRS,

ResourceTemplate() {
…

}
)
Device(PCI0) {

Name(_HID, EISAID(“PNP0A03”))
Name(_ADR, 0x00000000)
Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0

…
Name(_BBN, 0)
…

}
Device(PCI1) {

…
Name(_SEG, 0) // The buses below the host bridge belong to PCI segment 0
…
Name(_BBN, 16)
…

}
…

}
Device(ND1) { // this is a node 1

Name(_HID, “ACPI0004”)

// Returns the "Current Resources"
Name(_CRS,

ResourceTemplate() {
…

}
)
Device(PCI0) {

Name(_HID, EISAID(“PNP0A03”))
Name(_ADR, 0x00000000)
Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1

…
Name(_BBN, 0)
…

}
Device(PCI1) {

…
Name(_SEG, 1) // The buses below the host bridge belong to PCI segment 1
…
Name(_BBN, 16)
…

}
}

Device Configuration 281

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

6.5.7 _GLK (Global Lock)

This optional named object is located within the scope of a device object. This object returns a value that
indicates to any entity that accesses this device (in other words, OSPM or any device driver) whether the
Global Lock must be acquired when accessing the device. OS-based device accesses must be performed
while in acquisition of the Global Lock when potentially contentious accesses to device resources are
performed by non-OS code, such as System Management Mode (SMM)-based code in Intel architecture-
based systems. Default behavior: if _GLK is not present within the scope of a given device, then the Global
Lock is not required for that device.

Arguments:
None

Return Value:
An Integer that contains the Global Lock requirement code

0 – The Global Lock is not required for this device
1 – The Global lock is required for this device

An example of device resource contention is a device driver for an SMBus-based device contending with
SMM-based code for access to the Embedded Controller, SMB-HC, and SMBus target device. In this case,
the device driver must acquire and release the Global Lock when accessing the device to avoid resource
contention with SMM-based code that accesses any of the listed resources.

282 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Power and Performance Management 283

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7 Power and Performance Management

This section specifies the device power management objects and system power management objects.
OSPM uses these objects to manage the platform by achieving a desirable balance between performance
and energy conservation goals.

Device performance states (Px states) are power consumption and capability states within the active (D0)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that the
states invoke different device efficiency levels as opposed to a linear scaling of performance and energy
consumption. Since performance state transitions occur in the active device states, care must be taken to
ensure that performance state transitions do not adversely impact the system.

Device performance state objects, when necessary, are defined on a per device class basis as described in
the device class specifications (See Appendix A).

The system state indicator objects are also specified in this section.

7.1 Declaring a Power Resource Object

An ASL PowerResource statement is used to declare a PowerResource object. A Power Resource object
refers to a software-controllable power plane, clock plane, or other resource upon which an integrated
ACPI power-managed device might rely. Power resource objects can appear wherever is convenient in
namespace.

The syntax of a PowerResource statement is:

PowerResource (resourcename, systemlevel, resourceorder) {NamedList}

where the systemlevel parameter is a number and the resourceorder parameter is a numeric constant (a
WORD). For a formal definition of the PowerResource statement syntax, see section 18, “ACPI Source
Language Reference.”

Systemlevel is the lowest power system sleep level OSPM must maintain to keep this power resource on (0
equates to S0, 1 equates to S1, and so on).

Each power-managed ACPI device lists the resources it requires for its supported power levels. OSPM
multiplexes this information from all devices and then enables and disables the required Power Resources
accordingly. The resourceorder field in the Power Resource object is a unique value per Power Resource,
and it provides the system with the order in which Power Resources must be enabled or disabled. Power
Resources are enabled from low values to high values and are disabled from high values to low values. The
operating software enables or disables all affected Power Resources in any one resourceorder level at a
time before moving on to the next ordered level. Putting Power Resources in different order levels provides
power sequencing and serialization where required.

A Power Resource can have named objects under its Namespace location. For a description of the ACPI-
defined named objects for a Power Resource, see section 7.2, “Device Power Management Objects.”

284 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following block of ASL sample code shows a use of PowerResource.

PowerResource(PIDE, 0, 0) {
Method(_STA) {

Return (Xor (GIO.IDEI, One, Zero)) // inverse of isolation
}
Method(_ON) {

Store (One, GIO.IDEP) // assert power
Sleep (10) // wait 10ms
Store (One, GIO.IDER) // de-assert reset#
Stall (10) // wait 10us
Store (Zero, GIO.IDEI) // de-assert isolation

}
Method(_OFF) {

Store (One, GIO.IDEI) // assert isolation
Store (Zero, GIO.IDER) // assert reset#
Store (Zero, GIO.IDEP) // de-assert power

}
}

7.1.1 Defined Child Objects for a Power Resource

Each power resource object is required to have the following control methods to allow basic control of each
power resource. As OSPM changes the state of device objects in the system, the power resources that are
needed will also change causing OSPM to turn power resources on and off. To determine the initial power
resource settings the _STA method can be used.

Table 7-1 Power Resource Child Objects

Object Description

_OFF Set the resource off.

_ON Set the resource on.

_STA Object that evaluates to the current on or off state of the Power Resource. 0–OFF, 1–ON

7.1.2 _OFF

This power resource control method puts the power resource into the OFF state. The control method does
not complete until the power resource is off. OSPM only turns on or off one resource at a time, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Return Value:
None

Power and Performance Management 285

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.1.3 _ON

This power resource control method puts the power resource into the ON state. The control method does
not complete until the power resource is on. OSPM only turns on or off one resource at a time, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Return Value:
None

7.1.4 _STA (Status)

Returns the current ON or OFF status for the power resource.

Arguments:
None

Return Value:
An Integer containing the current power status of the device

0 – The power resource is currently off
1 – The power resource is currently on

7.2 Device Power Management Objects

For a device that is power-managed using ACPI, a Definition Block contains one or more of the objects
found in the table below. Power management of a device is done using two different paradigms:
 Power Resource control
 Device-specific control

Power Resources are resources that could be shared amongst multiple devices. The operating software will
automatically handle control of these devices by determining which particular Power Resources need to be
in the ON state at any given time. This determination is made by considering the state of all devices
connected to a Power Resource.

By definition, a device that is OFF does not have any power resource or system power state requirements.
Therefore, device objects do not list power resources for the OFF power state.

For OSPM to put the device in the D3 state, the following must occur:
 All Power Resources no longer referenced by any device in the system must be in the OFF state.
 If present, the _PS3 control method is executed to set the device into the D3 device state.

The only transition allowed from the D3 device state is to the D0 device state.

For many devices the Power Resource control is all that is required; however, device objects may include
their own device-specific control method.

These two types of power management controls (through Power Resources and through specific devices)
can be applied in combination or individually as required.

For systems that do not control device power states through power plane management, but whose devices
support multiple D-states, more information is required by the OS to determine the S-state to D-state
mapping for the device. The ACPI BIOS can give this information to OSPM by way of the _SxD methods.
These methods tell OSPM for S-state “x”, the highest D-state supported by the device is “y.” OSPM is
allowed to pick a lower D-state for a given S-state, but OSPM is not allowed to exceed the given D-state.

286 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Further rules that apply to device power management objects are:
 For a given S-state, a device cannot be in a higher D-state than its parent device.
 If there exists an ACPI Object to turn on a device (either through _PSx or _PRx objects), then a

corresponding object to turn the device off must also be declared and vice versa.
 If there exists an ACPI Object that controls power (_PSx or _PRx, where x =0, 1, 2, or 3), then

methods to set the device into D0 and D3 device states must be present.
 If a mixture of _PSx and _PRx methods is declared for the device, then the device states supported

through _PSx methods must be identical to the device states supported through _PRx methods. ACPI
system firmware may enable device power state control exclusively through _PSx (or _PRx) method
declarations.

When controlling power to devices which must wake the system during a system sleeping state:

 The device must declare its ability to wake the system by declaring either the _PRW or _PSW
object.

 If _PR0 is present, then OSPM must choose a sleeping state which is less than or equal to the
sleeping state specified.

 After OSPM has called _PTS, it must call the device’s _PSW to enable wake.
 OSPM must transition the device into a D-state which is greater than or equal that specified by the

device’s _SxD object, but less than or equal to that specified by the device’s _SxW object.
 OSPM may transition the system to the specified sleep state.

Table 7-2 Device Power Management Child Objects

Object Description

_DSW Control method that enables or disables the device’s wake function for device-only wake.

_PS0 Control method that puts the device in the D0 device state (device fully on).

_PS1 Control method that puts the device in the D1 device state.

_PS2 Control method that puts the device in the D2 device state.

_PS3 Control method that puts the device in the D3 device state (device off).

_PSC Object that evaluates to the device’s current power state.

_PR0 Object that evaluates to the device’s power requirements in the D0 device state (device fully
on).

_PR1 Object that evaluates to the device’s power requirements in the D1 device state. The only
devices that supply this level are those that can achieve the defined D1 device state according
to the related device class.

_PR2 Object that evaluates to the device’s power requirements in the D2 device state. The only
devices that supply this level are those that can achieve the defined D2 device state according
to the related device class.

_PR3 Object that evaluates to the device’s power requirements in the D3hot device state.

_PRW Object that evaluates to the device’s power requirements in order to wake the system from a
system sleeping state.

_PSW Control method that enables or disables the device’s wake function.

_IRC Object that signifies the device has a significant inrush current draw.

_S1D Highest D-state supported by the device in the S1 state

_S2D Highest D-state supported by the device in the S2 state

Power and Performance Management 287

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Object Description

_S3D Highest D-state supported by the device in the S3 state

_S4D Highest D-state supported by the device in the S4 state

_S0W Lowest D-state supported by the device in the S0 state which can wake the device

_S1W Lowest D-state supported by the device in the S1 state which can wake the system.

_S2W Lowest D-state supported by the device in the S2 state which can wake the system.

_S3W Lowest D-state supported by the device in the S3 state which can wake the system.

_S4W Lowest D-state supported by the device in the S4 state which can wake the system.

7.2.1 _DSW (Device Sleep Wake)

In addition to _PRW, this control method can be used to enable or disable the device’s ability to wake a
sleeping system. This control method can only access Operation Regions that are either always available
while in a system working state or that are available when the Power Resources referenced by the _PRW
object are all ON. For example, do not put a power plane control for a bus controller within configuration
space located behind the bus. The method should enable the device only for the last system state/device
state combination passed in by OSPM. OSPM will only pass in combinations allowed by the _SxD and
_SxW objects.

The arguments provided to _DSW indicate the eventual Device State the device will be transitioned to and
the eventual system state that the system will be transitioned to. The target system state is allowed to be the
system working state (S0). The _DSW method will be run before the device is placed in the designated
state and also before the system is placed in the designated system state.

Compatibility Note: The _PSW method is deprecated in ACPI 3.0. The _DSW method should be used
instead. OSPM will only use the _PSW method if OSPM does not support _DSW or if the _DSW method
is not present.

Arguments: (3)
Arg0 – An Integer that contains the device wake capability control

0 – Disable the device’s wake capabilities
1 – Enable the device’s wake capabilities

Arg1 – An Integer that contains the target system state
0 – The system will be in state S0
1 – The system will be in state S1

Arg2 – An Integer that contatins the target device state
0 – The device will remain in state D0
1 – The device will be placed in either state D0 or D1
2 – The device will be placed in either state D0, D1, or D2
3 – The device will be placed in either state D0, D1, D2, or D3

Return Value:
None

7.2.2 _PS0 (Power State 0)

This Control Method is used to put the specific device into its D0 state. This Control Method can only
access Operation Regions that are either always available while in a system working state or that are
available when the Power Resources references by the _PR0 object are all ON.

288 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
None

7.2.3 _PS1 (Power State 1)

This control method is used to put the specific device into its D1 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the _PR1 object are all ON.

Arguments:
None

Return Value:
None

7.2.4 _PS2 (Power State 2)

This control method is used to put the specific device into its D2 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the _PR2 object are all ON.

Arguments:
None

Return Value:
None

7.2.5 _PS3 (Power State 3)

This control method is used to put the specific device into its D3hot or D3 state. This control method can
only access Operation Regions that are always available while in a system working state.

A device in the D3 state must no longer be using its resources (for example, its memory space and I/O ports
are available to other devices).

Arguments:
None

Return Value:
None

7.2.6 _PSC (Power State Current)

This control method evaluates to the current device state. This control method is not required if the device
state can be inferred by the Power Resource settings. This would be the case when the device does not
require a _PS0, _PS1, _PS2, or _PS3 control method.

Arguments:
None

Return Value:
An Integer that contains a code for the current device state

The device state codes are shown in Table 7-3.

Power and Performance Management 289

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 7-3 _PSC Device State Codes

Return Value Device State

0 D0

1 D1

2 D2

3 D3

7.2.7 _PR0 (Power Resources for D0)

This object evaluates to a list of power resources that are dependent on this device. For OSPM to put the
device in the D0 device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS0 control method is executed to set the device into the D0 device state.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to power resources

This object returns a package as defined below:

Table 7-4 Power Resource Requirements Package

Element Object Description

1 object reference Reference to required Power Resource #0

N object reference Reference to required Power Resource #N

_PR0 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.8 _PR1 (Power Resources for D1)

This object evaluates to a list of power resources that are dependent on this device. For OSPM to put the
device in the D1 device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS1 control method is executed to set the device into the D1 device state.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to power resources

This object evaluates to a package as defined in Table 7-4.

_PR1 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

290 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.2.9 _PR2 (Power Resources for D2)

This object evaluates to a list of power resources that are dependent on this device. For OSPM to put the
device in the D2 device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS2 control method is executed to set the device into the D2 device state.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to power resources

_PR2 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.10 _PR3 (Power Resources for D3hot)

This object evaluates to a list of power resources that are dependent on this device. For OSPM to put the
device in the D3hot device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS3 control method is executed to set the device into the D3hot device state.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to power resources

_PR3 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

Interaction between _PR3 and entry to D3/D3hot (only applicable if platform and OSPM have performed
the necessary handshake via _OSC):

3. Platform/drivers must assume that the device will have power completely removed when the
device is place into “D3” via _PS3

4. It is up to OSPM to determine whether to use D3 or D3hot. If there is a _PR3 for the device, it is
up to OSPM to decided whether or not to keep those power resources on/off after executing _PS3.
The decision may be based on other factors (e.g. being armed for wake, etc).

7.2.11 _PRW (Power Resources for Wake)

This object evaluates to a list of power resources that are dependent on this device and additional
information needed for wake, including wake GPE and sleep state information. _PRW is only required for
devices that have the ability to wake the system from a system sleeping state.

Two types of general purpose events are supported:
1. GPEs that are defined by a GPE block described within the FADT.
2. GPEs that are defined by a GPE Block Device.

The two types of GPEs are differentiated by the type of the GpeInfo object in the returned package. For
FADT-based GPEs, GpeInfo is an Integer containing a bit index. For Block Device-based GPEs, GpeInfo
is a Package containing a Reference to the parent block device and an Integer containing a bit index.

Arguments:
None

Return Value:
A variable-length Package containing wake information and a list of References to power resources

Power and Performance Management 291

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value Information

Package {
GpeInfo // Integer or Package
LowestSleepState // Integer
PowerResource [0] // Reference
. . .
PowerResource [n] // Reference

}

If GpeInfo is a Package, it contains GPE block device information as described below:

Package {
GpeDeviceName // Reference
BitIndex // Integer

}

GpeInfo may be either an Integer or a Package, depending on the GPE type:

If it is an Integer, then it contains the bit index of the wake GPE within the FADT-based GPE enable
register.

If it is a Package, then the package contains GPE info for a event within a GPE block device. It
contains a Reference to the GPE block device and an Integer containing the bit index of the wake
GPE within the Block Device-based GPE enable register.

LowestSleepState is an Integer that contains the lowest power system sleeping state that can be entered
while still providing wake functionality.

PowerResource 0-n are References to required power resource objects.

Additional Information

For OSPM to have the defined wake capability properly enabled for the device, the following must occur:
1. All Power Resources referenced by elements 2 through N are put into the ON state.
2. If present, the _PSW control method is executed to set the device-specific registers to enable the

wake functionality of the device.
3. The D-state being entered must be at least that specified in the _SxD state but no greater than that

specified in the _SxW state.

Then, if the system enters a sleeping state OSPM must ensure:
1. Interrupts are disabled.
2. The sleeping state being entered must be less than or equal to the power state declared in element

1 of the _PRW object.
3. The proper general-purpose register bits are enabled.

The system sleeping state specified must be a state that the system supports (in other words, a
corresponding _Sx object must exist in the namespace).

_PRW must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.12 _PSW (Power State Wake)

In addition to the _PRW control method, this control method can be used to enable or disable the device’s
ability to wake a sleeping system. This control method can only access Operation Regions that are either
always available while in a system working state or that are available when the Power Resources references
by the _PRW object are all ON. For example, do not put a power plane control for a bus controller within
configuration space located behind the bus.

Compatibility Note: The _PSW method is deprecated in ACPI 3.0. OSPM must use _DSW if it is present.
Otherwise, it may use _PSW.

292 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments: (1)
Arg0 – An Integer containing a wake capability control

0 – Disable the device’s wake capabilities
1 – Enable the device’s wake capabilities

Return Value:
None

7.2.13 _IRC (In Rush Current)

Indicates that this device can cause a significant in-rush current when transitioning to state D0.

Arguments:
None

Return Value:
None

The presence of this object signifies that transitioning the device to its D0 state causes a system-significant
in-rush current load. In general, such operations need to be serialized such that multiple operations are not
attempted concurrently. Within ACPI, this type of serialization can be accomplished with the
ResourceOrder parameter of the device’s Power Resources; however, this does not serialize ACPI-
controlled devices with non-ACPI controlled devices. _IRC is used to signify this fact outside of OSPM to
OSPM such that OSPM can serialize all devices in the system that have in-rush current serialization
requirements.

OSPM can only transition one device containing an _IRC object within its device scope to the D0 state at a
time.

It is important to note that OSPM does not evaluate the _IRC object. It has no defined input arguments nor
does it return any value. OSPM derives meaning simply from the existence of the _IRC object.

7.2.14 _S1D (S1 Device State)

This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S1 system sleeping state. _S1D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:
An Integer containing the highest D-state supported in state S1

If the device can wake the system from the S1 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S1
system sleeping state is supported in any lower D-state unless specified by a corresponding _S1W object.
The table below provides a mapping from Desired Actions to Resultant D-state entered based on the values
returned from the _S1D, _PRW, and _S1W objects if they exist . (D/C means Don’t Care – evaluation is
irrelevant, and N/A means Non Applicable – object does not exist).

Power and Performance Management 293

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 7-5 S1 Action / Result Table

Desired Action _S1D _PRW _S1W Resultant D-state

Enter S1 D/C D/C D/C OSPM decides

Enter S1, No Wake 2 D/C D/C Enter D2 or D3

Enter S1, Wake 2 1 N/A Enter D2

Enter S1, Wake 2 1 3 Enter D2 or D3

Enter S1, Wake N/A 1 2 Enter D0,D1 or D2

7.2.15 _S2D (S2 Device State)

This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S2 system sleeping state. _S2D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:
An Integer containing the highest D-state supported in state S2

If the device can wake the system from the S2 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S2
system sleeping state is supported in any lower D-state unless specified by a corresponding _S2W object.
The table below provides a mapping from Desired Actions to Resultant D-state entered based on the values
returned from the _S2D, _PRW, and _S2W objects if they exist . (D/C means Don’t Care – evaluation is
irrelevant, and N/A means Non Applicable – object does not exist).

Table 7-6 S2 Action / Result Table

Desired Action _S2D _PRW _S2W Resultant D-state

Enter S2 D/C D/C D/C OSPM decides

Enter S2, No Wake 2 D/C D/C Enter D2 or D3

Enter S2, Wake 2 2 N/A Enter D2

Enter S2, Wake 2 2 3 Enter D2 or D3

Enter S2, Wake N/A 2 2 Enter D0,D1 or D2

7.2.16 _S3D (S3 Device State)

This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S3 system sleeping state. _S3D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:
An Integer containing the highest D-state supported in state S3

294 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If the device can wake the system from the S3 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S3
system sleeping state is supported in any lower D-state unless specified by a corresponding _S3W object.
The table below provides a mapping from Desired Actions to Resultant D-state entered based on the values
returned from the _S3D, _PRW, and _S3W objects if they exist . (D/C means Don’t Care – evaluation is
irrelevant, and N/A means Non Applicable – object does not exist).

Table 7-7 S3 Action / Result Table

Desired Action _S3D _PRW _S3W Resultant D-state

Enter S3 N/A D/C N/A OSPM decides

Enter S3, No Wake 2 D/C D/C Enter D2 or D3

Enter S3, Wake 2 3 N/A Enter D2

Enter S3, Wake 2 3 3 Enter D2 or D3

Enter S3, Wake N/A 3 2 Enter D0, D1 or D2

7.2.17 _S4D (S4 Device State)

This object evaluates to an integer that conveys to OSPM the highest power (lowest number) D-state
supported by this device in the S4 system sleeping state. _S4D must return the same integer each time it is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device’s
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:
An Integer containing the highest D-state supported in state S4

If the device can wake the system from the S4 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S4
system sleeping state is supported in any lower D-state unless specified by a corresponding _S4W object.
The table below provides a mapping from Desired Actions to Resultant D-state entered based on the values
returned from the _S4D, _PRW, and _S4W objects if they exist . (D/C means Don’t Care – evaluation is
irrelevant, and N/A means Non Applicable – object does not exist).

Table 7-8 S4 Action / Result Table

Desired Action _S4D _PRW _S4W Resultant D-state

Enter S4 N/A D/C N/A OSPM decides

Enter S4, No Wake 2 D/C D/C Enter D2 or D3

Enter S4, Wake 2 4 N/A Enter D2

Enter S4, Wake 2 4 3 Enter D2 or D3

Enter S4, Wake N/A 4 2 Enter D0, D1 or D2

Power and Performance Management 295

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.2.18 _S0W (S0 Device Wake State)

This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S0 system sleeping state where the device can wake itself.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S0

_S0W must return the same integer each time it is evaluated. This value allows OSPM to choose the lowest
power D-state and still achieve wake functionality. If object evaluates to zero, then the device cannot wake
itself from any lower sleeping state.

7.2.19 _S1W (S1 Device Wake State)

This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S1 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S1

_S1W must return the same integer each time it is evaluated. This value allows OSPM to choose a lower S-
state to D-state mapping than specified by _S1D. This value must always be greater than or equal to _S1D,
if _S1D is present.

7.2.20 _S2W (S2 Device Wake State)

This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S2 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S2

_S2W must return the same integer each time it is evaluated. This value allows OSPM to choose a lower S-
state to D-state mapping than specified by _S2D. This value must always be greater than or equal to _S2D,
if _S2D is present.

7.2.21 _S3W (S3 Device Wake State)

This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S3 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S3

_S3W must return the same integer each time it is evaluated. This value allows OSPM to choose a lower S-
state to D-state mapping than specified by _S3D. This value must always be greater than or equal to _S3D,
if _S3D is present.

296 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.2.22 _S4W (S4 Device Wake State)

This object evaluates to an integer that conveys to OSPM the lowest power (highest number) D-state
supported by this device in the S4 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S4

_S4W must return the same integer each time it is evaluated. This value allows OSPM to choose a lower S-
state to D-state mapping than specified by _S4D. This value must always be greater than or equal to _S4D,
if _S4D is present.

7.3 OEM-Supplied System-Level Control Methods

An OEM-supplied Definition Block provides some number of controls appropriate for system-level
management. These are used by OSPM to integrate to the OEM-provided features. The following table lists
the defined OEM system controls that can be provided.

Table 7-9 BIOS-Supplied Control Methods for System-Level Functions

Object Description

_BFS Control method executed immediately following a wake event.

_PTS Control method used to notify the platform of impending sleep transition.

_GTS Control method executed just prior to setting the sleep enable (SLP_EN) bit.

_S0 Package that defines system _S0 state mode.

_S1 Package that defines system _S1 state mode.

_S2 Package that defines system _S2 state mode.

_S3 Package that defines system _S3 state mode.

_S4 Package that defines system _S4 state mode.

_S5 Package that defines system _S5 state mode.

_TTS Control method used to prepare to sleep and run once awakened

_WAK Control method run once awakened.

7.3.1 _BFS (Back From Sleep)

_BFS is an optional control method. If it exists, OSPM must execute the _BFS method immediately
following wake from any sleeping state S1, S2, S3, or S4. _BFS allows ACPI system firmware to perform
any required system specific functions when returning a system sleep state. OSPM will execute the _BFS
control method before performing any other physical I/O or enabling any interrupt servicing upon returning
from a sleeping state. A value that indicates the sleeping state from which the system was awoken (in other
words, 1=S1, 2=S2, 3=S3, 4=S4) is passed as an argument to the _BFS control method.

Arguments (1):
Arg0 – An Integer containing the value of the previous sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

Power and Performance Management 297

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.3.2 _PTS (Prepare To Sleep)

The _PTS control method is executed by the OS during the sleep transition process for S1, S2, S3, S4, and
for orderly S5 shutdown. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5 soft-off state) is
passed to the _PTS control method. This method is called after OSPM has notified native device drivers of
the sleep state transition and before the OSPM has had a chance to fully prepare the system for a sleep state
transition. Thus, this control method can be executed a relatively long time before actually entering the
desired sleeping state. If OSPM aborts the sleep state transition, OSPM should run the _WAK method to
indicate this condition to the platform.

Arguments (1):
Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

The _PTS control method cannot modify the current configuration or power state of any device in the
system. For example, _PTS would simply store the sleep type in the embedded controller in sequencing the
system into a sleep state when the SLP_EN bit is set.

The platform must not make any assumptions about the state of the machine when _PTS is called. For
example, operation region accesses that require devices to be configured and enabled may not succeed, as
these devices may be in a non-decoding state due to plug and play or power management operations.

7.3.3 _GTS (Going To Sleep)

_GTS is an optional control method. If it exists, OSPM must execute the _GTS control method just prior to
setting the sleep enable (SLP_EN) bit in the PM1 control register when entering the S1, S2, S3, and S4
sleeping states and when entering S5 for orderly shutdown. _GTS allows ACPI system firmware to perform
any required system specific functions prior to entering a system sleep state. OSPM will set the sleep
enable (SLP_EN) bit in the PM1 control register immediately following the execution of the _GTS control
method without performing any other physical I/O or allowing any interrupt servicing. The sleeping state
value (1, 2, 3, 4, or 5) is passed as an argument to the _GTS control method. The _GTS method must not
attempt to directly place the system into a sleeping state. OSPM performs this function by setting the sleep
enable bit upon return from _GTS. In the case of entry into the S5 soft off state however, _GTS may indeed
perform operations that place the system into the S5 state as OSPM will not regain control.

Arguments (1):
Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

The _GTS method must be self-contained (not call other methods). Additionally, _GTS may only access
OpRegions that are currently available (see the _REG method for details).

298 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.3.4 System _Sx states

All system states supported by the system must provide a package containing the DWORD value of the
following format in the static Definition Block. The system states, known as S0–S5, are referenced in the
namespace as _S0–_S5 and for clarity the short Sx names are used unless specifically referring to the
named _Sx object. For each Sx state, there is a defined system behavior.

Arguments:
None

Return Value:
A Package containing an Integer containing register values for sleeping

Table 7-10 System State Package

Byte
Length

Byte
Offset Description

1 0 Value for PM1a_CNT.SLP_TYP register to enter this system state.

1 1 Value for PM1b_CNT.SLP_TYP register to enter this system state. To enter any
given state, OSPM must write the PM1a_CNT.SLP_TYP register before the
PM1b_CNT.SLP_TYP register.

2 2 Reserved

States S1–S4 represent some system sleeping state. The S0 state is the system working state. Transition into
the S0 state from some other system state (such as sleeping) is automatic, and, by virtue that instructions
are being executed, OSPM assumes the system to be in the S0 state. Transition into any system sleeping
state is only accomplished by the operating software directing the hardware to enter the appropriate state,
and the operating software can only do this within the requirements defined in the Power Resource and
Bus/Device Package objects.

All run-time system state transitions (for example, to and from the S0 state), except S4 and S5, are done
similarly such that the code sequence to do this is the following:

Power and Performance Management 299

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

/*
* Intel Architecture SetSleepingState example
*/

ULONG
SetSystemSleeping (

IN ULONG NewState
)
{
PROCESSOR_CONTEXT Context;
ULONG PowerSeqeunce;
BOOLEAN FlushCaches;
USHORT SlpTyp;

// Required environment: Executing on the system boot
// processor. All other processors stopped. Interrupts
// disabled. All Power Resources (and devices) are in
// corresponding device state to support NewState.

// Get h/w attributes for this system state
FlushCaches= SleepType[NewState].FlushCache;
SlpTyp = SleepType[NewState].SlpTyp & SLP_TYP_MASK;

_asm {
lea eax, OsResumeContext
push eax ; Build real mode handler the resume
push offset sp50 ; context, with eip = sp50
call SaveProcessorState

mov eax, ResumeVector ; set firmware’s resume vector
mov [eax], offset OsRealModeResumeCode

mov edx, PM1a_STS ;Make sure wake status is clear
mov ax, WAK_STS ; (cleared by asserting the bit
out dx, ax ; in the status register)

mov edx, PM1b_STS ;
out dx, ax ;

and eax, not SLP_TYP_MASK
or eax, SlpTyp ; set SLP_TYP
or ax, SLP_EN ; set SLP_EN

cmp FlushCaches, 0
jz short sp10 ; If needed, ensure no dirty data in

call FlushProcessorCaches ; the caches while sleeping

sp10: mov edx, PM1a_SLP_TYP ; get address for PM1a_SLP_TYP
out dx, ax ; start h/w sequencing
mov edx, PM1b_SLP_TYP ; get address for PM1b_SLP_TYP
out dx, ax ; start h/w sequencing

mov edx, PM1a_STS ; get address for PM1x_STS
mov ecx, PM1b_STS

sp20: in ax, dx ; wait for WAK status
xchg edx, ecx
test ax, WAK_STS
jz short sp20

sp50:
}

// Done..
*ResumeVector = NULL;
return 0;
}

300 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.3.4.1 System _S0 State (Working)

While the system is in the S0 state, it is in the system working state. The behavior of this state is defined as:
 The processors are in the C0, C1, C2, or C3 states. The processor-complex context is maintained and

instructions are executed as defined by any of these processor states.
 Dynamic RAM context is maintained and is read/write by the processors.
 Devices states are individually managed by the operating software and can be in any device state (D0,

D1, D2, D3hot, or D3).
 Power Resources are in a state compatible with the current device states.

Transition into the S0 state from some system sleeping state is automatic, and by virtue that instructions are
being executed OSPM, assumes the system to be in the S0 state.

7.3.4.2 System _S1 State (Sleeping with Processor Context Maintained)

While the system is in the S1 sleeping state, its behavior is the following:
 The processors are not executing instructions. The processor-complex context is maintained.
 Dynamic RAM context is maintained.
 Power Resources are in a state compatible with the system S1 state. All Power Resources that supply a

System-Level reference of S0 are in the OFF state.
 Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the device is in the D3 (off) state10.

 Devices that are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to S0. This transition causes the processor to
continue execution where it left off.

To transition into the S1 state, the OSPM must flush all processor caches.

7.3.4.3 System _S2 State

The S2 sleeping state is logically lower than the S1 state and is assumed to conserve more power. The
behavior of this state is defined as:
 The processors are not executing instructions. The processor-complex context is not maintained.
 Dynamic RAM context is maintained.
 Power Resources are in a state compatible with the system S2 state. All Power Resources that supply a

System-Level reference of S0 or S1 are in the OFF state.
 Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the device is in the D3 (off) state.

 Devices that are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to S0. This transition causes the processor to
begin execution at its boot location. The BIOS performs initialization of core functions as needed to
exit an S2 state and passes control to the firmware resume vector. See section 15.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires that
the operating software flush all dirty cache to dynamic RAM (DRAM).

10 Or it is at least assumed to be in the D3 state by its device driver. For example, if the device doesn’t
explicitly describe how it can stay in some state non-off state while the system is in a sleeping state, the
operating software must assume that the device can lose its power and state.

Power and Performance Management 301

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.3.4.4 System _S3 State

The S3 state is logically lower than the S2 state and is assumed to conserve more power. The behavior of
this state is defined as follows:
 The processors are not executing instructions. The processor-complex context is not maintained.
 Dynamic RAM context is maintained.
 Power Resources are in a state compatible with the system S3 state. All Power Resources that supply a

System-Level reference of S0, S1, or S2 are in the OFF state.
 Devices states are compatible with the current Power Resource states. Only devices that solely

reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the device is in the D3 (off) state.

 Devices that are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to S0. This transition causes the processor to
begin execution at its boot location. The BIOS performs initialization of core functions as necessary to
exit an S3 state and passes control to the firmware resume vector. See section 15.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

From the software viewpoint, this state is functionally the same as the S2 state. The operational difference
can be that some Power Resources that could be left ON to be in the S2 state might not be available to the
S3 state. As such, additional devices may need to be in a logically lower D0, D1, D2, or D3 state for S3
than S2. Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires that
the operating software flush all dirty cache to DRAM.

7.3.4.5 System _S4 State

While the system is in this state, it is in the system S4 sleeping state. The state is logically lower than the
S3 state and is assumed to conserve more power. The behavior of this state is defined as follows:
 The processors are not executing instructions. The processor-complex context is not maintained.
 DRAM context is not maintained.
 Power Resources are in a state compatible with the system S4 state. All Power Resources that supply a

System-Level reference of S0, S1, S2, or S3 are in the OFF state.
 Devices states are compatible with the current Power Resource states. In other words, all devices are in

the D3 state when the system state is S4.
 Devices that are enabled to wake the system and that can do so from their device state in S4 can initiate

a hardware event that transitions the system state to S0. This transition causes the processor to begin
execution at its boot location.

After OSPM has executed the _PTS control method and has put the entire system state into main memory,
there are two ways that OSPM may handle the next phase of the S4 state transition; saving and restoring
main memory. The first way is to use the operating system’s drivers to access the disks and file system
structures to save a copy of memory to disk and then initiate the hardware S4 sequence by setting the
SLP_EN register bit. When the system wakes, the firmware performs a normal boot process and transfers
control to the OS via the firmware_waking_vector loader. The OS then restores the system’s memory and
resumes execution.

The alternate method for entering the S4 state is to utilize the BIOS via the S4BIOS transition. The BIOS
uses firmware to save a copy of memory to disk and then initiates the hardware S4 sequence. When the
system wakes, the firmware restores memory from disk and wakes OSPM by transferring control to the
FACS waking vector.

The S4BIOS transition is optional, but any system that supports this mechanism must support entering the
S4 state via the direct OS mechanism. Thus the preferred mechanism for S4 support is the direct OS
mechanism as it provides broader platform support. The alternate S4BIOS transition provides a way to
achieve S4 support on operating systems that do not have support for the direct method.

302 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

7.3.4.6 System _S5 State (Soft Off)

The S5 state is similar to the S4 state except that OSPM does not save any context. The system is in the
soft off state and requires a complete boot when awakened (BIOS and OS). Software uses a different state
value to distinguish between this state and the S4 state to allow for initial boot operations within the BIOS
to distinguish whether or not the boot is going to wake from a saved memory image. OSPM does not
disable wake events before setting the SLP_EN bit when entering the S5 system state. This provides
support for remote management initiatives by enabling Remote Start capability. An ACPI-compliant OS
must provide an end user accessible mechanism for disabling all wake devices, with the exception of the
system power button, from a single point in the user interface.

7.3.5 _SWS (System Wake Source)

This object provides a means for OSPM to definitively determine the source of an event that caused the
system to enter the S0 state. General-purpose event and fixed-feature hardware registers containing wake
event sources information are insufficient for this purpose as the source event information may not be
available after transitions to the S0 state from all other system states (S1-S5).

To determine the source event that caused the system to transition to the S0 state, OSPM will evaluate the
_SWS object, when it exists, under the _GPE scope (for all fixed-feature general-purpose events from the
GPE Blocks), under the _SB scope (for fixed-feature hardware events), and within the scope of a GPE
Block device (for GPE events from this device). _SWS objects may exist in any or all of these locations as
necessary for the platform to determine the source event that caused the system to transition to the S0 state.

Arguments:
None

Return Value:
An Integer containing the Source Event as described below

The value of the Source Event is dependent on the location of the _SWS object:

1. If _SWS is evaluated under the _GPE scope, Source Event is the index of the GPE that caused
the system to transition to S0.

2. If _SWS is evaluated within the scope of a GPE block device, Source Event is the index of the
GPE that caused the system to transition to S0. In this case, the index is relative to the GPE block
device and is not unique system-wide.

3. If _SWS is evaluated under the _SB scope, Source Event is the the index in the PM1 status
register that caused the system to transition to S0.

In all cases above, if the cause of the S0 transition cannot be determined, _SWS returns Ones (-1).

To enable OSPM to determine the source of the S0 state transition via the _SWS object,the hardware or
firmware should detect and save the event that caused the transition so that it can be returned during _SWS
object evaluation. The single wake source for the system may be latched in hardware during the transition
so that no false wake events can be returned by _SWS. An implementation that does not use hardware to
latch a single wake source for the system and instead uses firmware to save the wake source must do so as
quickly as possible after the wakeup event occurs, so that _SWS does not return values that correspond to
events that occurred after the sleep-to-wake transition. Such an implementation must also take care to
ensure that events that occur subsequent to the wakeup source being saved do not overwrite the original
wakeup source.

The source event data returned by _SWS must be determined for each transition into the S0 state. The value
returned by _SWS must also be persistent during the system’s residency in the S0 state as OSPM may
evaluate _SWS multiple times. In this case, the platform must return the same source event information for
each invocation.

Power and Performance Management 303

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

After evaluating an _SWS object within the _GPE scope or within the scope of a GPE block device,
OSPM will invoke the _Wxx control method corresponding to the GPE index returned by _SWS if it exists.
This allows the platform to further determine source event if the GPE is shared among multiple devices.
See Section 5.6.2.2.5 for details.

7.3.6 _TTS (Transition To State)

The _TTS control method is executed by the OSPM at the beginning of the sleep transition process for S1,
S2, S3, S4, and orderly S5 shutdown. OSPM will invoke _TTS before it has notified any native mode
device drivers of the sleep state transition. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5
soft-off state) is passed to the _TTS control method.

The _TTS control method is also executed by the OSPM at the end of any sleep transition process when the
system transitions to S0 from S1, S2, S3, or S4. OSPM will invoke _TTS after it has notified any native
mode device drivers of the end of the sleep state transition. The working state value (0) is passed to the
_TTS control method.

Arguments: (1)
Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

If OSPM aborts the sleep transition process, OSPM will still run _TTS for an S0 transition to indicate the
OSPM has returned to the S0 state. The platform must assume that if OSPM invokes the _TTS control
method for an S1, S2, S3, or S4 transition, that OSPM will invoke _TTS control method for an S0
transition before returning to the S0 state.

The platform must not make any assumptions about the state of the machine when _TTS is called. For
example, operation region accesses that require devices to be configured and enabled may not succeed, as
these devices may be in a non-decoding state due to plug and play or power management operations.

7.3.7 _WAK (System Wake)

After the system wakes from a sleeping state, it will invoke the _WAK method and pass the sleeping state
value that has ended. This operation occurs asynchronously with other driver notifications in the system
and is not the first action to be taken when the system wakes. The AML code for this control method issues
device, thermal, and other notifications to ensure that OSPM checks the state of devices, thermal zones, and
so on, that could not be maintained during the system sleeping state. For example, if the system cannot
determine whether a device was inserted or removed from a bus while in the S2 state, the _WAK method
would issue a devicecheck type of notification for that bus when issued with the sleeping state value of 2
(for more information about types of notifications, see section 5.6.5, “Device Object Notifications”). Notice
that a device check notification from the _SB node will cause OSPM to re-enumerate the entire tree11.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method
must return status concerning the last sleep operation initiated by OSPM. The return values can be used to
provide additional information to OSPM or user.

Arguments: (1)
Arg0 – An Integer containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
A Package containing two Integers containing status and the power supply S-state

11 Only buses that support hardware-defined enumeration methods are done automatically at run-time. This
would include ACPI-enumerated devices.

304 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value Information

_WAK returns a package with the following format:

Element 0 – An Integer containing a bitfield that represents conditions that occurred during sleep.
0x00000000 – Wake was signaled and was successful
0x00000001 – Wake was signaled but failed due to lack of power
0x00000002 – Wake was signaled but failed due to thermal condition
Other values – Reserved

Element 1 – An Integer containing the power supply S-state.
If non-zero, this is the effective S-state the power supply that was actually entered. This value is used
to detect when the targeted S-state was not entered because of too much current being drawn from the
power supply. For example, this might occur when some active device’s current consumption pushes
the system’s power requirements over the low power supply mark, thus preventing the lower power
mode from being entered as desired.

7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS

OSPM will invoke _GTS, _PTS, _TTS, _WAK, and _BFS in the following order:

1. OSPM decides (through a policy scheme) to place the system into a sleeping state

2. _TTS(Sx) is run, where Sx is the desired sleep state to enter

3. OSPM notifies all native device drivers of the sleep state transition

4. _PTS is run

5. OSPM readies system for the sleep state transition

6. _GTS is run

7. OSPM writes the sleep vector and the system enters the specified Sx sleep state

8. System Wakes up

9. _BFS is run

10. OSPM readies system for the return from the sleep state transition

11. _WAK is run

12. OSPM notifies all native device drivers of the return from the sleep state transition

13. _TTS(0) is run to indicate the return to the S0 state

Power and Performance Management 305

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Working State

Sleeping State

Working State

Sleeping State

_TTS()

__PTS()

_GTS()

_TTS()

__WAK()

_BFS()

Figure 7-1 Working / Sleeping State object evaluation flow

306 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Processor Configuration and Control 307

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8 Processor Configuration and Control

This section describes the configuration and control of the processor’s power and performance states. The
major controls over the processors are:

 Processor power states: C0, C1, C2, C3, … Cn
 Processor clock throttling
 Processor performance states: P0, P1, … Pn

These controls are used in combination by OSPM to achieve the desired balance of the following
sometimes conflicting goals:

 Performance
 Power consumption and battery life
 Thermal requirements
 Noise-level requirements

Because the goals interact with each other, the operating software needs to implement a policy as to when
and where tradeoffs between the goals are to be made12. For example, the operating software would
determine when the audible noise of the fan is undesirable and would trade off that requirement for lower
thermal requirements, which can lead to lower processing performance. Each processor configuration and
control interface is discussed in the following sections along with how controls interacts with the various
goals.

8.1 Processor Power States

ACPI defines the power state of system processors while in the G0 working state13 as being either active
(executing) or sleeping (not executing). Processor power states include are designated C0, C1, C2, C3,
…Cn. The C0 power state is an active power state where the CPU executes instructions. The C1 through
Cn power states are processor sleeping states where the processor consumes less power and dissipates less
heat than leaving the processor in the C0 state. While in a sleeping state, the processor does not execute any
instructions. Each processor sleeping state has a latency associated with entering and exiting that
corresponds to the power savings. In general, the longer the entry/exit latency, the greater the power
savings when in the state. To conserve power, OSPM places the processor into one of its supported
sleeping states when idle. While in the C0 state, ACPI allows the performance of the processor to be altered
through a defined “throttling” process and through transitions into multiple performance states (P-states). A
diagram of processor power states is provided below.

12 A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce
performance), but a critical thermal alert does not occur.

13 Notice that these CPU states map into the G0 working state. The state of the CPU is undefined in the G3
sleeping state, the Cx states only apply to the G0 state.

308 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Interrupt
Interrupt

HLT

P_LVL2

THT_EN=1
and

DTY=value

THT_EN=0

Performance
State Px Throttling

C1 C2 C3

P_LVL3,
ARB_DIS=1

Interrupt or
BM Access

G0
Working

C0

Figure 8-1 Processor Power States

ACPI defines logic on a per-CPU basis that OSPM uses to transition between the different processor power
states. This logic is optional, and is described through the FADT table and processor objects (contained in
the hierarchical namespace). The fields and flags within the FADT table describe the symmetrical features
of the hardware, and the processor object contains the location for the particular CPU’s clock logic
(described by the P_BLK register block and _CST objects).

The P_LVL2 and P_LVL3 registers provide optional support for placing the system processors into the C2
or C3 states. The P_LVL2 register is used to sequence the selected processor into the C2 state, and the
P_LVL3 register is used to sequence the selected processor into the C3 state. Additional support for the C3
state is provided through the bus master status and arbiter disable bits (BM_STS in the PM1_STS register
and ARB_DIS in the PM2_CNT register). System software reads the P_LVL2 or P_LVL3 registers to enter
the C2 or C3 power state. The Hardware must put the processor into the proper clock state precisely on the
read operation to the appropriate P_LVLx register. The platform may alternatively define interfaces
allowing OSPM to enter C-states using the _CST object, which is defined in Section 8.4.2.1, “_CST (C
States)”.

Processor power state support is symmetric when presented via the FADT and P_BLK interfaces; OSPM
assumes all processors in a system support the same power states. If processors have non-symmetric power
state support, then the BIOS will choose and use the lowest common power states supported by all the
processors in the system through the FADT table. For example, if the CPU0 processor supports all power
states up to and including the C3 state, but the CPU1 processor only supports the C1 power state, then
OSPM will only place idle processors into the C1 power state (CPU0 will never be put into the C2 or C3
power states). Notice that the C1 power state must be supported. The C2 and C3 power states are optional
(see the PROC_C1 flag in the FADT table description in section 5.2.6, “System Description Table
Header”).

The following sections describe processor power states in detail.

Processor Configuration and Control 309

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.1.1 Processor Power State C0

While the processor is in the C0 power state, it executes instructions. While in the C0 power state, OSPM
can generate a policy to run the processor at less than maximum performance. The clock throttling
mechanism provides OSPM with the functionality to perform this task in addition to thermal control. The
mechanism allows OSPM to program a value into a register that reduces the processor’s performance to a
percentage of maximum performance.

duty width

duty value
clock on time

clock off time

P_CNT

duty offset duty width

duty value

Figure 8-2 Throttling Example

The FADT contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of bits used by
the duty value (which determines the granularity of the throttling logic). The performance of the processor
by the clock logic can be expressed with the following equation:

% *P erfo rm a n ce
d u tyse ttin g

d u tyw id th
2

1 0 0 %

Equation 1 Duty Cycle Equation

Nominal performance is defined as “close as possible, but not below the indicated performance level.”
OSPM will use the duty offset and duty width to determine how to access the duty setting field. OSPM will
then program the duty setting based on the thermal condition and desired power of the processor object.
OSPM calculates the nominal performance of the processor using the equation expressed in Equation 1.
Notice that a dutysetting of zero is reserved.

310 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For example, the clock logic could use the stop grant cycle to emulate a divided processor clock frequency
on an IA processor (through the use of the STPCLK# signal). This signal internally stops the processor’s
clock when asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK#
pin could be asserted as follows (to emulate the different frequency settings):

0 - Reserved Value

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

dutysetting

Duty Width (3-bits)
S

T
P

C
L

K
#

S
ig

n
a
l

CPU Clock Running
CPU Clock Stopped

Figure 8-3 Example Control for the STPCLK#

To start the throttling logic OSPM sets the desired duty setting and then sets the THT_EN bit HIGH. To
change the duty setting, OSPM will first reset the THT_EN bit LOW, then write another value to the duty
setting field while preserving the other unused fields of this register, and then set the THT_EN bit HIGH
again.

The example logic model is shown below:

-- duty width

THTL_DTY
P_CNT.x

P_LVL3
Read

P_LVL2
Read

THT_EN
P_CNT.4

Clock Logic
System
Arbiter

ARB_DIS
PM2_CNT

BM_STS
PM1x_STS.4

BM_RLD
PM1x_CNT.1

Figure 8-4 ACPI Clock Logic (One per Processor)

Implementation of the ACPI processor power state controls minimally requires the support a single CPU
sleeping state (C1). All of the CPU power states occur in the G0/S0 system state; they have no meaning
when the system transitions into the sleeping state(S1-S4). ACPI defines the attributes (semantics) of the
different CPU states (defines four of them). It is up to the platform implementation to map an appropriate
low-power CPU state to the defined ACPI CPU state.

ACPI clock control is supported through the optional processor register block (P_BLK). ACPI requires that
there be a unique processor register block for each CPU in the system. Additionally, ACPI requires that the
clock logic for multiprocessor systems be symmetrical when using the P_BLK and FADT interfaces; if the
P0 processor supports the C1, C2, and C3 states, but P1 only supports the C1 state, then OSPM will limit
all processors to enter the C1 state when idle.

The following sections define the different ACPI CPU sleeping states.

Processor Configuration and Control 311

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.1.2 Processor Power State C1

All processors must support this power state. This state is supported through a native instruction of the
processor (HLT for IA 32-bit processors), and assumes no hardware support is needed from the chipset.
The hardware latency of this state must be low enough that OSPM does not consider the latency aspect of
the state when deciding whether to use it. Aside from putting the processor in a power state, this state has
no other software-visible effects. In the C1 power state, the processor is able to maintain the context of the
system caches.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor.

8.1.3 Processor Power State C2

This processor power state is optionally supported by the system. If present, the state offers improved
power savings over the C1 state and is entered by using the P_LVL2 command register for the local
processor or an alternative mechanism as indicated by the _CST object. The worst-case hardware latency
for this state is declared in the FADT and OSPM can use this information to determine when the C1 state
should be used instead of the C2 state. Aside from putting the processor in a power state, this state has no
other software-visible effects. OSPM assumes the C2 power state has lower power and higher exit latency
than the C1 power state.

The C2 power state is an optional ACPI clock state that needs chipset hardware support. This clock logic
consists of an interface that can be manipulated to cause the processor complex to precisely transition into a
C2 power state. In a C2 power state, the processor is assumed capable of keeping its caches coherent; for
example, bus master and multiprocessor activity can take place without corrupting cache context.

The C2 state puts the processor into a low-power state optimized around multiprocessor and bus master
systems. OSPM will cause an idle processor complex to enter a C2 state if there are bus masters or Multiple
processor activity (which will prevent OSPM from placing the processor complex into the C3 state). The
processor complex is able to snoop bus master or multiprocessor CPU accesses to memory while in the C2
state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to
be presented to the processor.

8.1.4 Processor Power State C3

This processor power state is optionally supported by the system. If present, the state offers improved
power savings over the C1 and C2 state and is entered by using the P_LVL3 command register for the local
processor or an alternative mechanism as indicated by the _CST object. The worst-case hardware latency
for this state is declared in the FADT, and OSPM can use this information to determine when the C1 or C2
state should be used instead of the C3 state. While in the C3 state, the processor’s caches maintain state but
the processor is not required to snoop bus master or multiprocessor CPU accesses to memory.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain access to
memory.

OSPM is responsible for ensuring that the caches maintain coherency. In a uniprocessor environment, this
can be done by using the PM2_CNT.ARB_DIS bus master arbitration disable register to ensure bus master
cycles do not occur while in the C3 state. In a multiprocessor environment, the processors’ caches can be
flushed and invalidated such that no dynamic information remains in the caches before entering the C3
state.

312 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

There are two mechanisms for supporting the C3 power state:
 Having OSPM flush and invalidate the caches prior to entering the C3 state.
 Providing hardware mechanisms to prevent masters from writing to memory (uniprocessor-only

support).

In the first case, OSPM will flush the system caches prior to entering the C3 state. As there is normally
much latency associated with flushing processor caches, OSPM is likely to only support this in
multiprocessor platforms for idle processors. Flushing of the cache is accomplished through one of the
defined ACPI mechanisms (described below in section 8.2, “Flushing Caches”).

In uniprocessor-only platforms that provide the needed hardware functionality (defined in this section),
OSPM will attempt to place the platform into a mode that will prevent system bus masters from writing
into memory while the processor is in the C3 state. This is accomplished by disabling bus masters prior to
entering a C3 power state. Upon a bus master requesting an access, the CPU will awaken from the C3 state
and re-enable bus master accesses.

OSPM uses the BM_STS bit to determine the power state to enter when considering a transition to or from
the C2/C3 power state. The BM_STS is an optional bit that indicates when bus masters are active. OSPM
uses this bit to determine the policy between the C2 and C3 power states: a lot of bus master activity
demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master activity promotes the
CPU power state to the C3 power state. OSPM keeps a running history of the BM_STS bit to determine
CPU power state policy.

The last hardware feature used in the C3 power state is the BM_RLD bit. This bit determines if the Cx
power state is exited as a result of bus master requests. If set, then the Cx power state is exited upon a
request from a bus master. If reset, the power state is not exited upon bus master requests. In the C3 state,
bus master requests need to transition the CPU back to the C0 state (as the system is capable of maintaining
cache coherency), but such a transition is not needed for the C2 state. OSPM can optionally set this bit
when using a C3 power state, and clear it when using a C1 or C2 power state.

8.1.5 Additional Processor Power States

ACPI introduced optional processor power states beyond C3 starting in ACPI 2.0. These power states,
C4… Cn, are conveyed to OSPM through the _CST object defined in section 8.4.2.1, “_CST (C-States).”
These additional power states are characterized by equivalent operational semantics to the C1 through C3
power states, as defined in the previous sections, but with different entry/exit latencies and power savings.
See section 8.4.2.1, “_CST (C-States),” for more information.

8.2 Flushing Caches

To support the C3 power state without using the ARB_DIS feature, the hardware must provide
functionality to flush and invalidate the processors’ caches (for an IA processor, this would be the
WBINVD instruction). To support the S1, S2 or S3 sleeping states, the hardware must provide functionality
to flush the platform caches. Flushing of caches is supported by one of the following mechanisms:
 Processor instruction to write back and invalidate system caches (WBINVD instruction for IA

processors).
 Processor instruction to write back but not invalidate system caches (WBINVD instruction for IA

processors and some chipsets with partial support; that is, they don’t invalidate the caches).

The ACPI specification expects all platforms to support the local CPU instruction for flushing system
caches (with support in both the CPU and chipset), and provides some limited “best effort” support for
systems that don’t currently meet this capability. The method used by the platform is indicated through the
appropriate FADT fields and flags indicated in this section.

ACPI specifies parameters in the FADT that describe the system’s cache capabilities. If the platform
properly supports the processor’s write back and invalidate instruction (WBINVD for IA processors), then
this support is indicated to OSPM by setting the WBINVD flag in the FADT.

Processor Configuration and Control 313

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If the platform supports neither of the first two flushing options, then OSPM can attempt to manually flush
the cache if it meets the following criteria:
 A cache-enabled sequential read of contiguous physical memory of not more than 2 MB will flush the

platform caches.

There are two additional FADT fields needed to support manual flushing of the caches:
 FLUSH_SIZE, typically twice the size of the largest cache in the system.
 FLUSH_STRIDE, typically the smallest cache line size in the system.

8.3 Power, Performance, and Throttling State Dependencies

Cost and complexity trade-off considerations have driven into the platform control dependencies between
logical processors when entering power, performance, and throttling states. These dependencies exist in
various forms in multi-processor, multi-threaded processor, and multi-core processor-based platforms.
These dependencies may also be hierarchical. For example, a multi-processor system consisting of
processors containing multiple cores containing multiple threads may have various dependencies as a result
of the hardware implementation.

Unless OSPM is aware of the dependency between the logical processors, it might lead to scenarios where
one logical processor is implicitly transitioned to a power, performance, or throttling state when it is
unwarranted, leading to incorrect / non-optimal system behavior. Given knowledge of the dependencies,
OSPM can coordinate the transitions between logical processors, choosing to initiate the transition when
doing so does not lead to incorrect or non-optimal system behavior. This OSPM coordination is referred to
as Software (SW) Coordination. Alternately, it might be possible for the underlying hardware to coordinate
the state transition requests on multiple logical processors, causing the processors to transition to the target
state when the transition is guaranteed to not lead to incorrect or non-optimal system behavior. This
scenario is referred to as Hardware (HW) coordination. When hardware coordinates transitions, OSPM
continues to initiate state transitions as it would if there were no dependencies. However, in this case it is
required that hardware provide OSPM with a means to determine actual state residency so that correct /
optimal control policy can be realized.

Platforms containing logical processors with cross-processor dependencies in the power, performance, or
throttling state control areas use ACPI defined interfaces to group logical processors into what is referred to
as a dependency domain. The Coordination Type characteristic for a domain specifies whether OSPM or
underlying hardware is responsible for the coordination. When OSPM coordinates, the platform may
require that OSPM transition ALL (0xFC) or ANY ONE (0xFD) of the processors belonging to the domain
into a particular target state. OSPM may choose at its discretion to perform coordination even though the
underlying hardware supports hardware coordination. In this case, OSPM must transition all logical
processors in the dependency domain to the particular target state.

There are no dependencies implied between a processor’s C-states, P-states or T-states. Hence, for example
it is possible to use the same dependency domain number for specifying dependencies between P-states
among one set of processors and C-states among another set of processors without any dependencies being
implied between the P-State transitions on a processor in the first set and C-state transitions on a processor
in the second set.

8.4 Declaring Processors

Each processor in the system must be declared in the ACPI namespace in either the _SB or _PR scope but
not both. Declaration of processors in the _PR scope is required for platforms desiring compatibility with
ACPI 1.0-based OSPM implementations. Processors are declared either via the ASL Processor statement
or the ASL Device statement. A Processor definition declares a processor object that provides processor
configuration information and points to the processor register block (P_BLK). A Device definition for a
processor is declared using the ACPI0007 hardware identifier (HID). In this case, processor configuration
information is provided exclusively by objects in the processor device’s object list.

314 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When the platform uses the APIC interrupt model, OSPM associates processors declared in the namespace
with entries in the MADT. Prior to ACPI 3.0, this was accomplished using the processor object’s
ProcessorID and the ACPI Processor ID fields in MADT entries. UID fields were added to MADT entries
in ACPI 3.0. By expanding processor declaration using Device definitions, UID object values under a
processor device are used to associate processor devices with entries in the MADT. This removes the
previous 256 processor declaration limit.

The platform may declare processors with IDs in the range of 0-254 for APIC/x2APIC implementations
and 0-255 for SAPIC implementations using either the ASL Processor statement or the ASL Device
statement but not both. Processors with IDs outside these ranges must be declared using the ASL Device
statement.

Processor-specific objects may be included in the processor object’s optional object list or declared within
the processor device’s scope. These objects serve multiple purposes including providing alternative
definitions for the registers described by the processor register block (P_BLK) and processor performance
state control. Other ACPI-defined device-related objects are also allowed in the processor object’s object
list or under the processor device’s scope (for example, the unique identifier object _UID).

With device-like characteristics attributed to processors, it is implied that a processor device driver will be
loaded by OSPM to, at a minimum, process device notifications. OSPM will enumerate processors in the
system using the ACPI Namespace, processor-specific native identification instructions, and optionally the
_HID method.

OSPM will ignore definitions of ACPI-defined objects in an object list of a processor object declared under
the _PR scope.

For more information on the declaration of the processor object, see section 18.5.93, “Processor (Declare
Processor).” Processor-specific objects are described in the following sections.

8.4.1 _PDC (Processor Driver Capabilities)

This optional object is a method that is used by OSPM to communicate to the platform the level of
processor power management support provided by OSPM. This object is a child object of the processor.
OSPM evaluates _PDC prior to evaluating any other processor power management objects returning
configuration information.

The _PDC object provides OSPM a mechanism to convey to the platform the capabilities supported by
OSPM for processor power management. This allows the platform to modify the ACPI namespace objects
returning configuration information for processor power management based on the level of support
provided by OSPM. Using this method provides a mechanism for OEMs to provide support for new
technologies on legacy OSes, while also allowing OSPM to leverage new technologies on platforms
capable of supporting them. This method is evaluated once during processor device initialization, and will
not be re-evaluated during resume from a sleep state transition. The platform must preserve state
information across S1-S3 sleep state transitions.

Arguments: (1)
Arg0 – A variable-length Buffer containing a list of capabilities as described below

Return Value:
None

The buffer argument contains a list of DWORDs in the following format:
RevisionId – Revision of the buffer format
Count – The number of capability values in the capabilities array
Capabilities[Count] – Capabilities array

Each DWORD entry in the capabilities array is a bitfield that defines capabilities and features supported by
OSPM for processor configuration and power management as specified by the CPU manufacturer.

The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC. For backwards compatibility, _PDC may be
implemented using _OSC as follows:

Processor Configuration and Control 315

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method(_PDC,1)
{

CreateDWordField (Arg0, 0, REVS)
CreateDWordField (Arg0, 4, SIZE)

//
// Local0 = Number of bytes for Arg0
//
Store (SizeOf (Arg0), Local0)

//
// Local1 = Number of Capabilities bytes in Arg0
//
Store (Subtract (Local0, 8), Local1)

//
// TEMP = Temporary field holding Capability DWORDs
//
CreateField (Arg0, 64, Multiply (Local1, 8), TEMP)

//
// Create the Status (STS0) buffer with the first DWORD = 0
// This is required to return errors defined by _OSC.
//
Name (STS0, Buffer () {0x00, 0x00, 0x00, 0x00})

//
// Concatenate the _PDC capabilities bytes to the STS0 Buffer
// and store them in a local variable for calling OSC
//
Concatenate (STS0, TEMP, Local2)

//
// Note: The UUID passed into _OSC is CPU vendor specific. Consult CPU
// vendor documentation for UUID and Capabilities Buffer bit definitions
//
_OSC (ToUUID("4077A616-290C-47BE-9EBD-D87058713953"), REVS, SIZE, Local2)

}

Section 6.2.9, “_OSC (Operating System Capabilities)”, describes the _OSC object, which can be used to
convey processor related OSPM capabilities to the platform. Consult CPU vendor specific documentation
for the UUID and Capabilities Buffer bit definitions used by _OSC for a specific processor.

8.4.2 Processor Power State Control

ACPI defines two processor power state (C state) control interfaces. These are:

1) The Processor Register Block’s (P_BLK’s) P_LVL2 and P_LVL3 registers coupled with FADT
P_LVLx_LAT values and

2) The _CST object in the processor’s object list.

P_BLK based C state controls are described in Section 4, “ACPI Hardware Specification” and Section 8.1,
“Processor Power States”. _CST based C state controls expand the functionality of the P_BLK based
controls allowing the number and type of C states to be dynamic and accommodate CPU architecture
specific C state entry and exit mechanisms as indicated by registers defined using the Functional Fixed
Hardware address space.

316 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.2.1 _CST (C States)

_CST is an optional object that provides an alternative method to declare the supported processor power
states (C States). Values provided by the _CST object override P_LVLx values in P_BLK and
P_LVLx_LAT values in the FADT. The _CST object allows the number of processor power states to be
expanded beyond C1, C2, and C3 to an arbitrary number of power states. The entry semantics for these
expanded states, (in other words), the considerations for entering these states, are conveyed to OSPM by
the C-state Type field and correspond to the entry semantics for C1, C2, and C3 as described in sections
8.1.2 through 8.1.4. _CST defines ascending C-states characterized by lower power and higher entry/exit
latency.

Arguments:
None

Return Value:
A variable-length Package containing a list of C-state information Packages as described below

Return Value Information

_CST returns a variable-length Package that contains the following elements:
Count An Integer that contains the number of CState sub-packages that follow
CStates[] A list of Count CState sub-packages

Package {
Count // Integer
CStates[0] // Package
….
CStates[Count-1] // Package

}

Each fixed-length Cstate sub-Package contains the elements described below:

Package {
Register // Buffer (Resource Descriptor)
Type // Integer (BYTE)
Latency // Integer (WORD)
Power // Integer (DWORD)

}

Table 8-1 Cstate Package Values

Element Object Type Description

Register Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the register that OSPM must read to place the processor in the
corresponding C state.

Type Integer
(BYTE)

The C State type (1=C1, 2=C2, 3=C3, etc.). This field conveys the
semantics to be used by OSPM when entering/exiting the C state. Zero is not
a valid value.

Latency Integer
(WORD)

The worst-case latency to enter and exit the C State (in microseconds).
There are no latency restrictions.

Power Integer
(DWORD)

The average power consumption of the processor when in the corresponding
C State (in milliwatts).

The platform must expose a _CST object for either all or none of its processors. If the _CST object exists,
OSPM uses the C state information specified in the _CST object in lieu of P_LVL2 and P_LVL3 registers
defined in P_BLK and the P_LVLx_LAT values defined in the FADT. Also notice that if the _CST object
exists and the _PTC object does not exist, OSPM will use the Processor Control Register defined in
P_BLK and the C_State_Register registers in the _CST object.

Processor Configuration and Control 317

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The platform may change the number or type of C States available for OSPM use dynamically by issuing a
Notify event on the processor object with a notification value of 0x81. This will cause OSPM to re-evaluate
any _CST object residing under the processor object notified. For example, the platform might notify
OSPM that the number of supported C States has changed as a result of an asynchronous AC insertion /
removal event.

The platform must specify unique C_State_Register addresses for all entries within a given _CST object.

_CST eliminates the ACPI 1.0 restriction that all processors must have C State parity. With _CST, each
processor can have its own characteristics independent of other processors. For example, processor 0 can
support C1, C2 and C3, while processor 1 supports only C1.

The fields in the processor structure remain for backward compatibility.

Example

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{
Name(_CST, Package()
{

4, // There are four C-states defined here with three semantics
// The third and fourth C-states defined have the same C3 entry semantics

Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x163)}, 3, 100, 250}

})
}

Notice in the example above that OSPM should anticipate the possibility of a _CST object providing more
than one entry with the same C_State_Type value. In this case OSPM must decide which C_State_Register
it will use to enter that C state.

Example

This is an example usage of the _CST object using the typical values as defined in ACPI 1.0.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBLK system IO address
6) // PBLK Len

{
Name(_CST, Package()
{

2, // There are two C-states defined here – C2 and C3
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x124)}, 2, 2, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x125)}, 3, 65, 500}

})
}

The platform will issue a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate this object when the
number of available processor power states changes.

318 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.2.2 _CSD (C-State Dependency)

This optional object provides C-state control cross logical processor dependency information to OSPM.
The _CSD object evaluates to a packaged list of information that correlates with the C-state information
returned by the _CST object. Each packaged list entry identifies the C-state for which the dependency is
being specified (as an index into the _CST object list), a dependency domain number for that C-state, the
coordination type for that C-state and the number of logical processors belonging to the domain for the
particular C-state. It is possible that a particular C-state may belong to multiple domains. That is, it is
possible to have multiple entries in the _CSD list with the same CStateIndex value.

Arguments:
None

Return Value:
A variable-length Package containing a list of C-state dependency Packages as described below.

Return Value Information

Package {
CStateDependency[0] // Package
….
CStateDependency[n] // Package

}

Each CstateDependency sub-Package contains the elements described below:

Package {
NumEntries // Integer
Revision // Integer (BYTE)
Domain // Integer (DWORD)
CoordType // Integer (DWORD)
NumProcessors // Integer (DWORD)
Index // Integer (DWORD)

}

Table 8-2 CStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the CStateDependency package including this
field. Current value is 6.

Revision Integer
(BYTE)

The revision number of the CStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this C state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as
a result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether
OSPM is responsible for coordinating the C-state transitions among
processors with dependencies (and needs to initiate the transition on all or
any processor in the domain) or whether the hardware will perform this
coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for the particular C-
state. OSPM will not start performing power state transitions to a
particular C-state until this number of processors belonging to the same
domain for the particular C-state have been detected and started.

Index Integer
(DWORD)

Indicates the index of the C-State entry in the _CST object for which the
dependency applies.

Processor Configuration and Control 319

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Given that the number or type of available C States may change dynamically, ACPI supports Notify events
on the processor object, with Notify events of type 0x81 causing OSPM to re-evaluate any _CST objects
residing under the particular processor object notified. On receipt of Notify events of type 0x81, OSPM
should re-evaluate any present _CSD objects also.

Example

This is an example usage of the _CSD structure in a Processor structure in the namespace. The example
represents a two processor configuration. The C1-type state can be independently entered on each
processor. For the C2-type state, there exists dependence between the two processors, such that one
processor transitioning to the C2-type state, causes the other processor to transition to the C2-type state. A
similar dependence exists for the C3-type state. OSPM will be required to coordinate the C2 and C3
transitions between the two processors. Also OSPM can initiate a transition on either processor to cause
both to transition to the common target C-state.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{
Name (_CST, Package()
{

3, // There are three C-states defined here with three semantics
Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500}

})
Name(_CSD, Package()
{

Package(){6, 0, 0, 0xFD, 2, 1}, // 6 entries,Revision 0,Domain 0,OSPM Coordinate
// Initiate on Any Proc,2 Procs, Index 1 (C2-type)

Package(){6, 0, 0, 0xFD, 2, 2} // 6 entries,Revision 0 Domain 0,OSPM Coordinate
// Initiate on Any Proc,2 Procs, Index 2 (C3-type)

})
}
Processor (

_SB.CPU1, // Processor Name
2, // ACPI Processor number
, // PBlk system IO address
) // PBlkLen

{
Name(_CST, Package()
{

3, // There are three C-states defined here with three semantics
Package(){ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, 1, 20, 1000},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x161)}, 2, 40, 750},
Package(){ResourceTemplate(){Register(SystemIO, 8, 0, 0x162)}, 3, 60, 500}

})
Name(_CSD, Package()
{

Package(){6, 0, 0, 0xFD, 2, 1}, // 6 entries,Revision 0,Domain 0,OSPM Coordinate
// Initiate on any Proc,2 Procs, Index 1 (C2-type)

Package(){6, 0, 0, 0xFD, 2, 2} // 6 entries,Revision 0,Domain 0,OSPM Coordinate
// Initiate on any Proc,2 Procs,Index 2 (C3-type)

})
}

When the platform issues a Notify(_SB.CPU0, 0x81) to inform OSPM to re-evaluate _CST when the
number of available processor power states changes, OSPM should also evaluate _CSD.

320 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.3 Processor Throttling Controls

ACPI defines two processor throttling (T state) control interfaces. These are:

1) The Processor Register Block’s (P_BLK’s) P_CNT register, and

2) The combined _PTC, _TSS, and _TPC objects in the processor’s object list.

P_BLK based throttling state controls are described in Section 4, “ACPI Hardware Specification” and
Section 8.1.1, “Processor Power State C0”. Combined _PTC, _TSS, and _TPC based throttling state
controls expand the functionality of the P_BLK based control allowing the number of T states to be
dynamic and accommodate CPU architecture specific T state control mechanisms as indicated by registers
defined using the Functional Fixed Hardware address space. While platform definition of the _PTC, _TSS,
and _TPC objects is optional, all three objects must exist under a processor for OSPM to successfully
perform processor throttling via these controls.

8.4.3.1 _PTC (Processor Throttling Control)

_PTC is an optional object that defines a processor throttling control interface alternative to the I/O address
spaced-based P_BLK throttling control register (P_CNT) described in section 4, “ACPI Hardware
Specification”. The processor throttling control register mechanism remains as defined in section 8.1.1,
“Processor Power State C0.”

OSPM performs processor throttling control by writing the Control field value for the target throttling state
(T-state), retrieved from the Throttling Supported States object (_TSS), to the Throttling Control Register
(THROTTLE_CTRL) defined by the _PTC object. OSPM may select any processor throttling state
indicated as available by the value returned by the _TPC control method.

Success or failure of the processor throttling state transition is determined by reading the Throttling Status
Register (THROTTLE_STATUS) to determine the processor’s current throttling state. If the transition was
successful, the value read from THROTTLE_STATUS will match the “Status” field in the _TSS entry that
corresponds to the targeted processor throttling state.

Arguments:
None

Return Value:
A Package as described below

Return Value Information

Package
{

ControlRegister // Buffer (Resource Descriptor)
StatusRegister // Buffer (Resource Descriptor)

}

Table 8-3 _PTC Package Values

Element Object Type Description

Control
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the throttling control register.

Status
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the throttling status register.

The platform must expose a _PTC object for either all or none of its processors. Notice that if the _PTC
object exists, the specified register is used instead of the P_CNT register specified in the Processor term.
Also notice that if the _PTC object exists and the _CST object does not exist, OSPM will use the processor
control register from the _PTC object and the P_LVLx registers from the P_BLK.

Processor Configuration and Control 321

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

This is an example usage of the _PTC object in a Processor object list:

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{ //Object List

Name(_PTC, Package () // Processor Throttling Control object
{

ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // Throttling_CTRL
ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // Throttling_STATUS

}) // End of _PTC object
} // End of Object List

Example

This is an example usage of the _PTC object using the values defined in ACPI 1.0. This is an illustrative
example to demonstrate the mechanism with well-known values.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBLK system IO address
6) // PBLK Len

{ //Object List

Name(_PTC, Package () // Processor Throttling Control object –
//32 bit wide IO space-based register at the <P_BLK> address

{
ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS

}) // End of _PTC object
} // End of Object List

8.4.3.2 _TSS (Throttling Supported States)

This optional object indicates to OSPM the number of supported processor throttling states that a platform
supports. This object evaluates to a packaged list of information about available throttling states including
percentage of maximum internal CPU core frequency, maximum power dissipation, control register values
needed to transition between throttling states, and status register values that allow OSPM to verify
throttling state transition status after any OS-initiated transition change request. The list is sorted in
descending order by power dissipation. As a result, the zeroth entry describes the highest performance
throttling state (no throttling applied) and the ‘nth’ entry describes the lowest performance throttling state
(maximum throttling applied).

When providing the _TSS, the platform must supply a _TSS entry whose Percent field value is 100. This
provides a means for OSPM to disable throttling and achieve maximum performance.

Arguments:
None

Return Value:
A variable-length Package containing a list of Tstate sub-packages as described below

Return Value Information

Package {
TState [0] // Package – Throttling state 0
….
TState [n] // Package – Throttling state n

}

322 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Each Tstate sub-Package contains the elements described below:

Package {
Percent // Integer (DWORD)
Power // Integer (DWORD)
Latency // Integer (DWORD)
Control // Integer (DWORD)
Status // Integer (DWORD)

}

Table 8-4 TState Package Values

Element Object Type Description

Percent Integer
(DWORD)

Indicates the percent of the core CPU operating frequency that will be
available when this throttling state is invoked. The range for this field is 1-
100. This percentage applies independent of the processor’s performance state
(P-state). That is, this throttling state will invoke the percentage of maximum
frequency indicated by this field as applied to the CoreFrequency field of the
_PSS entry corresponding to the P-state for which the processor is currently
resident.

Power Integer
(DWORD)

Indicates the throttling state’s maximum power dissipation (in milliWatts).
OSPM ignores this field on platforms the support P-states, which provide
power dissipation information via the _PSS object.

Latency Integer
(DWORD)

Indicates the worst-case latency in microseconds that the CPU is unavailable
during a transition from any throttling state to this throttling state.

Control Integer
(DWORD)

Indicates the value to be written to the Processor Control Register
(THROTTLE_CTRL) in order to initiate a transition to this throttling state.

Status Integer
(DWORD)

Indicates the value that OSPM will compare to a value read from the Throttle
Status Register (THROTTLE_STATUS) to ensure that the transition to the
throttling state was successful. OSPM may always place the CPU in the
lowest power throttling state, but additional states are only available when
indicated by the _TPC control method. A value of zero indicates the transition
to the Throttling state is asynchronous, and as such no status value
comparison is required.

8.4.3.3 _TPC (Throttling Present Capabilities)

This optional object is a method that dynamically indicates to OSPM the number of throttling states
currently supported by the platform. This method returns a number that indicates the _TSS entry number of
the highest power throttling state that OSPM can use at a given time. OSPM may choose the corresponding
state entry in the _TSS as indicated by the value returned by the _TPC method or any lower power (higher
numbered) state entry in the _TSS.

Arguments:
None

Return Value:
An Integer containing the number of states supported:

0 – states 0 ... nth state available (all states available)
1 – state 1 ... nth state available
2 – state 2 ... nth state available
…
n – state n available only

Processor Configuration and Control 323

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

In order to support dynamic changes of _TPC object, Notify events on the processor object of type 0x82
will cause OSPM to reevaluate any _TPC object in the processor’s object list. This allows AML code to
notify OSPM when the number of supported throttling states may have changed as a result of an
asynchronous event. OSPM ignores _TPC Notify events on platforms that support P-states unless the
platform has limited OSPM’s use of P-states to the lowest power P-state. OSPM may choose to disregard
any platform conveyed T-state limits when the platform enables OSPM usage of other than the lowest
power P-state.

8.4.3.4 _TSD (T-State Dependency)

This optional object provides T-state control cross logical processor dependency information to OSPM.
The _TSD object evaluates to a packaged list of information that correlates with the T-state information
returned by the _TSS object. Each packaged list entry identifies a dependency domain number for the
logical processor’s T-states, the coordination type for that T-state, and the number of logical processors
belonging to the domain.

Arguments:
None

Return Value:
A variable-length Package containing a list of T-state dependency Packages as described below.

Return Value Information

Package {
TStateDependency[0] // Package
….
TStateDependency[n] // Package

}

Each TStateDependency sub-Package contains the elements described below:

Package {
NumEntries // Integer
Revision // Integer (BYTE)
Domain // Integer (DWORD)
CoordType // Integer (DWORD)
NumProcessors // Integer (DWORD)

}

Table 8-5 TStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the TStateDependency package including this
field. Current value is 5.

Revision Integer
(BYTE)

The revision number of the TStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this T state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as
a result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether
OSPM is responsible for coordinating the T-state transitions among
processors with dependencies (and needs to initiate the transition on all or
any processor in the domain) or whether the hardware will perform this
coordination.

324 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Element Object Type Description

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for this logical
processor’s T-states. OSPM will not start performing power state
transitions to a particular T-state until this number of processors belonging
to the same domain have been detected and started.

Example

This is an example usage of the _TSD structure in a Processor structure in the namespace. The example
represents a two processor configuration with three T-states per processor. For all T-states, there exists
dependence between the two processors, such that one processor transitioning to a particular T-state, causes
the other processor to transition to the same T-state. OSPM will be required to coordinate the T-state
transitions between the two processors and can initiate a transition on either processor to cause both to
transition to the common target T-state.

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{ //Object List

Name(_PTC, Package () // Processor Throttling Control object –
//32 bit wide IO space-based register at the <P_BLK> address

{
ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS

}) // End of _PTC object

Name (_TSS, Package()
{

Package() {
0x64, // Frequency Percentage (100%, Throttling OFF state)
0x0, // Power
0x0, // Transition Latency
0x7, // Control THT_EN:0 THTL_DTY:111
0x0, // Status

}

Package() {
0x58, // Frequency Percentage (87.5%)
0x0, // Power
0x0, // Transition Latency
0xF, // Control THT_EN:1 THTL_DTY:111
0x0, // Status

}

Package() {
0x4B, // Frequency Percentage (75%)
0x0, // Power
0x0, // Transition Latency
0xE, // Control THT_EN:1 THTL_DTY:110
0x0, // Status

}
})

Name (_TSD, Package()
{

Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0,
// OSPM Coordinate, 2 Procs

}) // End of _TSD object

Processor Configuration and Control 325

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method (_TPC, 0) // Throttling Present Capabilities method
{

If (_SB.AC)
{

Return(0) // All Throttle States are available for use.
}
Else
{

Return(2) // Throttle States 0 an 1 won’t be used.
}

} // End of _TPC method
} // End of processor object list

Processor (
_SB.CPU1, // Processor Name
2, // ACPI Processor number
, // PBlk system IO address
) // PBlkLen

{ //Object List

Name(_PTC, Package () // Processor Throttling Control object –
// 32 bit wide IO space-based register at the
// <P_BLK> address

{
ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)}, // Throttling_CTRL
ResourceTemplate(){Register(SystemIO, 32, 0, 0x120)} // Throttling_STATUS

}) // End of _PTC object

Name (_TSS, Package()
{

Package() {
0x64, // Frequency Percentage (100%, Throttling OFF state)
0x0, // Power
0x0, // Transition Latency
0x7, // Control THT_EN:0 THTL_DTY:111
0x0, // Status

}

Package() {
0x58, // Frequency Percentage (87.5%)
0x0, // Power
0x0, // Transition Latency
0xF, // Control THT_EN:1 THTL_DTY:111
0x0, // Status

}`

Package() {
0x4B, // Frequency Percentage (75%)
0x0, // Power
0x0, // Transition Latency
0xE, // Control THT_EN:1 THTL_DTY:110
0x0, // Status

}
})

Name (_TSD, Package()
{

Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0,
// OSPM Coordinate, 2 Procs

}) // End of _TSD object

326 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method (_TPC, 0) // Throttling Present Capabilities method
{

If (_SB.AC)
{

Return(0) // All Throttle States are available for use.
}
Else
{

Return(2) // Throttle States 0 an 1 won’t be used.
}

} // End of _TPC method
} // End of processor object list

8.4.3.5 _TDL (T-state Depth Limit)

This optional object evaluates to the _TSS entry number of the lowest power throttling state that OSPM
may use. _TDL enables the platform to limit the amount of performance reduction that OSPM may invoke
using processor throttling controls in an attempt to alleviate an adverse thermal condition. OSPM may
choose the corresponding state entry in the _TSS as indicated by the value returned by the _TDL object or a
higher performance (lower numbered) state entry in the _TSS down to and including the _TSS entry
number returned by the _TPC object or the first entry in the table (if _TPC is not implemented). The value
returned by the _TDL object must be greater than or equal to the value returned by the _TPC object or the
corresponding value to the last entry in the _TSS if _TPC is not implemented. In the event of a conflict
between the values returned by the evaluation of the _TDL and _TPC objects, OSPM gives precedence to
the _TPC object, limiting power consumption.

Arguments:
None

Return Value:
An Integer containing the Throttling Depth Limit _TSS entry number:

0 – throttling disabled.

1 – state 1 is the lowest power T-state available.

2 – state 2 is the lowest power T-state available.

…

n – state n is the lowest power T-state available.

In order for the platform to dynamically indicate the limit of performance reduction that is available for
OSPM use, Notify events on the processor object of type 0x82 will cause OSPM to reevaluate any _TDL
object in the processor’s object list. This allows AML code to notify OSPM when the number of supported
throttling states may have changed as a result of an asynchronous event. OSPM ignores _TDL Notify
events on platforms that support P-states unless the platform has limited OSPM’s use of P-states to the
lowest power P-state. OSPM may choose to disregard any platform conveyed T-state depth limits when the
platform enables OSPM usage of other than the lowest power P-state.

8.4.4 Processor Performance Control

Processor performance control is implemented through three optional objects whose presence indicates to
OSPM that the platform and CPU are capable of supporting multiple performance states. The platform
must supply all three objects if processor performance control is implemented. The platform must expose
processor performance control objects for either all or none of its processors. The processor performance
control objects define the supported processor performance states, allow the processor to be placed in a
specific performance state, and report the number of performance states currently available on the system.

In a multiprocessing environment, all CPUs must support the same number of performance states and each
processor performance state must have identical performance and power-consumption parameters.
Performance objects must be present under each processor object in the system for OSPM to utilize this
feature.

Processor performance control objects include the ‘_PCT’ package, ‘_PSS’ package, and the ‘_PPC’
method as detailed below.

Processor Configuration and Control 327

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.4.4.1 _PCT (Performance Control)

This optional object declares an interface that allows OSPM to transition the processor into a performance
state. OSPM performs processor performance transitions by writing the performance state–specific control
value to a Performance Control Register (PERF_CTRL).

OSPM may select a processor performance state as indicated by the performance state value returned by
the _PPC method, or any lower power (higher numbered) state. The control value to write is contained in
the corresponding _PSS entry’s “Control” field.

Success or failure of the processor performance transition is determined by reading a Performance Status
Register (PERF_STATUS) to determine the processor’s current performance state. If the transition was
successful, the value read from PERF_STATUS will match the “Status” field in the _PSS entry that
corresponds to the desired processor performance state.

Arguments:
None

Return Value:
A Package as described below

Return Value Information

Package
{

ControlRegister // Buffer (Resource Descriptor)
StatusRegister // Buffer (Resource Descriptor)

}

Table 8-6 _PCT Package Values

Element Object Type Description

Control
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the performance control register.

Status
Register

Buffer Contains a Resource Descriptor with a single Register() descriptor that
describes the performance status register.

Example

Name (_PCT, Package()
{

ResourceTemplate(){Perf_Ctrl_Register}, //Generic Register Descriptor
ResourceTemplate(){Perf_Status_Register} //Generic Register Descriptor

}) // End of _PCT

8.4.4.2 _PSS (Performance Supported States)

This optional object indicates to OSPM the number of supported processor performance states that any
given system can support. This object evaluates to a packaged list of information about available
performance states including internal CPU core frequency, typical power dissipation, control register
values needed to transition between performance states, and status register values that allow OSPM to
verify performance transition status after any OS-initiated transition change request. The list is sorted in
descending order by typical power dissipation. As a result, the zeroth entry describes the highest
performance state and the ‘nth’ entry describes the lowest performance state.

Arguments:
None

Return Value:
A variable-length Package containing a list of Pstate sub-packages as described below

328 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value Information

Package {
PState [0] // Package – Performance state 0
….
PState [n] // Package – Performance state n

}

Each Pstate sub-Package contains the elements described below:

Package {
CoreFrequency // Integer (DWORD)
Power // Integer (DWORD)
Latency // Integer (DWORD)
BusMasterLatency // Integer (DWORD)
Control // Integer (DWORD)
Status // Integer (DWORD)

}

Table 8-7 PState Package Values

Element Object Type Description

Core
Frequency

Integer
(DWORD)

Indicates the core CPU operating frequency (in MHz).

Power Integer
(DWORD)

Indicates the performance state’s maximum power dissipation (in
milliwatts).

Latency Integer
(DWORD)

Indicates the worst-case latency in microseconds that the CPU is
unavailable during a transition from any performance state to this
performance state.

Bus Master
Latency

Integer
(DWORD)

Indicates the worst-case latency in microseconds that Bus Masters are
prevented from accessing memory during a transition from any
performance state to this performance state.

Control Integer
(DWORD)

Indicates the value to be written to the Performance Control Register
(PERF_CTRL) in order to initiate a transition to the performance state.

Status Integer
(DWORD)

Indicates the value that OSPM will compare to a value read from the
Performance Status Register (PERF_STATUS) to ensure that the transition
to the performance state was successful. OSPM may always place the CPU
in the lowest power state, but additional states are only available when
indicated by the _PPC method.

8.4.4.3 _PPC (Performance Present Capabilities)

This optional object is a method that dynamically indicates to OSPM the number of performance states
currently supported by the platform. This method returns a number that indicates the _PSS entry number of
the highest performance state that OSPM can use at a given time. OSPM may choose the corresponding
state entry in the _PSS as indicated by the value returned by the _PPC method or any lower power (higher
numbered) state entry in the _PSS.

Processor Configuration and Control 329

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer containing the range of states supported

0 – States 0 through nth state are available (all states available)
1 – States 1 through nth state are available
2 – States 2 through nth state are available
…
n – State n is available only

In order to support dynamic changes of _PPC object, Notify events on the processor object are allowed.
Notify events of type 0x80 will cause OSPM to reevaluate any _PPC objects residing under the particular
processor object notified. This allows AML code to notify OSPM when the number of supported states may
have changed as a result of an asynchronous event (AC insertion/removal, docked, undocked, and so on).

8.4.4.3.1 OSPM _OST Evaluation

When processing of the _PPC object evaluation completes, OSPM evaluates the _OST object, if present
under the Processor device, to convey _PPC evaluation status to the platform. _OST arguments specific to
_PPC evaluation are described below.

Arguments: (2)
Arg0 – Source Event (Integer) : 0x80
Arg1 – Status Code (Integer) : see below

Return Value:
None

Argument Information:

Arg1 – Status Code

0: Success – OSPM is now using the performance states specified
1: Failure – OSPM has not changed the number of performance states in use.

8.4.4.4 Processor Performance Control Example

Example

This is an example of processor performance control objects in a processor object list.

In this example, a uniprocessor platform that has processor performance capabilities with support for three
performance states as follows:

1. 500 MHz (8.2W) supported at any time
2. 600 MHz (14.9W) supported only when AC powered
3. 650 MHz (21.5W) supported only when docked

It takes no more than 500 microseconds to transition from one performance state to any other performance
state.

During a performance transition, bus masters are unable to access memory for a maximum of 300
microseconds.

The PERF_CTRL and PERF_STATUS registers are implemented as Functional Fixed Hardware.

The following ASL objects are implemented within the system:

_SB.DOCK:Evaluates to 1 if system is docked, zero otherwise.

_SB.AC: Evaluates to 1 if AC is connected, zero otherwise.

330 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{
Name(_PCT, Package () // Performance Control object
{

ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS

}) // End of _PCT object

Name (_PSS, Package()
{

Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)

}) // End of _PSS object

Method (_PPC, 0) // Performance Present Capabilities method
{

If (_SB.DOCK)
{

Return(0) // All _PSS states available (650, 600, 500).
}
If (_SB.AC)
{

Return(1) // States 1 and 2 available (600, 500).
}
Else
{

Return(2) // State 2 available (500)
}

} // End of _PPC method
} // End of processor object list

The platform will issue a Notify(_SB.CPU0, 0x80) to inform OSPM to re-evaluate this object when the
number of available processor performance states changes.

8.4.4.5 _PSD (P-State Dependency)

This optional object provides P-state control cross logical processor dependency information to OSPM. The
_PSD object evaluates to a packaged list of information that correlates with the P-state information returned
by the _PSS object. Each packaged list entry identifies a dependency domain number for the logical
processor’s P-states, the coordination type for that P-state, and the number of logical processors belonging
to the domain.

Arguments:
None

Return Value:
A variable-length Package containing a list of P-state dependency Packages as described below.

Return Value Information

Package {
PStateDependency[0] // Package
….
PStateDependency[n] // Package

}

Processor Configuration and Control 331

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Each PStateDependency sub-Package contains the elements described below:

Package {
NumEntries // Integer
Revision // Integer (BYTE)
Domain // Integer (DWORD)
CoordType // Integer (DWORD)
NumProcessors // Integer (DWORD)

}

Table 8-8 PStateDependency Package Values

Element Object Type Description

NumEntries Integer The number of entries in the PStateDependency package including this
field. Current value is 5.

Revision Integer
(BYTE)

The revision number of the PStateDependency package format. Current
value is 0.

Domain Integer
(DWORD)

The dependency domain number to which this P state entry belongs.

CoordType Integer
(DWORD)

The type of coordination that exists (hardware) or is required (software) as
a result of the underlying hardware dependency. Could be either 0xFC
(SW_ALL), 0xFD (SW_ANY) or 0xFE (HW_ALL) indicating whether
OSPM is responsible for coordinating the P-state transitions among
processors with dependencies (and needs to initiate the transition on all or
any processor in the domain) or whether the hardware will perform this
coordination.

Num
Processors

Integer
(DWORD)

The number of processors belonging to the domain for this logical
processor’s P-states. OSPM will not start performing power state
transitions to a particular P-state until this number of processors belonging
to the same domain have been detected and started.

Example

This is an example usage of the _PSD structure in a Processor structure in the namespace. The example
represents a two processor configuration with three performance states per processor. For all performance
states, there exists dependence between the two processors, such that one processor transitioning to a
particular performance state, causes the other processor to transition to the same performance state. OSPM
will be required to coordinate the P-state transitions between the two processors and can initiate a transition
on either processor to cause both to transition to the common target P-state.

332 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Processor (
_SB.CPU0, // Processor Name
1, // ACPI Processor number
0x120, // PBlk system IO address
6) // PBlkLen

{
Name(_PCT, Package () // Performance Control object
{

ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS

}) // End of _PCT object

Name (_PSS, Package()
{

Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)

}) // End of _PSS object

Method (_PPC, 0) // Performance Present Capabilities method
{
} // End of _PPC method

Name (_PSD, Package()
{

Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0), Domain 0, OSPM
// Coordinate, Initiate on any Proc, 2 Procs

}) // End of _PSD object
} // End of processor object list

Processor (
_SB.CPU1, // Processor Name
2, // ACPI Processor number
, // PBlk system IO address
) // PBlkLen

{
Name(_PCT, Package () // Performance Control object
{

ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}, // PERF_CTRL
ResourceTemplate(){Register(FFixedHW, 0, 0, 0)} // PERF_STATUS

}) // End of _PCT object

Name (_PSS, Package()
{

Package(){650, 21500, 500, 300, 0x00, 0x08}, // Performance State zero (P0)
Package(){600, 14900, 500, 300, 0x01, 0x05}, // Performance State one (P1)
Package(){500, 8200, 500, 300, 0x02, 0x06} // Performance State two (P2)

}) // End of _PSS object

Method (_PPC, 0) // Performance Present Capabilities method
{
} // End of _PPC method

Name (_PSD, Package()
{

Package(){5, 0, 0, 0xFD, 2} // 5 entries, Revision 0, Domain 0, OSPM
// Coordinate, Initiate on any Proc, 2 Procs

}) // End of _PSD object
} // End of processor object list

8.4.4.6 _PDL (P-state Depth Limit)

This optional object evaluates to the _PSS entry number of the lowest performance P-state that OSPM may
use when performing passive thermal control. OSPM may choose the corresponding state entry in the _PSS
as indicated by the value returned by the _PDL object or a higher performance (lower numbered) state
entry in the _PSS down to and including the _PSS entry number returned by the _PPC object or the first
entry in the table (if _PPC is not implemented). The value returned by the _PDL object must be greater
than or equal to the value returned by the _PPC object or the corresponding value to the last entry in the

Processor Configuration and Control 333

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_PSS if _PPC is not implemented. In the event of a conflict between the values returned by the evaluation
of the _PDL and _PPC objects, OSPM gives precedence to the _PPC object, limiting power consumption.

Arguments:
None

Return Value:
An Integer containing the P-state Depth Limit _PSS entry number:

0 – P0 is the only P-state available for OSPM use

1 – state 1 is the lowest power P-state available

2 – state 2 is the lowest power P-state available

…

n – state n is the lowest power P-state available

In order for the platform to dynamically indicate a change in the P-state depth limit, Notify events on the
processor object of type 0x80 will cause OSPM to reevaluate any _PDL object in the processor’s object
list. This allows AML code to notify OSPM when the number of supported performance states may have
changed as a result of an asynchronous event.

8.4.5 _PPE (Polling for Platform Errors)

This optional object, when present, is evaluated by OSPM to determine if the processor should be polled to
retrieve corrected platform error information. This object augments /overrides information provided in the
CPEP , if supplied. See section 5.2.17 “Corrected Platform Error Polling Table (CPEP)”.

Arguments:
None

Return Value:
An Integer containing the recommended polling interval in milliseconds.

0 – OSPM should not poll this processor.
Other values – OSPM should poll this processor at <= the specified interval.

OSPM evaluates the _PPE object during processor object initialization and Bus Check notification
processing.

8.5 Processor Aggregator Device

The following section describes the definition and operation of the optional Processor Aggregator device.
The Processor Aggregator Device provides a control point that enables the platform to perform specific
processor configuration and control that applies to all processors in the platform.

The Plug and Play ID of the Processor Aggregator Device is ACPI000C.

Table 8-9: Processor Aggregator Device Objects

Object Description

_PUR Requests a number of logical processors to be placed in an idle state

8.5.1 Logical Processor Idling
In order to reduce the platform’s power consumption, the platform may direct OSPM to remove a logical
processor from the operating system scheduler’s list of processors where non-processor affinitized work is
dispatched. This capability is known as Logical Processor Idling and provides a means to reduce platform
power consumption without undergoing processor ejection / insertion processing overhead. Interrupts
directed to a logical processor and processor affinitized workloads will impede the effectiveness of logical
processor idling in reducing power consumption as OSPM is not expected to retarget this work when a
logical processor is idled.

334 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

8.5.1.1 _PUR (Processor Utilization Request)

The _PUR object is an optional object that may be declared under the Processor Aggregator Device and
provides a means for the platform to indicate to OSPM the number of logical processors to be idled.
OSPM evaluates the _PUR object as a result of the processing of a Notify event on the Processor
Aggregator device object of type 0x80.

Arguments:
None

Return Value:
A Package as described below.

Return Value Information

Package
{

RevisionID // Integer: Current value is 1
NumProcessors // Integer

}

The NumProcessors package element conveys the number of logical processors that the platform wants
OSPM to idle. This number is an absolute value. OSPM increments or decrements the number of logical
processors placed in the idle state to equal the NumProcessors value as possible. A NumProcessors value of
zero causes OSPM to place all logical processor in the active state as possible.

OSPM uses internal logical processor to physical core and package topology knowledge to idle logical
processors successively in an order that maximizes power reduction benefit from idling requests. For
example, all SMT threads constituting logical processors on a single processing core should be idled to
allow the core to enter a low power state before idling SMT threads constituting logical processors on
another core.

8.5.1.1.1 OSPM _OST Evaluation

When processing of the _PUR object evaluation completes, OSPM evaluates the _OST object, if present
under the Processor Aggregator device, to convey _PUR evaluation status to the platform. _OST arguments
specific to _PUR evaluation are described below.

Arguments: (3)
Arg0 – Source Event (Integer) : 0x80
Arg1 – Status Code (Integer) : see below
Arg2 – Idled Procs (Buffer) : see below

Return Value:
None

Argument Information:

Arg1 – Status Code

0: success – OSPM idled the number of logical processors indicated by the value of Arg2
1: no action was performed

Arg2 – A 4-byte buffer that represents a DWORD that is the number of logical processors that are now
idled)

The platform may request a number of logical processors to be idled that exceeds the available number of
logical processors that can be idled from an OSPM context for the following reasons:

 The requested number is larger than the number of logical processors currently defined.
 Not all the defined logical processors were onlined by the OS (for example. for licensing reasons)
 Logical processors critical to OS function (for example, the BSP) cannot be idled.

ACPI-Defined Devices and Device Specific Objects 335

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9 ACPI-Defined Devices and Device Specific Objects

This section describes ACPI defined devices and device-specific objects. The system status indicator
objects, declared under the _SI scope in the ACPI Namespace, are also specified in this section.

9.1 _SI System Indicators

ACPI provides an interface for a variety of simple and icon-style indicators on a system. All indicator
controls are in the _SI portion of the namespace. The following table lists all defined system indicators.
(Notice that there are also per-device indicators specified for battery devices).

Table 9-1 System Indicator Control Methods

Object Description

_SST System status indicator

_MSG Messages waiting indicator

_BLT Battery Level Threshold

9.1.1 _SST (System Status)

This optional object is a control method that OSPM invokes to set the system status indicator as desired.

Arguments: (1)
Arg0 – An Integer containing the system status indicator identifier

0 – No system state indication. Indicator off
1 – Working
2 – Waking
3 – Sleeping. Used to indicate system state S1, S2, or S3
4 – Sleeping with context saved to non-volatile storage

Return Value:
None

9.1.2 _MSG (Message)

This control method sets the system’s message-waiting status indicator.

Arguments: (1)
Arg0 – An Integer containing the number of waiting messages

Return Value:
None

9.1.3 _BLT (Battery Level Threshold)

This optional control method is used by OSPM to indicate to the platform the user’s preference for various
battery level thresholds. This method allows platform battery indicators to be synchronized with OSPM
provided battery notification levels. Note that if _BLT is implemented on a multi-battery system, it is
required that the power unit for all batteries must be the same. See section 10.2 for more details on battery
levels.

Arguments: (3)
Arg0 – An Integer containing the preferred threshold for the battery warning level
Arg1 – An Integer containing the preferred threshold for the battery low level
Arg2 – An Integer containing the preferred threshold for the battery wake level

Return Value:
None

336 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Additional Information

The battery warning level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending
on the Power Units value) is the user’s preference for battery warning. If the level specified is less than the
design capacity of warning, it may be ignored by the platform so that the platform can ensure a successful
wake on low battery.

The battery low level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending on the
Power Units value) is the user’s preference for battery low. If this level is less than the design capacity of
low, it may be ignored by the platform.

The battery wake level in the range 0x00000001 – 0x7FFFFFFF (in units of mWh or mAh, depending on
the Power Units value) is the user’s preference for battery wake. If this level is less than the platform’s
current wake on low battery level, it may be ignored by the platform. If the platform does not support a
configurable wake on low battery level, this may be ignored by the platform.

9.2 Ambient Light Sensor Device

The following section illustrates the operation and definition of the control method-based Ambient Light
Sensor (ALS) device.

The ambient light sensor device can optionally support power management objects (e.g. _PS0, _PS3) to
allow the OS to manage the device’s power consumption.

The Plug and Play ID of an ACPI control method ambient light sensor device is ACPI0008.

Table 9-2: Control Method Ambient Light Sensor Device

Object Description

_ALI The current ambient light illuminance reading in lux (lumen per square meter). [Required]

_ALC The current ambient light color chromaticity reading, specified using x and y coordinates per
the CIE Yxy color model. [Optional]

_ALT The current ambient light color temperature reading in degrees Kelvin. [Optional]

_ALR Returns a set of ambient light illuminance to display brightness mappings that can be used by
an OS to calibrate its ambient light policy. [Required]

_ALP Ambient light sensor polling frequency in tenths of seconds. [Optional]

9.2.1 Overview

This definition provides a standard interface by which the OS may query properties of the ambient light
environment the system is currently operating in, as well as the ability to detect meaningful changes in
these values when the environment changes. Two ambient light properties are currently supported by this
interface: illuminance and color.

Ambient light illuminance readings are obtained via the _ALI method. Illuminance readings indicate the
amount of light incident upon (falling on) a specified surface area. Values are specified in lux (lumen per
square meter) and give an indication of how “bright” the environment is. For example, an overcast day is
roughly 1000 lux, a typical office environment 300-400 lux, and a dimly-lit conference room around 10
lux.

A possible use of ambient light illuminance data by the OS is to automatically adjust the brightness (or
luminance) of the display device – e.g. increase display luminance in brightly-lit environments and
decrease display luminance in dimly-lit environments. Note that Luminance is a measure of light radiated
(reflected, transmitted, or emitted) by a surface, and is typically measured in nits. The _ALR method
provides a set of ambient light illuminance to display luminance mappings that can be used by an OS to
calibrate its policy for a given platform configuration.

ACPI-Defined Devices and Device Specific Objects 337

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Ambient light color readings are obtained via the _ALT and/or _ALC methods. Two methods are defined
to allow varying types/complexities of ambient light sensor hardware to be used. _ALT returns color
temperature readings in degrees Kelvin. Color temperature values correlate a light source to a standard
black body radiator and give an indication of the type of light source present in a given environment (e.g.
daylight, fluorescent, incandescent). ALC returns color chromaticity readings per the CIE Yxy color model.
Chromaticity x and y coordinates provide a more straightforward indication of ambient light color
characteristics. Note that the CIE Yxy color model is defined by the International Commission on
Illumination (abbreviated as CIE from its French title Commission Internationale de l'Eclairage) and is
based on human perception instead of absolute color.

A possible use of ambient light color data by the OS is to automatically adjust the color of displayed
images depending on the environment the images are being viewed in. This may be especially important for
reflective/transflective displays where the type of ambient light may have a large impact on the colors
perceived by the user.

9.2.2 _ALI (Ambient Light Illuminance)

This control method returns the current ambient light illuminance reading in lux (lumen per square meter).
Expected values range from ~1 lux for a dark room, ~300 lux for a typical office environment, and 10,000+
lux for daytime outdoor environments – although readings may vary depending on the location of the
sensor to the light source. Special values are reserved to indicate out of range conditions (see below).

Arguments:
None

Return Value:
An Integer containing the ambient light brightness in lux (lumens per square meter)

0 – The current reading is below the supported range or sensitivity of the sensor
Ones (-1) – The current reading is above the supported range or sensitivity of the sensor
Other values – The current ambient light brightness in lux (lumens per square meter)

9.2.3 _ALT (Ambient Light Temperature)

This optional control method returns the current ambient light color temperature reading in degrees Kelvin
(°K). Lower color temperatures imply warmer light (emphasis on yellow and red); higher color
temperatures imply a colder light (emphasis on blue). This value can be used to gauge various properties of
the lighting environment – for example, the type of light source. Expected values range from ~1500°K for
candlelight, ~3000°K for a 200-Watt incandescent bulb, and ~5500°K for full sunlight on a summer day –
although readings may vary depending on the location of the sensor to the light source. Special values are
reserved to indicate out of range conditions (see below).

Arguments:
None

Return Value:
An Integer containing the ambient light temperature in degrees Kelvin

0 – The current reading is below the supported range or sensitivity of the sensor
Ones (-1) – The current reading is above the supported range or sensitivity of the sensor
Other values – The current ambient light temperature in degrees Kelvin

9.2.4 _ALC (Ambient Light Color Chromaticity)

This optional control method returns the current ambient light color chromaticity readings per the CIE Yxy
color model. The x and y (chromaticity) coordinates are specified using a fixed 10-4 notation due to the lack
of floating point values in ACPI. Valid values are within the range 0 (0x0000) through 1 (0x2710). A single
32-bit integer value is used, where the x coordinate is stored in the high word and the y coordinate in the
low word. For example, the value 0x0C370CDA would be used to specify the white point for the CIE
Standard Illuminant D65 (a standard representation of average daylight) with x = 0.3127 and y = 0.3290.
Special values are reserved to indicate out of range conditions (see below).

338 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer containing the ambient light temperature in degrees Kelvin

0 – The current reading is below the supported range or sensitivity of the sensor
Ones (-1) – The current reading is above the supported range or sensitivity of the sensor
Other values – The current ambient light color chromaticity x and y coordinate values, per the

CIE Yxy color model

9.2.5 _ALR (Ambient Light Response)

This object evaluates to a package of ambient light illuminance to display luminance mappings that can be
used by an OS to calibrate its ambient light policy for a given sensor configuration. The OS can use this
information to extrapolate an ALS response curve - noting that these values may be treated differently
depending on the OS implementation but should be used in some form to calibrate ALS policy.

Arguments:
None

Return Value:
A variable-length Package containing a list of luminance mapping Packages. Each mapping package
consists of two Integers

The return data is specified as a package of packages, where each tuple (inner package) consists of the pair
of Integer values of the form:

{<display luminance adjustment>, <ambient light illuminance>}

Package elements should be listed in monotonically increasing order based upon the ambient light
illuminance value (the Y-coordinate on the graph) to simplify parsing by the OS.

Ambient light illuminance values are specified in lux (lumens per square meter). Display luminance (or
brightness) adjustment values are specified using relative percentages in order simplify the means by which
these adjustments are applied in lieu of changes to the user’s display brightness preference. A value of 100
is used to indicate no (0%) display brightness adjustment given the lack of signed data types in ACPI.
Values less than 100 indicate a negative adjustment (dimming); values greater than 100 indicate a positive
adjustment (brightening). For example, a display brightness adjustment value of 75 would be interpreted as
a -25% adjustment, and a value of 110 as a +10% adjustment.

ACPI-Defined Devices and Device Specific Objects 339

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A
m

b
ie

n
t

L
ig

h
t

I l
lu

m
in

a
n

c
e

(L
u

x
)

Figure 9-1: A five-point ALS Response Curve

Figure 9-1 illustrates the use of five points to approximate an example response curve, where the dotted
line represents an approximation of the desired response (solid curve). Extrapolation of the values between
these points is OS-specific – although for the purposes of this example we’ll assume a piecewise linear
approximation. The ALS response curve (_ALR) would be specified as follows:

Name(_ALR, Package() {
Package{70, 0}, // Min (-30% adjust at 0 lux)
Package{73, 10}, // (-27% adjust at 10 lux)
Package{85, 80}, // (-15% adjust at 80 lux)
Package{100,300}, // Baseline (0% adjust at 300 lux)
Package{150,1000} // Max (+50% adjust at 1000 lux)

})

Within this data set exist three points of particular interest: baseline, min, and max. The baseline value
represents an ambient light illuminance value (in lux) for the environment where this system is most likely
to be used. When the system is operating in this ambient environment the ALS policy will apply no (0%)
adjustment to the default display brightness setting. For example, given a system with a 300 lux baseline,
operating in a typical office ambient environment (~300 lux), configured with a default display brightness
setting of 50% (e.g. 60 nits), the ALS policy would apply no backlight adjustment, resulting in an absolute
display brightness setting of 60 nits.

Min and max are used to indicate cutoff points in order to prevent an over-zealous response by the ALS
policy and to influence the policy’s mode of operation. For example, the min and max points from the
figure above would be specified as (70,0) and (150,1000) respectively – where min indicates a maximum
negative adjustment of 30% and max represents a maximum positive adjustment of 50%. Using a large
display brightness adjustment for max allows an ALS response that approaches a fully-bright display
(100% absolute) in very bright ambient environments regardless of the user’s display brightness preference.
Using a small value for max (e.g. 0% @ 300 lux) would influence the ALS policy to limit the use of this
technology solely as a power-saving feature (never brighten the display). Conversely, setting min to a 0%
adjustment instructs ALS policy to brighten but never dim.

340 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A minimum of two data points are required in the return package, interpreted as min and max. Note that the
baseline value does not have to be explicitly stated; it can be derived from the response curve. Addition
elements can be provided to fine-tune the response between these points. Figure 9-2 illustrates the use of
two data points to achieve a response similar to (but simpler than) that described in Figure 9-1.

A
m

b
ie

n
t

L
ig

h
t

I l
lu

m
in

a
n

c
e

(L
u

x
)

Figure 9-2: A two-point ALS Response Curve

This example lacks an explicit baseline and includes a min with an ambient light value above 0 lux. The
baseline can easily be extrapolated by ALS Policy (e.g. 0% adjustment at ~400 lux). All ambient light
brightness settings below min (20 lux) would be treated in a similar fashion by ALS policy (e.g. -30%
adjustment). This two-point response curve would be modeled as:

Name(_ALR, Package() {
Package{70, 30}, // Min (-30% adjust at 30 lux)
Package{150,1000} // Max (+50% adjust at 1000 lux)

})

This model can be used to convey a wide range of ambient light to display brightness responses. For
example, a transflective display – a technology where illumination of the display can be achieved by
reflecting available ambient light, but also augmented in dimly-lit environments with a backlight – could be
modeled as illustrated in Figure 9-3.

ACPI-Defined Devices and Device Specific Objects 341

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A
m

b
ie

n
t

L
ig

h
t

I l
lu

m
in

a
n

c
e

(L
u

x
)

Figure 9-3: Example Response Curve for a Transflective Display

This three-point approximation would result in an ALS response that allows the backlight to increase as the
ambient lighting decreases. In this example, no backlight adjustment is needed in bright environments
(1000+ lux), maximum backlight may be needed in dim environments (~30 lux), but a lower backlight
setting may be used in a very-dark room (~0 lux) – resulting in an elbow around 30 lux. This response
would be modeled in _ALR as follows:

Name(_ALR, Package() {
Package{180, 0} (+80% adjust at 0 lux)
Package{200, 30}, // Max (+100% adjust at 30 lux)
Package{0, 1000}, // Min (0% adjust at 1,000 lux)

})

Note the ordering of package elements: monotonically increasing from the lowest ambient light value (0
lux) to the highest ambient light value (1000 lux).

The transflective display example also highlights the need for non-zero values for the user’s display
brightness preference – which we’ll refer to as the reference display brightness value. This requirement is
derived from the model’s use of relative adjustments. For example, applying any adjustment to a 0%
reference display brightness value always results in a 0% absolute display brightness setting. Likewise,
using a very small reference display brightness (e.g. 5%) results in a muted response (e.g. +30% of 5% =
6.5% absolute). The solution is to apply a reasonably large value (e.g. 50%) as the reference display
brightness setting – even in the case where no backlight is applied. This allows relative adjustments to be
applied in a meaningful fashion while conveying to the user that the display is still usable (via reflected
light) under typical ambient conditions.

The OS derives the user’s display brightness preference (this reference value) either from the Brightness
Control Levels (_BCL) object or another OS-specific mechanism. See section 9.2.8, “Relationship to
Backlight Control Methods”, for more information.

342 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.2.6 _ALP (Ambient Light Polling)

This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this ambient
light sensor. A value of zero – or the absence of this object when other ALS objects are defined – indicates
that OSPM does not need to poll the sensor in order to detect meaningful changes in ambient light (the
hardware is capable of generating asynchronous notifications).

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in the ambient light occurs—relieving
the OS of the overhead associated with polling.

This value is specified as tenths of seconds. For example, a value of 10 would be used to indicate a 1
second polling frequency. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

Arguments:
None

Return Value:
An Integer containing the recommended polling frequency in tenths of seconds

0 – Polling by the host OS is not required
Other – The recommended polling frequency in tenths of seconds

9.2.7 Ambient Light Sensor Events

To communicate meaningful changes in ALS illuminance to OSPM, AML code should issue a
Notify(als_device, 0x80) whenever the lux reading changes more than 10% (from the last
reading that resulted in a notification). OSPM receives this notification and evaluates the _ALI control
method to determine the current ambient light status. The OS then adjusts the display brightness based
upon its ALS policy (derived from _ALR).

The definition of what constitutes a meaningful change is left to the system integrator, but should be at a
level of granularity that provides an appropriate response without overly taxing the system with
unnecessary interrupts. For example, an ALS configuration may be tuned to generate events for all changes
in ambient light illuminance that result in a minimum ±5% display brightness response (as defined by
_ALR).

To communicate meaningful changes in ALS color temperature to OSPM, AML code should issue a
Notify(als_device, 0x81) whenever the lux reading changes more than 10% (from the last
reading that resulted in a notification). OSPM receives this notification and evaluates the _ALT and _ALC
control method to determine the current ambient light color temperature.

To communicate meaningful changes in ALS response to OSPM, AML code should issue a
Notify(als_device, 0x82) whenever the set of points used to convey ambient light response has
changed. OSPM receives this notification and evaluates the _ALR object to determine the current response
points.

9.2.8 Relationship to Backlight Control Methods

The Brightness Control Levels (_BCL) method – described in section 0 – can be used to indicate user-
selectable display brightness levels. The information provided by this method indicates the available
display brightness settings, the recommended default brightness settings for AC and DC operation, and the
absolute maximum and minimum brightness settings. These values indirectly influence the operation of the
OSPM’s ALS policy.

ACPI-Defined Devices and Device Specific Objects 343

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Display brightness adjustments produced by ALS policy are relative to the current user backlight setting,
and the resulting absolute value must be mapped (rounded) to one of the levels specified in _BCL. This
introduces the requirement for fine-grain display brightness control in order to achieve a responsive ALS
system – which typically materializes as a need for additional entries in the _BCL list in order to provide
reasonable resolution to the OS (e.g. 3-10% granularity). Note that user brightness controls (e.g. hotkeys)
are not required to make use of all levels specified in _BCL.

9.3 Battery Device

A battery device is required to either have an ACPI Smart Battery Table or a Control Method Battery
interface. In the case of an ACPI Smart Battery Table, the Definition Block needs to include a Bus/Device
Package for the SMBus host controller. This will install an OS specific driver for the SMBus, which in turn
will locate the Smart Battery System Manager or Smart Battery Selector and Smart Battery Charger SMBus
devices.

The Control Method Battery interface is defined in section 10.2, “Control Method Batteries.”

9.4 Control Method Lid Device

Platforms containing lids convey lid status (open / closed) to OSPM using a Control Method Lid Device.

To implement a control method lid device, AML code should issue a Notify(lid_device, 0x80)
for the device whenever the lid status has changed. The _LID control method for the lid device must be
implemented to report the current state of the lid as either opened or closed.

The lid device can support _PRW and _PSW methods to select the wake functions for the lid when the lid
transitions from closed to opened.

The Plug and Play ID of an ACPI control method lid device is PNP0C0D.

Table 9-3 Control Method Lid Device

Object Description

_LID Returns the current status of the lid.

9.4.1 _LID

Evaluates to the current status of the lid.

Arguments:
None

Return Value:
An Integer containing the current lid status

0 – The lid is closed
Non-zero – The lid is open

9.5 Control Method Power and Sleep Button Devices

The system’s power or sleep button can either be implemented using the fixed register space as defined in
section 4.7.2.2, “Buttons,” or implemented in AML code as a control method power button device. In either
case, the power button override function or similar unconditional system power or reset functionality is still
implemented in external hardware.

344 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

To implement a control method power-button or sleep-button device, implement AML code that delivers
two types of notifications concerning the device. The first is Notify(Object, 0x80) to signal that the button
was pressed while the system was in the S0 state to indicate that the user wants the machine to transition
from S0 to some sleeping state. The other notification is Notify(Object, 0x2) to signal that the button was
pressed while the system was in an S1 to S4 state and to cause the system to wake. When the button is used
to wake the system, the wake notification (Notify(Object, 0x2)) must occur after OSPM actually wakes,
and a button-pressed notification (Notify(Object, 0x80)) must not occur.

The Wake Notification indicates that the system is awake because the user pressed the button and therefore
a complete system resume should occur (for example, turn on the display immediately, and so on).

9.6 Embedded Controller Device

Operation of the embedded controller host controller register interface requires that the embedded
controller driver has ACPI-specific knowledge. Specifically, the driver needs to provide an “operational
region” of its embedded controller address space, and needs to use a general-purpose event (GPE) to
service the host controller interface. For more information about an ACPI-compatible embedded controller
device, see section 12, “ACPI Embedded Controller Interface Specification.”

The embedded controller device object provides the _HID of an ACPI-integrated embedded controller
device of PNP0C09 and the host controller register locations using the device standard methods. In
addition, the embedded controller must be declared as a named device object that includes a set of control
methods. For more information, see section 12.11, “Defining an Embedded Controller Device in ACPI
Namespace”).

9.7 Generic Container Device

A generic container device is a bridge that does not require a special OS driver because the bridge does not
provide or require any features not described within the normal ACPI device functions. The resources the
bridge requires are specified via normal ACPI resource mechanisms. Device enumeration for child devices
is supported via ACPI namespace device enumeration and OS drivers require no other features of the bus.
Such a bridge device is identified with the Plug and Play ID of PNP0A05 or PNP0A06.

A generic bus bridge device is typically used for integrated bridges that have no other means of controlling
them and that have a set of well-known devices behind them. For example, a portable computer can have a
“generic bus bridge” known as an EIO bus that bridges to some number of Super-I/O devices. The bridged
resources are likely to be positively decoded as either a function of the bridge or the integrated devices. In
this example, a generic bus bridge device would be used to declare the bridge then child devices would be
declared below the bridge; representing the integrated Super-I/O devices.

9.8 ATA Controller Devices

There are two types of ATA Controllers: IDE controllers (also known as ATA controllers) and Serial ATA
(SATA) controllers. IDE controllers are those using the traditional IDE programming interface, and may
support Parallel ATA (P-ATA) or SATA connections. SATA controllers may be designed to operate in
emulation mode only, native mode only, or they may be designed to support both native and non-native
SATA modes. Regardless of the mode supported, SATA controllers are designed to work solely with drives
supporting the Serial ATA physical interface. As described below, SATA controllers are treated similarly
but not identically to traditional IDE controllers.

Platforms that contain controllers that support native and non-native SATA modes must take steps to
ensure the proper objects are placed in the namespace for the mode in which they are operating.

ACPI-Defined Devices and Device Specific Objects 345

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 9-4 ATA Specific Objects

Object Description Controller
Type

_GTF Optional object that returns the ATA task file needed to re-initialize the
drive to boot up defaults.

Both

_GTM Optional object that returns the IDE controller timing information. IDE-only

_STM Optional control method that sets the IDE controller’s transfer timing
settings.

IDE-only

_SDD Optional control method that informs the platform of the type of device
attached to a port.

SATA-only

9.8.1 Objects for Both ATA and SATA Controllers

9.8.1.1 _GTF (Get Task File)

This optional object returns a buffer containing the ATA commands used to restore the drive to boot up
defaults (that is, the state of the drive after POST). The returned buffer is an array with each element in the
array consisting of seven 8-bit register values (56 bits) corresponding to ATA task registers 1F1 thru 1F7.
Each entry in the array defines a command to the drive.

Arguments:
None

Return Value:
A Buffer containing a byte stream of ATA commands for the drive

This object may appear under SATA port device objects or under IDE channel objects.

ATA task file array definition:
 Seven register values for command 1

Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
 Seven register values for command 2

Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
 Seven register values for command 3

Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)

Etc.

After powering up the drive, OSPM will send these commands to the drive, in the order specified. On
SATA HBAs, OSPM evaluates _SDD before evaluating _GTF. The IDE driver may modify some of the
feature commands or append its own to better tune the drive for OSPM features before sending the
commands to the drive.

This Control Method is listed under each drive device object. OSPM must evaluate the _STM object or the
_SDD object before evaluating the _GTF object.

Example of the return from _GTF:

Method(_GTF, 0x0, NotSerialized)
{

Return(GTF0)
}
Name(GTF0, Buffer(0x1c)
{

0x03, 0x00, 0x00, 0x00, 0x00, 0xa0, 0xef, 0x03, 0x00, 0x00, 0x00, 0x00,
0xa0, 0xef, 0x00, 0x10, 0x00, 0x00, 0x00, 0xa0, 0xc6, 0x00, 0x00, 0x00,
0x00, 0x00, 0xa0, 0x91

}

346 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.8.2 IDE Controller Device

Most device drivers can save and restore the registers of their device. For IDE controllers and drives, this is
not true because there are several drive settings for which ATA does not provide mechanisms to read.
Further, there is no industry standard for setting timing information for IDE controllers. Because of this,
ACPI interface mechanisms are necessary to provide the operating system information about the current
settings for the drive and channel, and for setting the timing for the channel.

OSPM and the IDE driver will follow these steps when powering off the IDE subsystem:

1. The IDE driver will call the _GTM control method to get the current transfer timing settings for
the IDE channel. This includes information about DMA and PIO modes.

2. The IDE driver will call the standard OS services to power down the drives and channel.

3. As a result, OSPM will execute the appropriate _PS3 methods and turn off unneeded power
resources.

To power on the IDE subsystem, OSPM and the IDE driver will follow these steps:

1. The IDE driver will call the standard OS services to turn on the drives and channel.

2. As a result, OSPM will execute the appropriate _PS0 methods and turn on required power
resources.

3. The IDE driver will call the _STM control method passing in transfer timing settings for the
channel, as well as the ATA drive ID block for each drive on the channel. The _STM control
method will configure the IDE channel based on this information.

4. For each drive on the IDE channel, the IDE driver will run the _GTF to determine the ATA
commands required to reinitialize each drive to boot up defaults.

5. The IDE driver will finish initializing the drives by sending these ATA commands to the drives,
possibly modifying or adding commands to suit the features supported by the operating system.

The following shows the namespace for these objects:


_SB // System bus

PCI0 // PCI bus
IDE1 // First IDE channel

_ADR // Indicates address of the channel on the PCI bus
_GTM // Control method to get current IDE channel settings
_STM // Control method to set current IDE channel settings
_PR0 // Power resources needed for D0 power state
DRV1 // Drive 0

_ADR // Indicates address of master IDE device
_GTF // Control method to get task file

DRV2 // Drive 1
_ _ADR // Indicates address of slave IDE device
_ _GTF // Control method to get task file

IDE2 // Second IDE channel
_ADR // Indicates address of the channel on the PCI bus
_GTM // Control method to get current IDE channel settings
_STM // Control method to set current IDE channel settings
_PR0 // Power resources needed for D0 power state
DRV1 // Drive 0

_ADR // Indicates address of master IDE device
_GTF // Control method to get task file

DRV2 // Drive 1
_ADR // Indicates address of slave IDE device
_GTF // Control method to get task file



ACPI-Defined Devices and Device Specific Objects 347

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The sequential order of operations is as follows:

Powering down:

 Call _GTM.

 Power down drive (calls _PS3 method and turns off power planes).

Powering up:

 Power up drive (calls _PS0 method if present and turns on power planes).

 Call _STM passing info from _GTM (possibly modified), with ID data from

 each drive.

 Initialize the channel.

 May modify the results of _GTF.

 For each drive:

Call _GTF.

Execute task file (possibly modified).

9.8.2.1 IDE Controller-specific Objects

9.8.2.1.1 _GTM (Get Timing Mode)

This Control Method exists under each channel device object and returns the current settings for the IDE
channel.

Arguments:
None

Return Value:
A Buffer containing the current IDE channel timing information block as described in table 9-5 below.

_GTM returns a buffer with the following format

Buffer (){
PIO Speed 0 //DWORD
DMA Speed 0 //DWORD
PIO Speed 1 //DWORD
DMA Speed 1 //DWORD
Flags //DWORD

}

Table 9-5 _GTM Method Result Codes

Field Format Description

PIO Speed 0 DWORD The PIO bus-cycle timing for drive 0 in nanoseconds. 0xFFFFFFFF
indicates that this mode is not supported by the channel. If the chipset
cannot set timing parameters independently for each drive, this field
represents the timing for both drives.

DMA Speed 0 DWORD The DMA bus-cycle for drive 0 timing in nanoseconds. If Bit 0 of the
Flags register is set, this DMA timing is for UltraDMA mode,
otherwise the timing is for multi-word DMA mode. 0xFFFFFFFF
indicates that this mode is not supported by the channel. If the chipset
cannot set timing parameters independently for each drive, this field
represents the timing for both drives.

PIO Speed 1 DWORD The PIO bus-cycle timing for drive 1 in nanoseconds. 0xFFFFFFFF
indicates that this mode is not supported by the channel. If the chipset
cannot set timing parameters independently for each drive, this field
must be 0xFFFFFFFF.

348 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

DMA Speed 1 DWORD The DMA bus-cycle timing for drive 1 in nanoseconds. If Bit 0 of the
Flags register is set, this DMA timing is for UltraDMA mode,
otherwise the timing is for multi-word DMA mode. 0xFFFFFFFF
indicates that this mode is not supported by the channel. If the chipset
cannot set timing parameters independently for each drive, this field
must be 0xFFFFFFFF.

Flags DWORD Mode flags
Bit[0]: 1 indicates using UltraDMA on drive 0
Bit[1]: 1 indicates IOChannelReady is used on drive 0

Bit[2]: 1 indicates using UltraDMA on drive 1
Bit[3]: 1 indicates IOChannelReady is used on drive 1

Bit[4]: 1 indicates chipset can set timing independently for each drive

Bits[5-31]: reserved (must be 0)

9.8.2.1.2 _STM (Set Timing Mode)

This Control Method sets the IDE channel’s transfer timings to the setting requested. The AML code is
required to convert and set the nanoseconds timing to the appropriate transfer mode settings for the IDE
controller. _STM may also make adjustments so that _GTF control methods return the correct commands
for the current channel settings.

This control method takes three arguments: Channel timing information (as described in Table 9-6), and the
ATA drive ID block for each drive on the channel. The channel timing information is not guaranteed to be
the same values as returned by _GTM; the OS may tune these values as needed.

Arguments: (3)
Arg0 – A Buffer containing a channel timing information block (described in Table 9-6)
Arg1 – A Buffer containing the ATA drive ID block for channel 0
Arg2 – A Buffer containing the ATA drive ID block for channel 1

Return Value:
None

The ATA drive ID block is the raw data returned by the Identify Drive ATA command, which has the
command code “0ECh.” The _STM control method is responsible for correcting for drives that misreport
their timing information.

9.8.3 Serial ATA (SATA) Controller Device

9.8.3.1 Definitions

HBA – Host Bus Adapter

Native SATA aware – Refers to system software (BIOS, option ROM, operating system, etc) that
comprehends a particular SATA HBA implementation and understands its programming interface and
power management behavior.

Non-native SATA aware - Refers to system software (BIOS, option ROM, operating system, etc) that
does not comprehend a particular SATA HBA implementation and does not understand its programming
interface or power management behavior. Typically, non-native SATA aware software will use a SATA
HBA’s emulation interface (e.g. task file registers) to control the HBA and access its devices.

Emulation mode – Optional mode supported by a SATA HBA. Allows non-native SATA aware software
to access SATA devices via traditional task file registers.

ACPI-Defined Devices and Device Specific Objects 349

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Native mode – Optional mode supported by a SATA HBA. Allows native SATA aware software to access
SATA devices via registers that are specific to the HBA.

Hybrid Device – Refers to a SATA HBA that implements both an emulation and a native programming
interface.

9.8.3.2 Overview

A SATA HBA differs from an IDE controller in a number of ways. First, it can save its complete device
context. Second, it replaces IDE channels, which may support up to 2 attached devices, with ports, which
support only a single attached device, unless a port multiplier is present. See the SATA spec
(http://www.serialata.org/collateral/index.shtml) for more information. Finally, SATA does not require
timing information from the platform, allowing a simplification in how SATA controllers are represented in
ACPI. (_GTM and _STM are replaced by the simpler _SDD method.)

All ports, even those attached off a port multiplier, are represented as children directly under the SATA
controller device. This is practical because the SATA specification does not allow a port multiplier to be
attached to a port multiplier. Each port’s _ADR indicates to which root port they are connected, as well as
the port multiplier location, if applicable. (See Table 6-2 for _ADR format.)

Since this specification only covers the configuration of motherboard devices, it is also the case that the
control methods defined in this section cannot be used to send taskfiles to devices attached via either an
add-in SATA HBA, or attached via a motherboard SATA HBA, if used with a port multiplier that is not
also on the motherboard.

The following shows an example SATA namespace:

_SB - System bus
PCI0 - PCI bus

SATA - SATA Controller device
ADR - Indicates address of the controller on the PCI bus
PR0 - Power resources needed for D0 power state
PRT0 - Port 0 device

_ADR - Indicates physical port and port multiplier topology
_SDD - Identify information for drive attached to this port
_GTF - Control method to get task file

PRTn - Port n device
_ADR - Indicates physical port and port multiplier topology
_SDD - Identify information for drive attached to this port
_GTF - Control method to get task file

9.8.3.3 SATA controller-specific control methods

In order to ensure proper interaction between OSPM, the firmware, and devices attached to the SATA
controller, it is a requirement that OSPM execute the _SDD and _GTF control methods when certain events
occur. OSPM’s response to events must be as follows:

COMRESET, Initial OS load, device insertion, HBA D3 to D0 transition, asynchronous loss of signal:
1. OSPM sends IDENTIFY DEVICE or IDENTIFY PACKET DEVICE command to the attached device.
2. OS executes _SDD. _SDD control method requires 1 argument that consists of the data block received

from an attached device as a result of a host issued IDENTIFY DEVICE or IDENTIFY PACKET
DEVICE command.

3. After the _SDD method completes, the OS executes the _GTF method. Using the task file information
provided by _GTF, the OS then sends the _GTF taskfiles to the attached device.

Device removal and HBA D0 to D3 transition:
1. No OSPM action required.

350 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.8.3.3.1 _SDD (Set Device Data)

This optional object is a control method that conveys to the platform the type of device connected to the
port. The _SDD object may exist under a SATA port device object. The platform typically uses the
information conveyed by the _SDD object to construct the values returned by the _GTF object.

OSPM conveys to the platform the ATA drive ID block, which is the raw data returned by the Identify
(Packet) Device, ATA command (command code “0ech.”). Please see the ATA/ATAPI-6 specification for
more details.

Arguments: (1)
Arg0 – A Buffer containing an ATA drive identify block, contents described by the ATA specification

Return Value:
None

9.9 Floppy Controller Device Objects

9.9.1 _FDE (Floppy Disk Enumerate)

Enumerating devices attached to a floppy disk controller is a time-consuming function. In order to speed up
the process of floppy enumeration, ACPI defines an optional enumeration object that is defined directly
under the device object for the floppy disk controller. It returns a buffer of five 32-bit values. The first four
values are Boolean values indicating the presence or absence of the four floppy drives that are potentially
attached to the controller. A non-zero value indicates that the floppy device is present. The fifth value
returned indicates the presence or absence of a tape controller. Definitions of the tape presence value can be
found in Table 9-6.

Arguments:
None

Return Value:
A Buffer containing a floppy drive information block, as decribed below

Buffer (){
Floppy 0 // Boolean DWORD
Floppy 1 // Boolean DWORD
Floppy 2 // Boolean DWORD
Floppy 3 // Boolean DWORD
Tape // DWORD – See table below

}

Table 9-6 Tape Presence

Value Description

0 Device presence is unknown or unavailable

1 Device is present

2 Device is never present

>2 Reserved

ACPI-Defined Devices and Device Specific Objects 351

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.9.2 _FDI (Floppy Disk Information)

This object returns information about a floppy disk drive. This information is the same as that returned by
the INT 13 Function 08H on IA-PCs.

Arguments:
None

Return Value:
A Package containing the floppy disk information as a list of Integers

Package {
Drive Number // Integer (BYTE)
Device Type // Integer (BYTE)
Maximum Cylinder Number // Integer (WORD)
Maximum Sector Number // Integer (WORD)
Maximum Head Number // Integer (WORD)
disk_specify_1 // Integer (BYTE)
disk_specify_2 // Integer (BYTE)
disk_motor_wait // Integer (BYTE)
disk_sector_siz // Integer (BYTE)
disk_eot // Integer (BYTE)
disk_rw_gap // Integer (BYTE)
disk_dtl // Integer (BYTE)
disk_formt_gap // Integer (BYTE)
disk_fill // Integer (BYTE)
disk_head_sttl // Integer (BYTE)
disk_motor_strt // Integer (BYTE)

}

Table 9-7 ACPI Floppy Drive Information

Package Element Element Object Type Actual Valid Data Width

00 – Drive Number Integer BYTE

01 – Device Type Integer BYTE

02 – Maximum Cylinder Number Integer WORD

03 – Maximum Sector Number Integer WORD

04 – Maximum Head Number Integer WORD

05 – Disk_specify_1 Integer BYTE

06 – Disk_specify_2 Integer BYTE

07 – Disk_motor_wait Integer BYTE

08 – Disk_sector_siz Integer BYTE

09 – Disk_eot Integer BYTE

10 – Disk_rw_gap Integer BYTE

11 – Disk_dtl Integer BYTE

12 – Disk_formt_gap Integer BYTE

13 – Disk_fill Integer BYTE

14 – Disk_head_sttl Integer BYTE

15 – Disk_motor_strt Integer BYTE

352 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.9.3 _FDM (Floppy Disk Drive Mode)

This control method switches the mode (300 RPM or 360 RPM) of all floppy disk drives attached to this
controller. If this control method is implemented, the platform must reset the mode of all drives to 300RPM
mode after a Dx to D0 transition of the controller.

Arguments: (1)
Arg0 – An Integer containing the new drive mode

0 – Set the mode of all drives to 300 RPM mode
1 – Set the mode of all drives to 360 RPM mode

Return Value:
None

9.10 GPE Block Device

The GPE Block device is an optional device that allows a system designer to describe GPE blocks beyond
the two that are described in the FADT. Control methods associated with the GPE pins of GPE block
devices exist as children of the GPE Block device, not within the _GPE namespace.

A GPE Block device consumes I/O or memory address space, as specified by its _PRS or _CRS child
objects. The interrupt vector used by the GPE block does not need to be the same as the SCI_INT field. The
interrupt used by the GPE block device is specified in the _CRS and _PRS methods associated with the
GPE block. The _CRS of a GPE Block device may only specify a single register address range, either I/O
or memory. This range contains two registers: the GPE status and enable registers. Each register’s length is
defined as half of the length of the _CRS-defined register address range.

A GPE Block device must have a _HID or a _CID of “ACPI0006.”

Note: A system designer must describe the GPE block necessary to bootstrap the system in the FADT as a
GPE0/GPE1 block. GPE Block devices cannot be used to implement these GPE inputs.

A GPE Block Device must contain the _Lxx, _Exx, _Wxx, _CRS, _PRS, and _SRS methods required to
use and program that block.

To represent the GPE block associated with the FADT, the system designer shouldinclude in the
namespace a Device object with the ACPI0006 _HID that contains no _CRS, _PRS, _SRS, _Lxx, _Exx, or
_Wxx methods. OSPM assumes that the first such ACPI0006 device is the GPE Block Device that is
associated with the FADT GPEs. (See the example below)

// ASL example of a standard GPE block device
Device(_SB.PCI0.GPE1) {

Name(_HID, ”ACPI0006”)
Name(_UID, 2)
Name(_CRS, Buffer () {

IO(Decode16, FC00, FC03, 4, 4,)
IRQ(Level, ActiveHigh, Shared,) { 5 }

})

Method(_L02) { … }
Method(_E07) { … }
Method(_W04) { … }

}

// ASL example of a GPE block device that refers to the FADT GPEs.
// Cannot contain any _Lxx, _Exx, _Wxx, _CRS, _PRS, or. _SRS methods.
Device(_SB.PCI0.GPE0) {

Name(_HID,”ACPI0006”)
Name(_UID,1)

}

Notice that it is legal to replace the I/O descriptors with Memory descriptors if the register is memory
mapped.

ACPI-Defined Devices and Device Specific Objects 353

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If the system must run any GPEs to bootstrap the system (for example, when Embedded Controller events
are required), the associated block of GPEs must be described in the FADT. This register block is not
relocatable and will always be available for the life of the operating system boot.

A GPE block associated with the ACPI0006 _HID can be stopped, ejected, reprogrammed, and so on. The
system can also have multiple such GPE blocks.

9.10.1 Matching Control Methods for General-Purpose Events in a GPE
Block Device

When a GPE Device raises an interrupt, OSPM executes a corresponding control method (as described in
section 5.5.4.1.1, “Queuing the Matching Control Method for Execution”). These control methods (of the
form _Lxx, _Exx, and _Wxx) for GPE Devices are not within the _GPE namespace. They are children of
the GPE Block device.

For example:

Device(GPE5) {
Name(_HID, “ACPI0006”)

Method(_L02) { … }
Method(_E07) { … }
Method(_W04) { … }

}

9.11 Module Device

This optional device is a container object that acts as a bus node in a namespace. It may contain child
objects that are devices or buses. The module device is declared using the ACPI0004 hardware identifier
(HID).

If the module device contains a _CRS object, the “bus” described by this object is assumed to have these
resources available for consumption by its child devices. If a _CRS object is present, any resources not
produced in the module device’s _CRS object may not be allocated to child devices.

Providing a _CRS object is undesirable in some module devices. For example, consider a module device
used to describe an add-in board containing multiple host bridges without any shared resource decoding
logic. In this case the resource ranges available to the host bridges are not controlled by any entity residing
on the add-in board, implying that a _CRS object in the associated module device would not describe any
real feature of the underlying hardware. A_CRS object must exist with a module device if the device
contains PCI host bridge devices (See section 9.12.1 “Describing PCI Bus and Segment Group Numbers
under Module Devices”).

To account for cases like this, the system designer may optionally omit the module device’s _CRS object.
If no _CRS object is present, OSPM will assume that the module device is a simple container object that
does not produce the resources consumed by its child devices. In this case, OSPM will assign resources to
the child devices as if they were direct children of the module device's parent object.

For an example with a module device _CRS object present, consider a Module Device containing three
child memory devices. If the _CRS object for the Module Device contains memory from 2 GB through 6
GB, then the child memory devices may only be assigned addresses within this range.

354 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example:

Device (_SB.NOD0) {
Name (_HID, "ACPI0004") // Module device
Name (_UID, 0)
Name (_PRS, ResourceTemplate() {

WordIO (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,,, // _MAF
0x0000, // _GRA
0x0000, // _MIN
0x7FFF, // _MAX
0x0, // _TRA
0x8000) // _LEN

DWordMemory (
ResourceProducer,, // For Main Memory + PCI
MinNotFixed, // _MIF
MaxNotFixed, // _MAF
Cacheable, // _MEM
ReadWrite, // _RW
0x0FFFFFFF, // _GRA
0x40000000, // _MIN
0x7FFFFFFF, // _MAX
0x0, // _TRA
0x00000000) // _LEN

})
Method (_SRS, 1) { ... }
Method (_CRS, 0) { ... }

Device (MEM0) { // Main Memory (256MB module)
Name (_HID, EISAID("PNP0C80"))
Name (_UID, 0)
Method (_STA, 0) { // If memory not present --> Return(0x00)

// Else if memory is disabled --> Return(0x0D)
// Else --> Return(0x0F)

}
Name (_PRS, ResourceTemplate () {

DWordMemory (,,,,
Cacheable, // _MEM
ReadWrite, // _RW
0x0FFFFFFF, // _GRA
0x40000000, // _MIN
0x7FFFFFFF, // _MAX
0x0, // _TRA
0x10000000) // _LEN

})
Method (_CRS, 0) { ... }
Method (_SRS, 1) { ... }
Method (_DIS, 0) { ... }

}
Device (MEM1) { // Main Memory (512MB module)

Name (_HID, EISAID("PNP0C80"))
Name (_UID, 1)
Method (_STA, 0) { // If memory not present --> Return(0x00)

// Else if memory is disabled --> Return(0x0D)
// Else --> Return(0x0F)

}
Name (_PRS, ResourceTemplate () {

DWordMemory (,,,,
Cacheable, // _MEM
ReadWrite, // _RW
0x1FFFFFFF, // _GRA
0x40000000, // _MIN
0x7FFFFFFF, // _MAX
0x0, // _TRA
0x20000000) // _LEN

})
Method (_CRS, 0) { ... }

ACPI-Defined Devices and Device Specific Objects 355

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method (_SRS, 1) { ... }
Method (_DIS, 0) { ... }

}
Device (PCI0) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {

WordBusNumber (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,, // _MAF
0x00, // _GRA
0x00, // _MIN
0x7F, // _MAX
0x0, // _TRA
0x80) // _LEN

WordIO (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,,, // _MAF
0x0000, // _GRA
0x0000, // _MIN
0x0CF7, // _MAX
0x0, // _TRA
0x0CF8) // _LEN

WordIO (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,,, // _MAF
0x0000, // _GRA
0x0D00, // _MIN
0x7FFF, // _MAX
0x0, // _TRA
0x7300) // _LEN

DWordMemory (
ResourceProducer,,
MinNotFixed, // _MIF
MaxNotFixed, // _MAF
NonCacheable, // _MEM
ReadWrite, // _RW
0x0FFFFFFF, // _GRA
0x40000000, // _MIN
0x7FFFFFFF, // _MAX
0x0, // _TRA
0x00000000) // _LEN

})
Method (_CRS, 0) { ... }
Method (_SRS, 1) { ... }

}
}

9.11.1 Describing PCI Bus and Segment Group Numbers under Module
Devices

If a module device exposes one or more PCI root busses, OSPM must be able to determine what PCI bus
and segment group numbers are defined for the module device. A module device may be a container for
root buses in multiple segment groups. Because the _SEG method can only return a single number, _SEG
cannot adequately describe this case. To properly convey this information to OSPM, the PCI bus number
resource descriptor in the module device must include both the bus and segment resources produced by the
module device. To describe this in systems that implement multiple PCI segment groups, the segment
group resources produced by a module device must be encoded in bits 8 and higher of the module device’s
WordBusNumber resource descriptor. For systems that do not expose multiple PCI segment groups, bits 8
and higher of the module device’s WordBusNumber resource descriptor must be zero.

356 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Note: The range of PCI segment groups reported in the _CRS of module devices cover both assigned and
unassigned PCI root bridges. In the case of hot add of a PCI root bridge, OSPM does not re-evaluate the
_CRS of its parent module device as its resources are not expected to change in this case.

For an example of a module device encoding PCI segment group ranges with PCI bus number resources,
consider a module device that describes two PCI root bridges as child devices. The _CRS for the module
device describes 2 PCI root bridges as child devices, where each PCI root bridge consumes its own PCI
segment.

Example:

Device (_SB.NOD0) {
Name (_HID, "ACPI0004") // Module device
Name (_UID, 0)
Name (_CRS, ResourceTemplate() {

WordIO (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,,, // _MAF
0x0000, // _GRA
0x0000, // _MIN
0x7FFF, // _MAX
0x0, // _TRA
0x8000) // _LEN

DWordMemory (
ResourceProducer,, // For Main Memory + PCI
MinNotFixed, // _MIF
MaxNotFixed, // _MAF
Cacheable, // _MEM
ReadWrite, // _RW
0x0FFFFFFF, // _GRA
0x40000000, // _MIN
0x7FFFFFFF, // _MAX
0x0, // _TRA
0x00000000) // _LEN

WordBusNumber (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,, // _MAF
0x00, // _GRA
0x0000, // _MIN (indicates minimum segment number 0)
0x01FF, // _MAX (indicates maximum segment of 1)
0x0, // _TRA
0x80) // _LEN

})
Device (PCI0) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_SEG, 0x00) // assign segment 0 of module device to PCI0
Name (_CRS, ResourceTemplate () {

WordBusNumber (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,, // _MAF
0x00, // _GRA
0x00, // _MIN
0xFF, // _MAX
0x0, // _TRA
0x80) // _LEN

WordIO (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,,, // _MAF
0x0000, // _GRA
0x0000, // _MIN
0x0CF7, // _MAX
0x0, // _TRA
0x0CF8) // _LEN

ACPI-Defined Devices and Device Specific Objects 357

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DWordMemory (
ResourceProducer,,
MinNotFixed, // _MIF
MaxNotFixed, // _MAF
NonCacheable, // _MEM
ReadWrite, // _RW
0x0FFFFFFF, // _GRA
0x40000000, // _MIN
0x5FFFFFFF, // _MAX
0x0, // _TRA
0x00000000) // _LEN

})
}

}
Device (PCI1) { // PCI Root Bridge

Name (_HID, EISAID("PNP0A03"))
Name (_UID, 0)
Name (_BBN, 0x00)
Name (_SEG, 0x01) // assign segment 1 of module device to PCI1
Name (_CRS, ResourceTemplate () {

WordBusNumber (
ResourceProducer,
MinFixed, // _MIF
MaxFixed,, // _MAF
0x00, // _GRA
0x00, // _MIN
0x7F, // _MAX
0x0, // _TRA
0x80) // _LEN

WordIO (
ResourceProducer,
MinFixed, // _MIF
MaxFixed, // _MAF
0x0000, // _GRA
0x0D00, // _MIN
0x7FFF, // _MAX
0x0, // _TRA
0x7300) // _LEN

DWordMemory (
ResourceProducer,
MinNotFixed, // _MIF
MaxNotFixed, // _MAF
NonCacheable, // _MEM
ReadWrite, // _RW
0x0FFFFFFF, // _GRA
0x60000000, // _MIN
0x7FFFFFFF, // _MAX
0x0, // _TRA
0x00000000) // _LEN

})
}

}

9.12 Memory Devices

Memory devices allow a platform to convey dynamic properties of memory to OSPM and are required
when a platform supports the addition or removal of memory while the system is active or when the
platform supports memory bandwidth monitoring and reporting (see section 9.12.2, “Memory Bandwidth
Monitoring and Reporting). Memory devices may describe exactly the same physical memory that the
System Address Map interfaces describe (see section 14, “System Address Map Interfaces”). They do not
describe how that memory is, or has been, used. If a region of physical memory is marked in the System
Address Map interface as AddressRangeReserved or AddressRangeNVS and it is also described in a
memory device, then it is the responsibility of the OS to guarantee that the memory device is never
disabled.

358 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

It is not necessary to describe all memory in the system with memory devices if there is some memory in
the system that is static in nature. If, for instance, the memory that is used for the first 16 MB of system
RAM cannot be ejected, inserted, or disabled, that memory may only be represented by the System Address
Map interfaces. But if memory can be ejected, inserted, or disabled, or if the platform supports memory
bandwidth monitoring and reporting, the memory must be represented by a memory device.

9.12.1 Address Decoding

Memory devices must provide a _CRS object that describes the physical address space that the memory
decodes. If the memory can decode alternative ranges in physical address space, the devices may also
provide _PRS, _SRS and _DIS objects. Other device objects may also apply if the device can be ejected.

9.12.2 Memory Bandwidth Monitoring and Reporting

During platform operation, an adverse condition external to the platform may arise whose remedy requires
a reduction in the platform’s available memory bandwidth. For example, a server management controller’s
detection of an adverse thermal condition or the need to reduce the total power consumption of platforms in
the data center to stay within acceptable limits. Providing OSPM with knowledge of a platform induced
reduction of memory bandwidth enables OSPM to provide more robust handling of the condition. The
following sections describe objects OSPM uses to configure platform-based memory bandwidth monitoring
and to ascertain available memory bandwidth when the platform performs memory bandwidth throttling.

9.12.2.1 _MBM (Memory Bandwidth Monitoring Data)

The optional _MBM object provides memory bandwidth monitoring information for the memory device.

Arguments:
None

Return Value:
A Package containing memory device status information as described in table 9-9 below

Return Value Information:

_MBM evaluation returns a package of the following format:

Package (){
Revision, // Integer
WindowSize, // Integer DWORD
SamplingInterval, // Integer DWORD
MaximumBandwidth, // Integer DWORD
AverageBandwidth, // Integer DWORD
LowBandwidth, // Integer DWORD
LowNotficationThreshold, // Integer DWORD
HighNotificationThreshold // Integer DWORD

}

Table 9-8 _MBM Package Details

Field Format Description

Revision Integer Current revision is: 0

Window Size Integer
(DWORD)

This field indicates the size of the averaging window (in seconds)
that the platform uses to report average bandwidth.

Sampling Interval Integer
(DWORD)

This field indicates the sampling interval (in seconds) that the
platform uses to record bandwidth during the averaging window.

Maximum
Bandwidth

Integer
(DWORD)

This field indicates the maximum memory bandwidth (in
megabytes per second) for the memory described by this memory
device.

ACPI-Defined Devices and Device Specific Objects 359

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

Average
Bandwidth

Integer
(DWORD)

This field indicates the moving average memory bandwidth (in
percent) for the averaging window.

Low Bandwidth Integer
(DWORD)

This field indicates the lowest memory bandwidth (in percent)
recorded for the averaging window.

Low Notification
Threshold

Integer
(DWORD)

The platform to issues a Notify (0x80) on the memory device
when the moving average memory bandwidth value (in percent)
falls below the value indicated by this field.

High Notification
Threshold

Integer
(DWORD)

The platform to issues a Notify (0x81) on the memory device
when the moving average memory bandwidth value (in percent)
increases to or exceeds the value indicated by this field.

9.12.2.2 _MSM (Memory Set Monitoring)

This optional object sets the memory bandwidth monitoring parameters described in table 9-9.

Arguments: (4)
Arg0 – WindowSize (Integer(DWORD)): indicates the window size in seconds.
Arg1 – SamplingInterval (Integer(DWORD)): indicates the sampling interval in seconds.
Arg2 – LowNotificationThreshold (Integer(DWORD)): indicates the low notification threshold in

percent. Must be <= HighNotificationThreshold.
Arg3 – HighNotificationThreshold (Integer(DWORD)): indicates the high notification threshold in

percent. Must be >= LowNotificationThreshold.

Return Value:
An Integer (DWORD) containing a bit encoded result code as follows:

0x00000000 – Succeeded to set all memory bandwidth monitoring parameters.
Non-Zero – At least one memory bandwith monitoring parameter value could not be set as

follows:

Table 9-9 _MSM Result Encoding

Bits Definition

0 If clear indicates WindowSize was set successfully. If set, indicates invalid
WindowSize argument.

1 If clear indicates SamplingInterval was set successfully. If set, indicates invalid
SamplingInterval argument.

2 If clear indicates LowNotificationThreshold was set successfully. If set, indicates
invalid LowNotificationThreshold argument.

3 If clear indicates HighNotificationThreshold was set successfully. If set, indicates
invalid HighNotificationThreshold argument.

31:4 Reserved (must be 0)

9.12.3 _OSC Definition for Memory Device

OSPM evaluates _OSC under the Memory Device to convey OSPM capabilities to the platform. Argument
definitions are as follows:

Arguments: (4)

360 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arg0 – UUID (Buffer): 03B19910-F473-11DD-87AF-0800200C9A66
Arg1 – Revision ID (Integer): 1
Arg2 – Count of Entries in Arg3 (Integer): 2
Arg3 – DWORD capabilities (Buffer): First DWORD: as described in section 6.2.9, Second DWORD:

See Table 6-9

Return Value:
A Buffer containing platform capabilities

Table 9-10 Memory Device _OSC Capabilities DWORD number 2

Bits Field Name Definition

0 Memory
Bandwidth
Change
Notifications

This bit is set if OSPM supports the processing of memory bandwidth change
notifications. If the platform supports the ability to issue a notification when
Memory Bandwidth changes, it may only do so after _OSC has been evaluated
with this bit set. _OSC evaluation with this bit clear will cause the platform to
cease issuing notifications if previously enabled.

31:1 Reserved (must be 0)

Return Value Information

Capabilities Buffer (Buffer) – The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgement and cleared bits indicate that the platform
does not support the capability.

9.12.4 Example: Memory Device

Scope (_SB){
Device (MEM0) {

Name (_HID, EISAID (“PNP0C80”))
Name (_CRS, ResourceTemplate () {

QWordMemory
ResourceConsumer,
,
MinFixed,
MaxFixed,
Cacheable,
ReadWrite,
0xFFFFFFF,
0x10000000,
0x30000000,
0,
,,)

}
}

}

9.13 _UPC (USB Port Capabilities)

This optional object is a method that allows the platform to communicate to the operating system, certain
USB port capabilities that are not provided for through current USB host bus adaptor specifications (e.g.
UHCI, OHCI and EHCI). If implemented by the platform, this object will be present for each USB port
(child) on a given USB host bus adaptor; operating system software can examine these characteristics at
boot time in order to gain knowledge about the system’s USB topology, available USB ports, etc. This
method is applicable to USB root hub ports as well as ports that are implemented through integrated USB
hubs.

ACPI-Defined Devices and Device Specific Objects 361

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
A Package as described below

Return Value Information:

Package {
Connectable // Integer (BYTE)
Type // Integer (BYTE)
Reserved0 // Integer
Reserved1 // Integer)

}

Table 9-11 _UPC Return Package Values

Element Object Type Description

Connectable Integer
(BYTE)

If this value is non-zero, then the port is connectable. If this value is zero,
then the port is not connectable.

Type Integer
(BYTE)

Specifies the host connector type. It is ignored by OSPM if the port is not
user visible:

0x00: Type ‘A’ connector
0x01: Mini-AB connector
0x02: ExpressCard
0x03: USB 3 Standard-A connector
0x04: USB 3 Standard-B connector
0x05: USB 3 Micro-B connector
0x06: USB 3 Micro-AB connector
0x07: USB 3 Power-B connector
0x08 – 0xFE: Reserved
0xFF: Proprietary connector

Reserved0 Integer This value is reserved for future use and must be zero.

Reserved1 Integer This value is reserved for future use and must be zero.

Additional Notes:

The definition of a 'connectable' port is dependent upon the implementation of the USB port within a
particular platform. For example,

 If a USB port is user visible (as indicated by the _PLD object) and connectable, then an end user
can freely connect and disconnect USB devices to the USB port.

 If a USB port is not user visible and is connectable, then an end user cannot freely connect and
disconnect USB devices to the USB port. A USB device that is directly "hard-wired" to a USB
port is an example of a USB port that is not user visible and is connectable.

 If a USB port is not user visible and is not connectable, then the USB port is physically
implemented by the USB host controller, but is not being used by the platform and therefore
cannot be accessed by an end user.

A USB port cannot be specified as both visible and not connectable.

Example

The following is an example of a port characteristics object implemented for a USB host controller’s root
hub where:

 3 Ports are implemented; Port 1 is not user visible/not connectable and Ports 2 and 3 are user
visible and connectable.

362 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Port 2 is located on the back panel

 Port 3 has an integrated 2 port hub. Note that because this port hosts an integrated hub, it is
therefore not sharable with another host controller (e.g. If the integrated hub is a USB2.0 hub, the
port can never be shared with a USB1.1 companion controller).

 The ports available through the embedded hub are located on the front panel and are adjacent to
one another.

//
// Root hub device for this host controller. This controller implements 3 root hub ports.
//
Device(RHUB) {

Name(_ADR, 0x00000000) // Value of 0 is reserved for root HUB
// Root hub, port 1
Device(PRT1) {

// Address object for port 1. This value must be 1
Name(_ADR, 0x00000001)
// USB port capabilities object. This object returns the system
// specific USB port configuration information for port number 1
// Because this port is not connectable it is assumed to be not visible.
// Therefore a _PLD descriptor is not required.
Name(_UPC, Package(){

0x00, // Port is not connectable
0xFF, // Connector type (N/A for non-visible ports)
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

} // Device(PRT1)

//
// Root Hub, Port 2
//
Device(PRT2) {

// Address object for port 2. This value must be 2
Name(_ADR, 0x00000002)
Name(_UPC, Package(){

0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

ACPI-Defined Devices and Device Specific Objects 363

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// provide physical port location info
Name(_PLD, Package(1) {

Buffer(0x14) {
0x82,0x00,0x00,0x00, // Revision 2, Ignore color

// Color (ignored), width and height not
0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type

// connector

0x69,0x0c,0x00,0x00, // User visible, Back panel, Vertical
// Center, shape = vert. rectangle

0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT2)

//
// Root Hub, Port 3
//
Device(PRT3) {

// This device is the integrated USB hub.
// Address object for port 3. This value must be 3
Name(_ADR, 0x00000003)
// Because this port is not connectable it is assumed to be not visible.
// Therefore a _PLD descriptor is not required.
Name(_UPC, Package(){

0x00, // Port is not connectable
0xFF, // Connector type (N/A for non-visible ports)
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 - must be zero

//
// Integrated hub, port 1
//
Device(PRT1) {

// Address object for the port. Because the port is implemented on
// integrated hub port #1, this value must be 1
Name(_ADR, 0x00000001)
// USB port characteristics object. This object returns the system
// specific USB port configuration information for integrated hub port
// number 1
Name(_UPC, Package(){

0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// provide physical port location info
Name(_PLD, Package(1) {

Buffer(0x14) {
0x82,0x00,0x00,0x00,, // Revision 2, Ignore color

// Color (ignored), width and height not
0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type

// connector

0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
// lower, horz. Left, shape = horz. rectangle

0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT1)

364 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

//
// Integrated hub, port 2
//
Device(PRT2) {

// Address object for the port. Because the port is implemented on
// integrated hub port #2, this value must be 2
Name(_ADR, 0x00000002)
// USB port characteristics object. This object returns the system
// specific USB port configuration information for integrated hub port
// number 2
Name(_UPC, Package(){

0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

Name(_PLD, Package(1) {
Buffer(0x14) {
0x82,0x00,0x00,0x00, // Revision 2, Ignore color

// Color (ignored), width and height not
0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’ type

// connector

0xa1,0x12,0x00,0x00, // User visible, front panel, Vertical
// lower, horz. right, shape = horz. rectangle

0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT2)
} // Device(PRT3)

} // Device(RHUB)

9.13.1 USB 2.0 Host Controllers and _UPC and _PLD

Platforms implementing USB2.0 host controllers that consist of one or more USB1.1 compliant companion
controllers (e.g. UHCI or OHCI) must implement a _UPC and a _PLD object for each port USB port that
can be routed between the EHCI host controller and its associated companion controller. This is required
because a USB Port Capabilities object implemented for a port that is a child of an EHCI host controller
may not be available if the OSPM disables the parent host controller. For example, if root port 1 on an
EHCI host controller is routable to root port 1 on its companion controller, then the namespace must
provide a _UPC and a _PLD object under each host controller’s associated port 1 child object.

ACPI-Defined Devices and Device Specific Objects 365

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

Scope(_SB) {
…
Device(PCI0) {

…
// Host controller (EHCI)
Device(USB0) {

// PCI device#/Function# for this HC. Encoded as specified in the ACPI
// specification
Name(_ADR, 0xyyyyzzzz)
// Root hub device for this HC #1.
Device(RHUB) {

Name(_ADR, 0x00000000) // must be zero for USB root hub
// Root hub, port 1
Device(PRT1) {

Name(_ADR, 0x00000001)

// USB port configuration object. This object returns the system
// specific USB port configuration information for port number 1
// Must match the _UPC declaration for USB1.RHUB.PRT1 as it is this
// host controller’s companion
Name(_UPC, Package(){

0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// provide physical port location info for port 1
// Must match the _UPC declaration for USB1.RHUB.PRT1 as it is this
// host controller’s companion
Name(_PLD, Package(1) {

Buffer(0x14) {
0x82,0x00,0x00,0x00, // Revision 2, Ignore color

// Color (ignored), width and height not
0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’

// type connector

0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
// lower, horz. Left, shape = horz. Rect.

0x03,0x00,0x00,0x00, // ejectable, needs OPSM eject assistance
0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT1)
//
// Define other ports, control methods, etc
…
…

} // Device(RHUB)
} // Device(USB0)

366 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Companion Host controller (OHCI or UHCI)
Device(USB1) {

// PCI device#/Function# for this HC. Encoded as specified in the ACPI
// specification
Name(_ADR, 0xyyyyzzzz)
// Root hub device for this HC #1.
Device(RHUB) {

Name(_ADR, 0x00000000) // must be zero for USB root hub
// Root hub, port 1
Device(PRT1) {

Name(_ADR, 0x00000001)
// USB port configuration object. This object returns the system
// specific USB port configuration information for port number 1
// Must match the _UPC declaration for USB0.RHUB.PRT1 as this host
// controller is a companion to the EHCI host controller
// provide physical port location info for port 1
Name(_UPC, Package(){

0xFF, // Port is connectable
0x00, // Connector type – Type ‘A’
0x00000000, // Reserved 0 – must be zero
0x00000000}) // Reserved 1 – must be zero

// Must match the _PLD declaration for USB0.RHUB.PRT1 as this host
// controller is a companion to the EHCI host controller
Name(_PLD, Package(1) {

Buffer(0x14) {
0x82,0x00,0x00,0x00, // Revision 2, Ignore color

// Color (ignored), width and height not
0x00,0x00,0x00,0x00, // required as this is a standard USB ‘A’

// type connector

0xa1,0x10,0x00,0x00, // User visible, front panel, Vertical
// lower, horz. Left, shape = horz. Rect.

0x03,0x00,0x00,0x00, // ejectable, requires OPSM eject assistance
0xFF,0xFF,0xFF,0xFF})} // Vert. and Horiz. Offsets not supplied

} // Device(PRT1)
//
// Define other ports, control methods, etc
…
…

} // Device(RHUB)
} // Device(USB1)

} // Device(PCI0)
} // Scope(_\SB)

9.14 Device Object Name Collision

Devices containing both _HID and _CID may have device specific control methods pertaining to both the
device ID in the _HID and the device ID in the _CID. These device specific control methods are defined by
the device owner (a standard body or a vendor or a group of vendor partners). Since these object names are
not controlled by a central authority, there is a likelihood that the names of objects will conflict between
two defining parties. The _DSM object described in the next section solves this conflict.

9.14.1 _DSM (Device Specific Method)

This optional object is a control method that enables devices to provide device specific control functions
that are consumed by the device driver.

ACPI-Defined Devices and Device Specific Objects 367

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments: (4)
Arg0 – A Buffer containing a UUID
Arg1 – An Integer containing the Revision ID
Arg2 – An Integer containing the Function Index
Arg3 – A Package that contains function-specific arguments

Return Value:
If Function Index = 0, a Buffer containing a function index bitfield. Otherwise, the return value and
type depends on the UUID and revision ID (see below).

Argument Information:

Arg0: UUID – A Buffer containing the Universal Unique Identifier (16 Bytes)

Arg1: Revision ID – the function’s revision. This revision is specific to the UUID.

Arg2: Function Index – Represents a specific function whose meaning is specific to the UUID and
Revision ID. Function indices should start with 1. Function number zero is a query function (see
the special return code defined below).

Arg3: Arguments – a package containing the parameters for the function specified by the UUID,
Revision ID and Function Index. Successive revisions of Function Arguments must be backward
compatible with earlier revisions. See section 9, “ACPI Devices and Device Specific Objects”, for
any _DSM definitions for ACPI devices. New UUIDs may also be created by OEMs and IHVs for
custom devices and other interface or device governing bodies (e.g. the PCI SIG), as long as the
UUID is different from other published UUIDs. Only the issuer of a UUID can authorize a new
Function Index, Revision ID or Function Argument for that UUID.

Return Value Information:

If Function Index is zero, the return is a buffer containing one bit for each function index, starting with
zero. Bit 0 indicates support for at least one function for the specified UUID and Revision ID. If set to zero,
no functions are supported (other than function zero) for the specified UUID and Revision ID. If set to one,
at least one function is supported. For all other bits in the buffer, a bit is set to zero to indicate if the
function index is not supported for the specific UUID and Revision ID. If the bit representing a particular
function index would lie outside of the buffer, it should be assumed to be 0 (that is, not supported).

If Function index is non-zero, the return is any data object. The type and meaning of the returned data
object depends on the UUID and Revision ID.

Implementation Note

Since the purpose of the _DSM method is to avoid the namespace collision, the implementation of this
method shall not use any other method or data object which is not defined in this specification unless its
driver and usage is completely under the control of the platform vendor.

368 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example:

// _DSM – Device Specific Method
//
// Arg0: UUID Unique function identifier
// Arg1: Integer Revision Level
// Arg2: Integer Function Index (0 = Return Supported Functions)
// Arg3: Package Parameters
Function(_DSM,{IntObj,BuffObj},{BuffObj, IntObj, IntObj, PkgObj})
{

//
// Switch based on which unique function identifier was passed in
//
switch(Arg0)
{

//
// First function identifier
//
case(ToUUID(“893f00a6-660c-494e-bcfd-3043f4fb67c0”))
{

switch(Arg2)
{

//
// Function 0: Return supported functions, based on revision
//
case(0)
{

switch(Arg1)
{

// revision 0: functions 1-4 are supported
case(0) {return (Buffer() {0x1F})}
// revision 1: functions 1-5 are supported
case(1) {return (Buffer() {0x3F})}

}
// revision 2+: functions 1-7 are supported
return (Buffer() {0x7F})

}
//
// Function 1:
//
case(1)
{

… function 1 code …
Return(Zero)

}
//
// Function 2:
//
case(2)
{

… function 2 code …
Return(Buffer(){0x00})

}
case(3) { … function 3 code …}
case(4) { … function 4 code …}
case(5) { if (LLess(Arg1,1) BreakPoint; … function 5 code … }
case(6) { if (LLess(Arg1,2) BreakPoint; … function 6 code …)
case(7) { if (LLess(Arg1,3) BreakPoint; … function 7 code …)
default {BreakPoint }

}
}

ACPI-Defined Devices and Device Specific Objects 369

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

//
// Second function identifier
//
case(ToUUID(“107ededd-d381-4fd7-8da9-08e9a6c79644”))
{

//
// Function 0: Return supported functions (there is only one revision)
//
if (LEqual(Arg2,Zero))

return (Buffer() {0x3}) // only one function supported
//
// Function 1
//
if (LEqual(Arg2,One))
{

… function 1 code …
Return(Unicode(“text”))

}
//
// Function 2+: Runtime Error
//
else

BreakPoint;
}

}
//
// If not one of the function identifiers we recognize, then return a buffer
// with bit 0 set to 0 indicating no functions supported.
//
return(Buffer(){0})

}

9.15 PC/AT RTC/CMOS Devices

Most computers contain an RTC device which also contains battery-backed RAM represented as a linear
array of bytes. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in
devices that are compatible with the Motorola RTC/CMOS device that was in the IBM PC/AT. Newer
devices usually contain at least 128 bytes of battery-backed RAM. New PNP IDs were assigned for these
devices.

Certain bytes within the battery-backed RAM have pre-defined values. In particular, the time, date, month,
year, century, alarm time and RTC periodic interrupt are read-only.

9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)

The standard PC/AT-compatible RTC/CMOS device is denoted by the PnP ID PNP0B00. If an ACPI
platform uses a device that is compatible with this device, it may describe this in its ACPI namespace. ASL
may then read and write this as a linear 64-byte array. If PNP0B00 is used, ASL and ACPI operating
systems may not assume that any extensions to the CMOS exist.

Note: This means that the CENTURY field in the Fixed ACPI Description Table may only contain values
between 0 and 63.

370 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example:

This is an example of how this device could be described:

Device (RTC0) {
Name(_HID, EISAID("PNP0B00"))

Name (_FIX, Package(1) {
EISAID("PNP0B00") }
)
Name(_CRS, ResourceTemplate() {

IO(Decode16, 0x70, 0x70, 0x1, 0x2)
}

OperationRegion(CMS1, CMOS, 0, 0x40)

Field(CMS1, ByteAcc, NoLock, Preserve) {
AccessAs(ByteAcc, 0),
CM00, 8,
,256,
CM01, 8,
CM02, 16,
, 216,
CM03, 8

}

9.15.2 Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)

The Intel PIIX4 contains an RTC/CMOS device that is compatible with the one in the PC/AT. But it
contains 256 bytes of non-volatile RAM. The first 64 bytes are accessed via the same mechanism as the 64
bytes in the PC/AT. The upper 192 bytes are accessed through an interface that is only used on Intel chips.
(See 82371AB PCI-TO-ISA / IDEXCELERATOR (PIIX4) for details.)

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B01. This
will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the programming
interface of the PIIX4. Thus, the array of bytes that ASL can read and write with this device is 256 bytes
long.

Note: This also means that the CENTURY field in the Fixed ACPI Description Table may contain values
between 0 and 255.

ACPI-Defined Devices and Device Specific Objects 371

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example:

This is an example of how this device could be described:

Device (RTC0) {
Name(_HID, EISAID("PNP0B01"))

Name (_FIX, Package(1) {
EISAID("PNP0B01") }
)

Name(_CRS, ResourceTemplate() {
IO(Decode16, 0x70, 0x70, 0x1, 0x2)
IO(Decode16, 0x72, 0x72, 0x1, 0x2)

}

OperationRegion(CMS1, CMOS, 0, 0x100)

Field(CMS1, ByteAcc, NoLock, Preserve) {
AccessAs(ByteAcc, 0),
CM00, 8,
,256,
CM01, 8,
CM02, 16,
, 224,
CM03, 8,
, 184,
CENT, 8

}

9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02)

Dallas Semiconductor RTC/CMOS devices are compatible with the one in the PC/AT, but they contain 256
bytes of non-volatile RAM or more. The first 64 bytes are accessed via the same mechanism as the 64 bytes
in the PC/AT. The upper bytes are accessed through an interface that is only used on Dallas Semiconductor
chips.

Any platform containing this device or one that is compatible with it may use the PNP ID PNP0B02. This
will allow an ACPI-compatible OS to recognize the RTC/CMOS device as using the Dallas Semiconductor
programming interface. Thus, the array of bytes that ASL can read and write with this device is 256 bytes
long.

Description of these devices is similar to the PIIX4 example above, and the CENTURY field of the FADT
may also contain values between 0 and 255.

9.16 User Presence Detection Device

The following section illustrates the operation and definition of the control method-based User Presence
Detection (UPD) device.

The user presence detection device can optionally support power management objects (e.g. _PS0, _PS3) to
allow the OS to manage the device’s power consumption.

The Plug and Play ID of an ACPI control method user presence detection device is ACPI0009.

Table 9-12 User Presence Detection Device

Object Description

_UPD The current user presence detection reading. [Required]

_UPP User presence detection polling frequency in tenths of seconds. [Optional]

372 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.16.1 _UPD (User Presence Detect)

This control method returns the user presence detection reading, indicating whether or not the user is
currently present from the perspective of this sensor. Three states are currently defined for UPD sensor
readings: absent, present, and unknown, represented by the values 0x00, 0x01, and 0xFF respectively. The
unknown state is used to convey that the sensor is currently unable to determine user presence due to some
environmental or other transient factor. All other values are reserved.

Arguments:
None

Return Value:
An Integer containing the user presence code:

0x00 – Absent: A user is not currently detected by this sensor.
0x01 – Present: A user is currently detected by this sensor.
0xFF – Unknown: The sensor is currently unable to determine if a user is present or absent.

9.16.2 _UPP (User Presence Polling)

This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this user
presence sensor. A value of zero – or the absence of this object when other UPD objects are defined –
indicates that the OS does not need to poll the sensor in order to detect meaningful changes in user presence
(the hardware is capable of generating asynchronous notifications).

Arguments:
None

Return Value:
An Integer containing the recommended polling frequency in tenths of seconds. A value of zero
indicates that polling is not required.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in user presence occurs—relieving the
OS of the overhead associated with polling.

This value is specified as tenths of seconds. For example, a value of 10 would be used to indicate a 1
second polling frequency. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

9.16.3 User Presence Sensor Events

To communicate changes in user presence to OSPM, AML code should issue a Notify(upd_device,

0x80) whenever a change in user presence has occurred. The OS receives this notification and calls the
_UPD control method to determine the current user presence status.

UPD notifications should be generated whenever a transition occurs between one of the user presence states
(absent, present, or unknown) – but at a level of granularity that provides an appropriate response without
overly taxing the system with unnecessary interrupts.

9.17 I/O APIC Device

This optional device describes a discrete I/O APIC device that is not bus enumerated (e.g., as a PCI
device). Describing such a device in the ACPI namespace is only necessary if hot plug of this device is
supported. If hot plug of this device is not supported, an MADT I/O APIC (section 5.2.12.3,”I/O APIC
Structure”) entry or I/O SAPIC (section 5.2.12.9, “I/O SAPIC Structure”) entry is sufficient to describe this
device.

ACPI-Defined Devices and Device Specific Objects 373

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

An I/O APIC device is an I/O unit that complies with either of the APIC interrupt models supported by
ACPI. These interrupt models are described Section 5.2.12.3,”I/O APIC Structure” and Section
5.2.12.9,”I/O SAPIC Structure”. If the device is an I/O unit that complies with the APIC interrupt model, it
is declared using the ACPI000A identifier. If this device is an I/O unit that complies with the SAPIC
interrupt model, it is declared using the ACPI000B identifier. If this device complies with both the APIC
and SAPIC interrupt models (I/OxAPIC), it is declared using the ACPI0009 identifier.

An I/O APIC device declared using any of the above identifiers must contain a _GSB object as defined in
Section 6.2.6, “_GSB (Global System Interrupt Base)” to report its Global System Interrupt Base. It must
also contain a _CRS object that reports the base address of the I/O APIC device. The _CRS object is
required to contain only one resource, a memory resource pointing to the I/O APIC register base.

Note: because the _CRS and _GSB methods provide sufficient information, it is not necessary to provide
_MAT under an I/O APIC device.

For an I/O APIC device that is described both in the MADT and in the namespace, the base address
described in the MADT entry must be the same as the base address in the IO APIC device _CRS at boot
time. OSPM must use the information from the MADT until such a time as the _CRS and _GSB methods
in the namespace device can be processed. At this point OSPM must ignore the MADT entry.

9.18 Wake Alarm Device

The following sections define the operation and definition of the optional control method-based Wake
Alarm device, which provides a more robust alternative to the Real Time Clock (RTC) Alarm, See section
4.7.2.4, “Real Time Clock Alarm”.

The Wake Alarm device can optionally support power management objects (e.g. _PS0, _PS3) to allow the
OS to manage the device’s power consumption.

The Wake Alarm device must support control method _PRW for being enabled to wake up the system. It
might support _DSW or _PSW to provide the functionality to enable or disable the device’s ability to wake
a sleep system.

The Plug and Play ID of the Wake Alarm device is ACPI000E.

Table 9-13 Wake Alarm Device

Object Description

_STP Sets expired timer wake policy for the specified timer.

_STV Sets the value in the specified timer.

_TIP Returns the current expired timer policy setting of the specified timer.

_TIV Returns the remaining time of in the specified timer.

9.18.1 Overview

The Wake Alarm device provides wake timers that allow the system to transition from the S3 (or optionally
S4/S5) state to S0 state after a time period elapses. The alternative device that supports the wake timers is
the Real Time Clock (RTC) Alarm, which is defined as a fixed feature hardware device. In comparison
with the Real Time Clock (RTC) Alarm, the Wake Alarm device provides a larger scale of flexibility in the
operation of the wake timers.

374 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The Wake Alarm device contains two programmable timers that can be configured to wake the system
depending on the platform’s current power source (AC or DC) when the timers expire. The two timers,
which are referred as the AC timer and the DC timer, are independent in that they are individually
programmable and applicable without interfering each other. Each of the timers can be programmed with
the number of seconds to elapse from the time the timer is programmed until a wake is requested. When a
timer expires, the Wake Alarm device decides whether to wake the system based on the current power
source. If the current power source is consistent with the timer type that expires, a wake signal will be
asserted. Otherwise, the wake signal will not be asserted.

In the event the current power source is inconsistent with the timer type that expires, an expired timer wake
policy value, in units of seconds, is defined that enables the wake alarm device to wake the system when
the power source corresponding to the expired timer becomes active (wake either immediately, after some
time period, or never).

For example, If a mobile platform programs the AC timer to be 2 hours long and DC timer to be 4 hours
long and then transitions from the S0 state to S3 state at 1:00 AM, the AC timer is set to expire at 3:00 AM
and the DC timer is set to expire at 5:00 AM. For the AC Timer, a expired timer wake policy value is
programmed as 60 seconds.

If the platform is unplugged from AC power at 1:40 AM and remains unplugged, the Wake Alarm Device
will not up the system at 3:00 AM. If the platform remains on DC power until 5:00 AM when the DC timer
expires, a wake signal will then be asserted. The following graph illustrates the above example.

Figure 9- 4. System transitions withWake Alarm– Timer

Go to S3 AC timer expires DC timer expires

Time

4 hours

2 hours

S0

S3

AC

DC

1:00 AM 1:40 AM 3:00 AM 5:00 AM

If the AC power is plugged in again at 4:00 AM, then the system will be woken up at 4:01 AM due to the
AC expired timer wake policy value setting. The following graph illustrates this.

ACPI-Defined Devices and Device Specific Objects 375

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Figure 9- 5. System transitions withWake Alarm– Policy

Go to S3 AC timer expires DC timer expires

Time

4 hours

2 hours

S0

S3

AC

DC

1:00 AM 1:40 AM 3:00 AM 5:00 AM

4:00 AM

OSPM evaluates the _STV object to program both the AC and DC timer values. The values, which are in
units of seconds, indicate the elapsed time before the timer expires. OSPM evaluates the _TIV object to
read the current AC and DC timer values (seconds remaining until expiration).

OSPM evaluates the _STP object to set timer policies for both the AC and DC timers OSPM reads the
current timer policy by evaluating the _TIP object, which return policy settings for both the AC and DC
timer.

The Wake Alarm device, if implemented, must support waking up the system from S3. Waking from S4/S5
support is optional. Wake support for any power state must be made available on both AC and DC power
sources.

9.18.2 _STP (Set Expired Timer Wake Policy)

This object is required and sets the expired timer wake policy. The policy is applied when a corresponding
timer expired but the wake signal was not asserted as a result of the power source. The platform
accumulates elapsed time on the power source and asserts the wake signal when the elapsed timer on the
power source exceeds the expired timer wake policy value. Power source transitions do not reset the
expired timer wake policy values. When the Wake Alarm device asserts the wake, the expired timer wake
policy values of both the AC timer and DC timer are reset to 0xFFFFFFFF automatically by hardware.

Arguments: (2)
Arg0 – TimerIdentifier (Integer(DWORD)): indicates the timer to be set:

0x00000000 – AC Timer
0x00000001 – DC Timer

Arg1 – ExpiredTimerWakePolicy (Integer(DWORD)): indicates the expired timer wake policy:
0x00000000 – The timer will wake up the system instantly after the power source changes.
0x00000001 – 0xFFFFFFFE: time between the power source changes and the timer wakes up the

system (in units of second).
0xFFFFFFFF – The timer will never wake up the system after the power source changes.

Return Value:
An Integer containing a result code as follows:

0x00000000 – Succeeded to set the expired timer wake policy.
0x00000001 – Failed to set the timer policy. Actual timer policy unknown.

376 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.18.3 _STV (Set Timer Value)

This object is required and sets the timer to the specified value. As defined in _TIV, the value indicates the
number of seconds between the time when the timer is programmed and the time when it expires. When the
Wake Alarm device asserts the wake signal, the timer value is automatically reset to 0xFFFFFFFF
(disabled).

Arguments: (2)
Arg0 – TimerIdentifier (Integer (DWORD)): indicates the timer to be set:

0x00000000 – AC Timer
0x00000001 – DC Timer

Arg1 – TimerValue (Integer): indicates the value to be set.

Return Value:
An Integer containing a result code as follows:

0x00000000 – Succeeded to set timer value.
0x00000001 – Failed to set timer value. Actual timer value unknown.

9.18.4 _TIP (Expired Timer Wake Policy)

This object is required and returns the current expired timer wake policy setting of the specified timer.

Arguments: (1)
Arg0 – TimerIdentifier (Integer (DWORD)): indicates the timer to be read:

0x00000000 – AC Timer
0x00000001 – DC Timer

Return Value:
An Integer (DWORD) containing current expired timer wake policy:

0x00000000 – The timer will wake up the system instantly after the power source changes
0x00000001 – 0xFFFFFFFE: Time between the power source changes and the timer wakes up the

system (in units of second)
0xFFFFFFFF – The timer will never wake up the system after the power source changes

9.18.5 _TIV (Timer Values)

This object is required and returns the remaining time of the specified timer before it expires.

Arguments: (1)
Arg0 – TimerIdentifier (Integer(DWORD)): indicates the timer to be read:

0x00000000 – AC Timer
0x00000001 – DC Timer

Return Value:
An Integer containing the current timer value. A value of 0xFFFFFFFF indicates that the timer is
disabled.

9.18.6 ACPI Wakeup Alarm Events

The Wake Alarm, device as a generic hardware, supports control methods _PSW and _PRW to wake up the
system and issues a Notify(<device>, 0x2) on the wakeup alarm device.

9.18.7 Relationship to Real Time Clock Alarm

Though both of the devices support wakeup timers to wake up system from sleeping state, they work
independently. The Real Time Clock Alarm is defined as a fixed feature hardware whereas the Wake
Alarm device is defined as a generic hardware. OSPM may chose which device to utilize to provide timed
wake capability.

ACPI-Defined Devices and Device Specific Objects 377

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

9.18.8 Example ASL code

The following ASL code serves as an example of how Wake Alarm Device could be implemented. It is
beyond the capability and the scope of this specification to provide a complete hardware implementation
example.

//Define an ACPI Wakeup Alarm

Device(_SB.AWA){

Name(_HID, EISAID(“ACPI000E”)) //device ID
Name(_PRW, Package(){...}) //enable or disable to wake up the system

OperationRegion(CMOP, EmbeddedControl, ...)
Field(CMOP, ByteAcc, ...){

…….. //timer status and policies
}
Method(_TVP){

Return(package{... timer values and policies...})
}
Method(_SAT, 2, Serialized){

If(Arg0){
Store(Arg0, ...) //set AC timer value
}
If(Arg1){

Store(Arg1, ...) //set AC timer policy
}

}
Method(_SDT, 2, Serialized){

If(Arg0){
Store(Arg0, ...) //set DC timer value
}
If(Arg1){

Store(Arg1, ...) //set DC timer policy
}

}
} // end of ACPI Wakeup Alarm device object

Scope(_GPE) { // Root level event handlers

Method(_Lxx){
Store(One, ...)
Notify(..., 0x2) //notify the OSPM of device wake

}

} // end of _GPE scope

378 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Power Source and Power Meter Devices 379

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10 Power Source and Power Meter Devices

This section specifies the battery, AC adapter, and power source device objects OSPM uses to manage
power resources, as well as the power meter device objects OSPM uses to measure power consumption.

A battery device is required to either have a Smart Battery subsystem or a Control Method Battery interface
as described in this section. OSPM is required to be able to connect and manage a battery on either of these
interfaces. This section describes these interfaces.

In the case of a compatible ACPI Smart Battery Table, the Definition Block needs to include a Bus/Device
package for the SMB-HC. This will install an OS-specific driver for the SMBus, which in turn will locate
the components of the Smart Battery subsystem. In addition to the battery or batteries, the Smart Battery
subsystem includes a charger and a manager device to handle subsystems with multiple batteries.

The Smart Battery System Manager is one implementation of a manager device that is capable of
arbitrating among the available power sources (AC power and batteries) for a system. It provides a superset
of the Smart Battery Selector functionality, such as safely responding to power events (AC versus battery
power), inserting and removing batteries and notifying the OS of all such changes. Additionally, the Smart
Battery System Manager is capable of handling configurations including simultaneous charging and
discharging of multiple batteries. Unlike the Smart Battery Selector that shares responsibility for
configuring the battery system with OSPM, the Smart Battery System Manager alone controls the safe
configuration of the battery system and simply issues status changes to OSPM when the configuration
changes. Smart Battery System Manager is the recommended solution for handling multiple-battery
systems.

A Power Meter device is the logical representation of a platform sensor that measures the power
consumption of one or more devices in the system. A basic platform implementation implements interfaces
that query the current power consumption and get the currently configured power consumption hardware
limit, while more advance power meter device implementations provide interfaces that support OSPM
configurable power consumption trip points that trigger SCI events, or enable configuration of the
underlying hardware to enforce a hard limit on the maximum amount of power that can be consumed.

10.1 Smart Battery Subsystems

The Smart Battery subsystem is defined by the:
 System Management Bus Specification (SMBS)
 Smart Battery Data Specification (SBDS)
 Smart Battery Charger Specification (SBCS)
 Smart Battery System Manager Specification (SBSM)
 Smart Battery Selector Specification (SBSS)

An ACPI-compatible Smart Battery subsystem consists of:
 An SMB-HC (CPU to SMB-HC) interface
 At least one Smart Battery
 A Smart Battery Charger
 Either a Smart Battery System Manager or a Smart Battery Selector if more than one Smart

Battery is supported

In such a subsystem, a standard way of communicating with a Smart Battery and Smart Battery Charger is
through the SMBus physical protocols. The Smart Battery System Manager or Smart Battery Selector
provides event notification (battery insertion/removal, and so on) and charger SMBus routing capability for
any Smart Battery subsystem. A typical Smart Battery subsystem is illustrated below:

380 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

SBS
Battery3

0xB

SMBus

SMBus

SMBus

SMBus

SMBus

SMBus

Host
Interface

Figure 10-1 Typical Smart Battery Subsystem (SBS)

SMBus defines a fixed 7-bit slave address per device. This means that all batteries in the system have the
same address (defined to be 0xB). The slave addresses associated with Smart Battery subsystem
components are shown in the following table.

Table 10-1 Example SMBus Device Slave Addresses

SMBus Device Description SMBus Slave Address (A0-A6)

SMBus Host Slave Interface 0x8

Smart Battery Charger/Charger Selector or Charger System Manager 0x9

Smart Battery System Manager or Smart Battery Selector 0xA

Smart Battery 0xB

Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’s Command
value. SMBus devices are addressed by providing the slave address with the desired register’s Command
value. Each SMBus register can have non-linear registers; that is, command register 1 can have a 32-byte
string, while command register 2 can have a byte, and command register 3 can have a word.

The SMBus host slave interface provides a standard mechanism for the host CPU to generate SMBus
protocol commands that are required to communicate with SMBus devices (in other words, the Smart
Battery components). ACPI defines such an SMB-HC that resides in embedded controller address space;
however, an OS can support any SMB-HC that has a native SMB-HC device driver.

The Smart Battery System Manager provides a standard programming model to control multiple Smart
Batteries in a Smart Battery subsystem. A Smart Battery System Manager provides the following types of
battery management functions:

Power Source and Power Meter Devices 381

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Event notification for battery insertion and removal
 Event notification for AC power connected or disconnected
 Status of which Smart Battery is communicating with the SMB-HC
 Status of which Smart Battery(s) are powering the system
 Status of which Smart Battery(s) are connected to the charger
 Status of which Smart Batteries are present in the system
 Event notification when the Smart Battery System Manager switches from one power source to

another
 Hardware-switching to an alternate Smart Battery when the Smart Battery supplying power runs

low
 Hardware switching between battery-powered and AC-powered powered operation

The Smart Battery System Manager function can reside in a standalone SMBus slave device (Smart Battery
System Manager that responds to the 0xA slave address), may be present within a smart charger device
(Smart Battery Charger that responds to the 0x9 slave address), or may be combined within the embedded
controller (that responds to the 0xA slave address). If both a Smart Battery Charger and a standalone Smart
Battery System Manager are present in the same Smart Battery subsystem, then the driver assumes that the
standalone Smart Battery System Manager is wired to the batteries.

The Smart Battery charger is an SMBus device that provides a standard programming model to control the
charging of Smart Batteries present in a Smart Battery subsystem. For single battery systems, the Smart
Battery Charger is also responsible for notifying the system of the battery and AC status.

The Smart Battery provides intelligent chemistry-independent power to the system. The Smart Battery is
capable of informing the Smart Battery charger of its charging requirements (which provides chemistry
independence) and providing battery status and alarm features needed for platform battery management.

10.1.1 ACPI Smart Battery Status Change Notification Requirements

The Smart Battery System Manager, the Smart Battery Selector, and the Smart Battery Charger each have
an optional mechanism for notifying the system that the battery configuration or AC status has changed.
ACPI requires that this interrupt mechanism be through the SMBus Alarm Notify mechanism.

For systems using an embedded controller as the SMBus host, a battery system device issues a status
change notification by either mastering the SMBus to send the notification directly to the SMBus host, or
by emulating it in the embedded controller. In either case, the process is the same. After the notification is
received or emulated, the embedded controller asserts an SCI. The source of the SCI is identified by a GPE
that indicates the SCI was caused by the embedded controller. The embedded controller’s status register
alarm bit is set, indicating that the SMBus host received an alarm message. The Alarm Address Register
contains the address of the SMBus device that originated the alarm and the Alarm Data Registers contain
the contents of that device’s status register.

10.1.1.1 Smart Battery Charger

This requires a Smart Battery Charger, on a battery or AC status change, to generate an SMBus Alarm
Notify. The contents of the Smart Battery Charger’s ChargerStatus() command register (0x13) is placed in
the embedded controller’s Alarm Data Registers, the Smart Battery Charger’s slave address14 (0x09) is
placed in the embedded controller’s Alarm Address Register and the EC’s Status Register’s Alarm bit is
set. The embedded controller then asserts an SCI.

14 Notice that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address”
written into the command field of the host controller. In this case, the slave address is actually the
combination of the 7-bit slave address and the Write protocol bit. Therefore, bit 0 of the initiating device’s
slave address is aligned to bit 1 of the host controller’s slave command register, bit 1 of the slave address is
aligned to bit 2 of the controller’s slave command register, and so on.

382 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.1.1.2 Smart Battery Charger with optional System Manager or Selector

A Smart Battery Charger that contains the optional System Manager or Selector function (as indicated by
the ChargerSpecInfo() command register, 0x11, bit 4) is required to generate an SMBus Alarm Notify on a
battery or AC status change. The content of the Smart Battery Charger with an optional System Manager,
the BatterySystemState() command register (0x21) (or in the case of an optional Selector, the
SelectorState() (0x01)), is placed in the EC’s Alarm Data Registers, the Smart Battery Charger’s slave
address (0x09) is placed in the embedded controller’s Alarm Address Register, and the embedded
controller’s Status Register’s Alarm bit is set. The embedded controller then asserts an SCI.

10.1.1.3 Smart Battery System Manager

The Smart Battery System Manager is required to generate an SMBus Alarm Notify on a battery or AC
status change. The content of the Smart Battery System Manager’s BatterySystemState() command register
(0x01) is placed in the EC’s Alarm Data Registers, the Smart Battery System Manager’s slave address
(0x0A) is placed in the EC’s Alarm Address Register, and the embedded controller’s Status Register’s
Alarm bit is set. The embedded controller then asserts an SCI.

10.1.1.4 Smart Battery Selector

The requirements for the Smart Battery Selector are the same as the requirements for the Smart Battery
System Manager, with the exception that the contents of the SelectorState() command register (0x01) are
used instead of BatterySystemState(). The Smart Battery Selector is a subset of the Smart Battery System
Manager and does not have the added support for simultaneous charge/discharge of multiple batteries. The
System Manager is the preferred implementation.

10.1.2 Smart Battery Objects

The Smart Battery subsystem requires a number of objects to define its interface. These are summarized
below:

Table 10-2 Smart Battery Objects

Object Description

_HID This is the hardware ID named object that contains a string. For Smart Battery subsystems, this
object returns the value of “ACPI0002.” This identifies the Smart Battery subsystem to the
Smart Battery driver.

_SBS This is the Smart Battery named object that contains a DWORD. This named object returns the
configuration of the Smart Battery.

10.1.3 _SBS (Smart Battery Subsystem)

The _SBS control method returns the configuration of the Smart Battery subsystem. This named object
returns a DWORD value with a number from 0 to 4. If the number of batteries is greater than 0, then the
Smart Battery driver assumes that a Smart Battery System Manager or Smart Battery Selector is present. If
0, then the Smart Battery driver assumes a single Smart Battery and neither a Smart Battery System
Manager nor Smart Battery Selector is present.

The DWORD returned by _SBS is encoded as follows:

0 – Maximum of one Smart Battery and no Smart Battery System Manager or Smart Battery Selector.

1 – Maximum of one Smart Battery and a Smart Battery System Manager or Smart Battery Selector.

2 – Maximum of two Smart Batteries and a Smart Battery System Manager or Smart Battery Selector.

3 – Maximum of three Smart Batteries and a Smart Battery System Manager or Smart Battery Selector.

4 – Maximum of four Smart Batteries and a Smart Battery System Manager or Smart Battery Selector.

Power Source and Power Meter Devices 383

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer containing the Smart Battery subsystem configuration:

0 – Maximum 1 Smart Battery, system manager/selector not present
1 – Maximum 1 Smart Battery, system manager/selector present
2 – Maximum 2 Smart Batteries, system manager/selector present
3 – Maximum 3 Smart Batteries, system manager/selector present
4 – Maximum 4 Smart Batteries, system manager/selector present

The maximum number of batteries is for the entire system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then this field should return 4.
Notice that a value of 0 indicates a maximum support of one battery and there is no Smart Battery System
Manager or Smart Battery Selector present in the system

As the SMBus is not an enumerable bus, all devices on the bus must be declared in the ACPI name-space.
As the Smart Battery driver understands Smart Battery, Smart Battery Charger, and Smart Battery System
Manager or Smart Battery Selector; only a single device needs to be declared per Smart Battery subsystem.
The driver gets information about the subsystem through the hardware ID (which defines a Smart Battery
subsystem) and the number of Smart Batteries supported on this subsystem (_SBS named object). The
ACPI Smart Battery table indicates the energy levels of the platform at which the system should warn the
user and then enter a sleeping state. The Smart Battery driver then reflects these as threshold alarms for the
Smart Batteries.

A Smart Battery device declaration in the ACPI namespace requires the _GLK object if potentially
contentious accesses to device resources are performed by non-OS code. See section 6.5.7, “_GLK (Global
Lock),” for details about the _GLK object.

10.1.3.1 Example: Single Smart Battery Subsystem

This section illustrates how to define a Smart Battery subsystem containing a single Smart Battery and
charger. The platform implementation is illustrated below:

Embedded

Controller
Ports: 0x62, 0x66

Offset: 0x80
Query: 0x30

SMBus
Host

Controller
(0x8) SBS

Charger
0x9

SBS
Battery

0xB

SMBus

Host
Interface

Figure 10-2 Single Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HC interface. The embedded controller
interface sits at system I/O port addresses 0x62 and 0x66. The SMB-HC is at base address 0x80 within
embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value 0x30.

In this example the Smart Battery subsystem only supports a single Smart Battery. The ASL code for
describing this interface is shown below:

384 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device (EC0) {
Name (_HID, EISAID("PNP0C09"))
Name (_CRS,

ResourceTemplate () { // port 0x62 and 0x66
IO (Decode16, 0x62, 0x62, 0, 1),
IO (Decode16, 0x66, 0x66, 0, 1)

}
)
Name (_GPE, 0)
Device (SMB0) {

Name (_HID, "ACPI0001") // Smart Battery Host Controller
Name (_EC, 0x8030) // EC offset (0x80), Query (0x30)
Device (SBS0){ // Smart Battery Subsystem

Name (_HID, "ACPI0002") // Smart Battery Subsystem ID
Name(_SBS, 0x1) // Indicates support for one battery

} // end of SBS0
} // end of SMB0

} // end of EC

10.1.3.2 Multiple Smart Battery Subsystem: Example

This section illustrates how to define a Smart Battery subsystem that contains three Smart Batteries, a
Smart Battery System Manager, and a Smart Battery Charger. The platform implementation is illustrated
below:

Embedded Controller
Ports: 0x100, 0x101
Offset: 0x90
Query: 0x31

SMBus
Host

Controller
(0x8)

SBS
Charger

0x9

SBS
System

Manager
0xA

SBS
Battery0

0xB

SBS
Battery1

0xB

SBS
Battery2

0xB

Virtual
SMBus

Virtual
SMBus

SMBus

SMBus

SMBus

Host
Interface

Figure 10-3 Smart Battery Subsystem

In this example, the platform is using an SMB-HC that resides within the embedded controller and meets
the ACPI standard for an embedded controller interface and SMB-HC interface. The embedded controller
interface sits at system I/O port addresses 0x100 and 0x101. The SMB-HC resides at base address 0x90
within embedded controller address space (as defined by the ACPI embedded controller specification) and
responds to events on query value 0x31.

In this example the Smart Battery subsystem supports three Smart Batteries. The Smart Battery Charger
and Smart Battery System Manager reside within the embedded controller, meet the Smart Battery System
Manager and Smart Battery Charger interface specification, and respond to their 7-bit addresses (0xA and
0x9 respectively). The ASL code for describing this interface is shown below:

Power Source and Power Meter Devices 385

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Device (EC1) {

Name (_HID, EISAID("PNP0C09"))
Name (_CRS,

ResourceTemplate () { // port 0x100 and 0x101
IO(Decode16, 0x100, 0x100, 0, 2)

}
)
Name (_GPE, 1)
Device (SMB1) {

Name (_HID, "ACPI0001") // Smart Battery Host Controller
Name (_EC, 0x9031) // EC offset (0x90), Query (0x31)
Device (SBS1){ // Smart Battery Subsystem

Name (_HID, "ACPI0002") // Smart Battery Subsystem ID
Name (_SBS, 0x3) // Indicates support for three batteries

} // end of SBS1
} // end of SMB1

} // end of EC

10.2 Control Method Batteries

The following section illustrates the operation and definition of the Control Method Battery.

10.2.1 Battery Events

The AML code handling an SCI for a battery event notifies the system of which battery’s status may have
changed. The OS uses the _BST control method to determine the current status of the batteries and what
action, if any, should be taken (for more information about the _BST control method, see section 10.2.2,
“Battery Control Methods”). The typical action is to notify applications monitoring the battery status to
provide the user with an up-to-date display of the system battery state. But in some cases, the action may
involve generating an alert or even forcing a system into a sleeping state. In any case, any changes in
battery status should generate an SCI in a timely manner to keep the system power state UI consistent with
the actual state of the system battery (or batteries).

Unlike most other devices, when a battery is inserted or removed from the system, the device itself (the
battery bay) is still considered to be present in the system. For most systems, the _STA for this device will
always return a value with bits 0-3 set and will toggle bit 4 to indicate the actual presence of a battery (see
section 6.3.7, “_STA [Status]”). When this insertion or removal occurs, the AML code handler for this
event should issue a Notify(battery_device, 0x81) to indicate that the static battery information has
changed. For systems that have battery slots in a docking station or batteries that cannot be surprise-
removed, it may be beneficial or necessary to indicate that the entire device has been removed. In this case,
the standard methods and notifications described in section 6.3, “Device Insertion, Removal, and Status
Objects,” should be used.

When the present state of the battery has changed or when the trip point set by the _BTP control method is
reached or crossed, the hardware will assert a general purpose event. The AML code handler for this event
issues a Notify(battery_device, 0x80) on the battery device. This notification is also sent when the Status
Flags returned from _BMD change.

In the case where the remaining battery capacity becomes critically low, the AML code handler issues a
Notify(battery_device, 0x80) and reports the battery critical flag in the _BST object. The OS performs an
emergency shutdown. For a full description of the critical battery state, see section 3.9.4, “Low Battery
Levels.”

Sometimes the value to be returned from _BST or _BIF will be temporarily unknown. In this case, the
method may return the value 0xFFFFFFFF as a placeholder. When the value becomes known, the
appropriate notification (0x80 for _BST or 0x81 for BIF) should be issued, in like manner to any other
change in the data returned by these methods. This will cause OSPM to re-evaluate the method—obtaining
the correct data value.

386 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When one or more of the status flags returned by the _BMD control method change, AML code issues a
Notify(battery_device, 0x82) on the battery device unless this change occurs during a call to _BMC and the
value of the status flags in _BMD match the value passed in to _BMC. If the value of the status bits cannot
be set to reflect the action requested by the executing _BMC, the AML code will issue this notification. For
example, calling _BMC with bit 0 set to initiate a calibration cycle while AC power is not available will
cause AML to issue a Notify(battery_device, 0x82).

10.2.2 Battery Control Methods

The Control Method Battery is a battery with an AML code interface between the battery and the host PC.
The battery interface is completely accessed by AML code control methods, allowing the OEM to use any
type of battery and any kind of communication interface supported by ACPI. OSPM requires accurate
battery data to perform optimal power management policy and to provide the end user with a meaningful
estimation of remaining battery life. As such, control methods that return battery information should
calculate this information rather than return hard coded data.

A Control Method Battery is described as a device object. Each device object supporting the Control
Method Battery interface contains the following additional control methods. When there are two or more
batteries in the system, each battery will have an independent device object in the namespace.

Table 10-3 Battery Control Methods

Object Description

_BIF Returns static information about a battery (in other words, model number, serial number,
design voltage, and so on).

_BIX Returns extended static information about a battery (in other words, model number, serial
number, design voltage, and so on).

_OSC OSPM Capabilities conveyance for batteries.

_BMA Sets the averaging interval of the battery capacity measurement, in milliseconds.

_BMS Sets the sampling time of the battery capacity measurement, in milliseconds.

_BST Returns the current battery status (in other words, dynamic information about the battery, such
as whether the battery is currently charging or discharging, an estimate of the remaining
battery capacity, and so on).

_BTP Sets the Battery Trip point, which generates an SCI when batterycapacity reaches the specified
point.

_PCL List of pointers to the device objects representing devices powered by the battery.

_STA Returns general status of the battery (for a description of the _STA control method, see section
6.3.7, “_STA (Status]”).

_BTM Returns battery estimated runtime at the present average rate of drain, or the runtime at a
specified rate.

_BCT Returns battery estimated charging time.

_BMD Returns battery information related to battery recalibration and charging control.

_BMC Control calibration and charging.

A Control Method Battery device declaration in the ACPI namespace requires the _GLK object if
potentially contentious accesses to device resources are performed by non-OS code. See section 6.5.7,
“_GLK (Global Lock),” for details about the _GLK object.

Power Source and Power Meter Devices 387

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.2.2.1 _BIF (Battery Information)

This object returns the static portion of the Control Method Battery information. This information remains
constant until the battery is changed. This object is deprecated in ACPI 4.0. The _BIX object provides
expanded battery information and includes all of the information provide by _BIF. See Section 10.2.2.2,
“Battery Information Extended”).

Arguments:
None

Return Value:
A Package containing the battery information as described below

Return Value Information:

_BIF returns a package in the format below

Package {
Power Unit // Integer (DWORD)
Design Capacity // Integer (DWORD)
Last Full Charge Capacity // Integer (DWORD)
Battery Technology // Integer (DWORD)
Design Voltage // Integer (DWORD)
Design Capacity of Warning // Integer (DWORD)
Design Capacity of Low // Integer (DWORD)
Battery Capacity Granularity 1 // Integer (DWORD)
Battery Capacity Granularity 2 // Integer (DWORD)
Model Number // String (ASCIIZ)
Serial Number // String (ASCIIZ)
Battery Type // String (ASCIIZ)
OEM Information // String (ASCIIZ)

}

Table 10-4 _BIF Return Package Values

Field Format Description

Power Unit Integer
(DWORD)

Indicates the units used by the battery to report its capacity and
charge/discharge rate information to the OS.

0x00000000 – Capacity information is reported in [mWh] and
charge/discharge rate information in [mW].

0x00000001 – Capacity information is reported in [mAh] and
charge/discharge rate information in [mA].

Design Capacity Integer
(DWORD)

Battery’s design capacity. Design Capacity is the nominal capacity of a
new battery. The Design Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.

0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown design capacity

Last Full Charge
Capacity

Integer
(DWORD)

Predicted battery capacity when fully charged. The Last Full Charge
Capacity value is expressed as power (mWh) or current (mAh)
depending on the Power Unit value.

0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

Integer
(DWORD)

0x00000000 – Primary (for example, non-rechargeable)
0x00000001 – Secondary (for example, rechargeable)

Design Voltage Integer
(DWORD)

Nominal voltage of a new battery.

0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown design voltage

388 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

Design capacity
of Warning

Integer
(DWORD)

OEM-designed battery warning capacity. See section 3.9.4, “Low
Battery Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity
of Low

Integer
(DWORD)

OEM-designed low battery capacity. See section 3.9.4, “Low Battery
Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Battery Capacity
Granularity 1

Integer
(DWORD)

Battery capacity granularity between low and warning in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the battery
is capable of measuring. See note below for more details

Battery Capacity
Granularity 2

Integer
(DWORD)

Battery capacity granularity between warning and Full in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the battery
is capable of measuring. This may be a different value than Battery
Capacity Granularity 1 to accommodate systems where the granularity
accuracy may change depending on the battery level. See note below for
more details.

Model Number String
(ASCIIZ)

OEM-specific Control Method Battery model number

Serial Number String
(ASCIIZ)

OEM-specific Control Method Battery serial number

Battery Type String
(ASCIIZ)

The OEM-specific Control Method Battery type

OEM
Information

String
(ASCIIZ)

OEM-specific information for the battery that the UI uses to display the
OEM information about the Battery. If the OEM does not support this
information, this field should contain a NULL string.

Additional Notes:

 A secondary-type battery should report the corresponding capacity (except for Unknown).

 On a multiple-battery system, all batteries in the system should return the same granularity.

 Operating systems prefer these control methods to report data in terms of power (watts).

 On a multiple-battery system, all batteries in the system must use the same power unit.

 The definition of battery capacity granularity has been clarified. For OSPM to determine if
systems support the clarified definition of battery capacity granularity, OSPM may evaluate an
_OSC method at the battery scope to indicate support for this capability, and for the platform to
indicate if it supports these extended capabilities.

10.2.2.2 _BIX (Battery Information Extended)

The _BIX object returns the static portion of the Control Method Battery information. This information
remains constant until the battery is changed. The _BIX object returns all information available via the
_BIF object plus additional battery information. The _BIF object is deprecated in lieu of _BIX in ACPI 4.0.

Arguments:
None

Return Value:
A Package containing the battery information as described below

Power Source and Power Meter Devices 389

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value Information:

_BIX returns a package in the format below

Package {
// ASCIIZ is ASCII character string terminated with a 0x00.
Revision //Integer
Power Unit //Integer (DWORD)
Design Capacity //Integer (DWORD)
Last Full Charge Capacity //Integer (DWORD)
Battery Technology //Integer (DWORD)
Design Voltage //Integer (DWORD)
Design Capacity of Warning //Integer (DWORD)
Design Capacity of Low //Integer (DWORD)
Cycle Count //Integer (DWORD)

Measurement Accuracy //Integer (DWORD)
Max Sampling Time //Integer (DWORD)
Min Sampling Time //Integer (DWORD)
Max Averaging Interval //Integer (DWORD)
Min Averaging Interval //Integer (DWORD)

Battery Capacity Granularity 1 //Integer (DWORD)
Battery Capacity Granularity 2 //Integer (DWORD)
Model Number //String (ASCIIZ)
Serial Number //String (ASCIIZ)
Battery Type //String (ASCIIZ)
OEM Information //String (ASCIIZ)

}

Table 10-5 _BIX Return Package Values

Field Format Description

Revision Integer Current revision is: 0

Power Unit Integer
(DWORD)

Indicates the units used by the battery to report its capacity and
charge/discharge rate information to the OS.

0x00000000 – Capacity information is reported in [mWh] and
charge/discharge rate information in [mW].

0x00000001 – Capacity information is reported in [mAh] and
charge/discharge rate information in [mA].

Design Capacity Integer
(DWORD)

Battery’s design capacity. Design Capacity is the nominal capacity of a
new battery. The Design Capacity value is expressed as power [mWh] or
current [mAh] depending on the Power Unit value.

0x000000000 – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown design capacity

Last Full Charge
Capacity

Integer
(DWORD)

Predicted battery capacity when fully charged. The Last Full Charge
Capacity value is expressed as power (mWh) or current (mAh)
depending on the Power Unit value.

0x000000000h – 0x7FFFFFFF (in [mWh] or [mAh])
0xFFFFFFFF – Unknown last full charge capacity

Battery
Technology

Integer
(DWORD)

0x00000000 – Primary (for example, non-rechargeable)
0x00000001 – Secondary (for example, rechargeable)

Design Voltage Integer
(DWORD)

Nominal voltage of a new battery.

0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown design voltage

390 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

Design capacity
of Warning

Integer
(DWORD)

OEM-designed battery warning capacity. See section 3.9.4, “Low
Battery Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Design Capacity
of Low

Integer
(DWORD)

OEM-designed low battery capacity. See section 3.9.4, “Low Battery
Levels.”

0x000000000 – 0x7FFFFFFF in [mWh] or [mAh]

Battery
Capacity
Granularity 1

Integer
(DWORD)

Battery capacity granularity between low and warning in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the battery
is capable of measuring. See note below for more details

Battery
Capacity
Granularity 2

Integer
(DWORD)

Battery capacity granularity between warning and Full in [mAh] or
[mWh]. That is, this is the smallest increment in capacity that the
battery is capable of measuring. This may be a different value than
Battery Capacity Granularity 1 to accommodate systems where the
granularity accuracy may change depending on the battery level. See
note below for more details.

Cycle Count Integer
(DWORD)

The number of cycles the battery has experienced. A cycle is defined as:

An amount of discharge approximately equal to the value of Design
Capacity.

0x000000000 – 0xFFFFFFFE
0xFFFFFFFF – Unknown cycle count

Measurement
Accuracy

Integer
(DWORD)

The accuracy of the battery capacity measurement, in thousandth of a
percent. (0% - 100.000%) For example, The value 80000 would mean
80% accuracy.

Max Sampling
Time

Integer
(DWORD)

The sampling time is the duration between two consecutive
measurements of the battery’s capacities specified in _BST, such as
present rate and remaining capacity. If the OSPM makes two
succeeding readings through _BST beyond the duration, two different
results will be returned.

The Max Sampling Time is the maximum sampling time the battery can
support, in milliseconds.

0xFFFFFFFF is returned if the information is unavailable.

Min Sampling
Time

Integer
(DWORD)

The Min Sampling Time is the minimum sampling time the battery can
support, in milliseconds.

0xFFFFFFFF is returned if the information is unavailable.

Max Averaging
Interval

Integer
(DWORD)

The Average Interval is the length of time (in milliseconds) within
which the battery averages the capacity measurements specified in
_BST, such as remaining capacity and present rate.

The Sampling time specifies the frequency of measurements, and the
average interval specifies the width of the time window of every
measurement.

This field indicates the maximum Average Interval that the battery
supports.

Min Averaging
Interval

Integer
(DWORD)

This field indicates the minimum Average Interval that the battery
supports

Power Source and Power Meter Devices 391

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

Model Number String
(ASCIIZ)

OEM-specific Control Method Battery model number

Serial Number String
(ASCIIZ)

OEM-specific Control Method Battery serial number

Battery Type String
(ASCIIZ)

The OEM-specific Control Method Battery type

OEM
Information

String
(ASCIIZ)

OEM-specific information for the battery that the UI uses to display the
OEM information about the Battery. If the OEM does not support this
information, this field should contain a NULL string.

Notes:

 A secondary-type battery should report the corresponding capacity (except for Unknown).

 On a multiple-battery system, all batteries in the system should return the same granularity.

 Operating systems prefer these control methods to report data in terms of power (watts).

 On a multiple-battery system, all batteries in the system must use the same power unit.

 The definition of battery capacity granularity has been clarified. For OSPM to determine if
systems support the clarified definition of battery capacity granularity, OSPM may evaluate an
_OSC method at the battery scope to indicate support for this capability, and for the platform to
indicate if it supports these extended capabilities.

392 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.2.2.3 _OSC Definition for Control Method Battery

_OSC for control method battery is uniquely identified by the UUID:

F18FC78B-0F15-4978-B793-53F833A1D35B

The Revision 1 capabilities described under this _OSC are defined in Table 10-6.

Table 10-6 Control Method Battery _OSC Capabilities DWORD2 Bit Definitions

Capabilities
DWORD2 bits

Interpretation

0 0 – OS does not support revised battery granularity definition.

1 – OS supports revised battery granularity definition.

1 0 – OS does not support specifying wake on low battery user preference.

1 – OS supports specifying wake on low battery user preference, See section 9.1.3,
“_BLT Battery Level Threshold) for more information.

2-31 Reserved

Bits defined in Capabilities DWORD2 provide information regarding OS supported features. Contents in
DWORD2 are passed one-way; the OS will disregard the corresponding bits of DWORD2 in the Return
Code.

10.2.2.4 _BMA (Battery Measurement Averaging Interval)

This object is used to set the averaging interval of the battery capacity measurement, in milliseconds.

The Battery Measurement Averaging Interval is the length of time within which the battery averages the
capacity measurements specified in _BST, such as remaining capacity and present rate.

The OSPM may read the Max Average Interval and Min Average Interval with _BIX during boot time, and
set a specific average interval within the range with _BMA.

Arguments: (1)
Arg0 – AveragingInterval (Integer(DWORD)) the averaging interval of battery capacity measurement:

0x00000001 – 0xFFFFFFFF (in units of millisecond)

Return Value:
An Integer (DWORD) containing a result code as follows:

0x00000000 – Success.
0x00000001 – Failure to set Battery Measurement Averaging Interval because it is out of the

battery’s measurement capability.
0x00000002 – 0xFFFFFFFF – Reserved.

10.2.2.5 _BMS (Battery Measurement Sampling Time)

This object is used to set the sampling time of the battery capacity measurement, in milliseconds.

The Sampling Time is the duration between two consecutive measurements of the battery’s capacities
specified in _BST, such as present rate and remaining capacity. If the OSPM makes two succeeding
readings through _BST beyond the duration, two different results will be returned.

The OSPM may read the Max Sampling Time and Min Sampling Time with _BIX during boot time, and
set a specific sampling time within the range with _BMS.

Arguments: (1)
Arg0 – SamplingTime (Integer(DWORD)) the sampling time of battery capacity measurement:

0x00000001 – 0xFFFFFFFF (in units of millisecond)

Power Source and Power Meter Devices 393

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value:
An Integer (DWORD) containing a result code as follows:

0x00000000 – Success.
0x00000001 – Failure to set Battery Measurement Sampling Time because it is out of the battery’s

measurement capability.
0x00000002 – 0xFFFFFFFF – Reserved.

10.2.2.6 _BST (Battery Status)

This object returns the present battery status. Whenever the Battery State value changes, the system will
generate an SCI to notify the OS.

Arguments:
None

Return Value:
A Package containing the battery status as described below

Return Value Information:

_BST returns a package in the format below

Package {
Battery State // Integer (DWORD)
Battery Present Rate // Integer (DWORD)
Battery Remaining Capacity // Integer (DWORD)
Battery Present Voltage // Integer (DWORD)

}

Table 10-7 _BST Return Package Values

Element Format Description

Battery
State

Integer
(DWORD)

Bit values. Notice that the Charging bit and the Discharging bit are mutually
exclusive and must not both be set at the same time. Even in critical state,
hardware should report the corresponding charging/discharging state.

Bit0 – 1 indicates the battery is discharging.
Bit1 – 1 indicates the battery is charging.
Bit2 – 1 indicates the battery is in the critical energy state (see section 3.9.4,
“Low Battery Levels”). This does not mean battery failure.

Battery
Present
Rate

Integer
(DWORD)

Returns the power or current being supplied or accepted through the battery’s
terminals (direction depends on the Battery State value). The Battery Present
Rate value is expressed as power [mWh] or current [mAh] depending on the
Power Unit value.

Batteries that are rechargeable and are in the discharging state are required to
return a valid Battery Present Rate value.

0x00000000 – 0x7FFFFFFF in [mW] or [mA]
0xFFFFFFFF – Unknown rate

Battery
Remaining
Capacity

Integer
(DWORD)

Returns the estimated remaining battery capacity. The Battery Remaining
Capacity value is expressed as power [mWh] or current [mAh] depending on
the Power Unit value.

Batteries that are rechargeable are required to return a valid Battery
Remaining Capacity value.

0x00000000 – 0x7FFFFFFF in [mWh] or [mAh]
0xFFFFFFFF – Unknown capacity

394 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Element Format Description

Battery
Present
Voltage

Integer
(DWORD)

Returns the voltage across the battery’s terminals.

Batteries that are rechargeable must report Battery Present Voltage.

0x000000000 – 0x7FFFFFFF in [mV]
0xFFFFFFFF – Unknown voltage

Note: Only a primary battery can report unknown voltage.

Notice that when the battery is a primary battery (a non-rechargeable battery such as an Alkaline-
Manganese battery) and cannot provide accurate information about the battery to use in the calculation of
the remaining battery life, the Control Method Battery can report the percentage directly to OS. It does so
by reporting the Last Full Charged Capacity =100 and BatteryPresentRate=0xFFFFFFFF. This means that
Battery Remaining Capacity directly reports the battery’s remaining capacity [%] as a value in the range 0
through 100 as follows:

Remaining Battery Percentage[%] =
Battery Remaining Capacity [=0 ~ 100]

Last Full Charged Capacity [=100]
* 100

Remaining Battery Life [h] =
Battery Remaining Capacity [mAh/mWh]

Battery Present Rate [=0xFFFFFFFF]
= unknown

10.2.2.7 _BTP (Battery Trip Point)

This object is used to set a trip point to generate an SCI whenever the Battery Remaining Capacity reaches
or crosses the value specified in the _BTP object. Specifically, if Battery Remaining Capacity is less than
the last argument passed to _BTP, a notification must be issued when the value of Battery Remaining
Capacity rises to be greater than or equal to this trip-point value. Similarly, if Battery Remaining Capacity
is greater than the last argument passed to _BTP, a notification must be issued when the value of Battery
Remaining Capacity falls to be less than or equal to this trip-point value. The last argument passed to _BTP
will be kept by the system.

If the battery does not support this function, the _BTP control method is not located in the namespace. In
this case, the OS must poll the Battery Remaining Capacity value.

Arguments: (1)
Arg0 – An Integer containing the new battery trip point

0 – Clear the trip point
1 – 0x7FFFFFFF – New trip point, in units of mWh or mAh depending on the Power Units value

Return Value:
None

10.2.2.8 _BTM (Battery Time)

This optional object returns the estimated runtime of the battery while it is discharging.

Arguments: (1)
Arg0 – An Integer containing the rate at which the battery is expected to discharge

0 – Indicates that the battery will continue discharging at the current rate. The rate
should be based on the average rate of drain, not the current rate of drain.

1 – 0x7FFFFFFF The discharge rate (in mA or mW)

Power Source and Power Meter Devices 395

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Return Value:
An Integer containing the estimated remaining runtime

0 – The input discharge rate (Arg0) is too large for the battery or batteries to
supply. If the input argument was 0, this value indicates that the battery is
critical.

1 – 0xFFFFFFFE – Estimated runtime in seconds
0xFFFFFFFF – Runtime is unknown

10.2.2.9 _BCT (Battery Charge Time)

When the battery is charging, this optional object returns the estimated time from present to when it is
charged to a given percentage of Last Full Charge Capacity.

Arguments:
Arg0 – ChargeLevel (Integer (DWORD)): The queried charge level in units of percent of Last Full

Charge Capacity. For example: 96 refers to 96% of Last Full Charge Capacity. Valid values are
1 – 100 (0x00000001 – 0x00000064).

Return Value:
An Integer (DWORD) containing a result code as follows:

0x00000000 – Specified targeted charging capacity is smaller than the current remaining
capacity or larger than 100% of Last Full Charge Capacity.

0x00000001 – 0xFFFFFFFE – Estimated charging time in seconds
0xFFFFFFFF – Charging time is unknown

10.2.2.10 _BMD (Battery Maintenance Data)

This optional object returns information about the battery’s capabilities and current state in relation to
battery calibration and charger control features. If the _BMC object (defined below) is present under a
battery device, this object must also be present. Whenever the Status Flags value changes, AML code will
issue a Notify(battery_device, 0x82). In addition, AML will issue a Notify(battery_device, 0x82) if
evaluating _BMC did not result in causing the Status Flags to be set as indicated in that argument to
_BMC. AML is not required to issue Notify(battery_device, 0x82) if the Status Flags change while
evaluating _BMC unless the change does not correspond to the argument passed to _BMC.

Arguments:
None

Return Value:
A Package containing the battery maintenance data as described below

Return Value Information:

_BMD returns a package in the format below

Package {
Status Flags // Integer (DWORD)
Capability Flags // Integer (DWORD)
Recalibrate Count // Integer (DWORD)
Quick Recalibrate Time // Integer (DWORD)
Slow Recalibrate Time // Integer (DWORD)

}

396 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 10-8 _BMD Return Package Values

Field Format Description

Status
Flags

Integer
(DWORD)

Bit values. Bit0 is mutually exclusive with Bit1 and Bit2. If the charger is
being manually controlled, there cannot be an AML controlled calibration
cycle.

Bit0 – 1 indicates the battery is running an AML controlled calibration cycle

Bit1 – 1 indicates that charging has been disabled.
Bit2 – 1 indicates the battery is configured to discharge while AC power is

available.

Bit3 – 1 indicates that the battery should be recalibrated.
Bit4 – 1 indicates that the OS should put the system into standby to speed

charging during a calibration cycle. This is optional (based on user
preference) if “Slow Recalibrate Time” is not equal to 0x00000000.

Bit5 – Bit31 – reserved.

Capability
Flags

Integer
(DWORD)

Bit values that describe the capabilities of the battery system. These bits
allows a battery system with more limited capabilities to still be calibrated by
OSPM.

Bit0 – 1 indicates that an AML controlled calibration cycle is supported.

Bit1 – 1 indicates that disabling the charger is supported.

Bit2 – 1 indicates that discharging while running on AC is supported.
Bit3 – 1 indicates that calling _BMC for one battery will affect the state of all

batteries in the system. This is for battery systems that cannot control
batteries individually.

Bit4 – 1 indicates that calibration should be done by first fully charging the
battery and then discharging it. Not setting this bit will indicate that
calibration can be done by simply discharging the battery.

Bit4 – Bit31 – reserved.

Recalibrate
Count

Integer
(DWORD)

This is used by battery systems that can’t detect when calibration is required,
but wish to recommend that the battery should be calibrated after a certain
number of cycles. Counting the number of cycles and partial cycles is done by
the OS.

0x00000000 – Only calibrate when Status Flag bit 3 is set.
0x00000000 – 0xFFFFFFFF – calibrate battery after detecting this many

battery cycles.

Quick
Recalibrate
Time

Integer
(DWORD)

Returns the estimated time it will take to calibrate the battery if the system is
put into standby whenever Status Flags Bit4 is set. While the AML controlled
calibration cycle is in progress, this returns the remaining time in the
calibration cycle.

0x000000000 – indicates that standby while calibrating the battery is not
supported. The system should remain in S0 until calibration is
completed.

0x00000001 – 0xFFFFFFFE – estimated recalibration time in seconds.

0xFFFFFFFF – indicates that the estimated time to recalibrate the battery is
unknown.

Power Source and Power Meter Devices 397

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

Slow
Recalibrate
Time

Integer
(DWORD)

Returns the estimated time it will take to calibrate the battery if Status Flag
Bit4 is ignored. While the AML controlled calibration cycle is in progress,
this returns the remaining time in the calibration cycle.

0x000000000 – indicates that battery calibration may not be successful if
Status Flags Bit4 is ignored.

0x00000001 – 0xFFFFFFFE – estimated recalibration time in seconds.

0xFFFFFFFF – indicates that the estimated time to recalibrate the battery is
unknown.

See section 3.9.5, “Battery Calibration” for an overview of Battery Calibration.

The Capability Flags and Recalibration Count are used to indicate what functions are controlled by AML
and what functions are controlled by OSPM as described in section 3.9.5, “Battery Calibration”. If the
system does not implement an AML controlled calibration cycle (bit 0), it may indicate using bit 1 and bit 2
that the OS can control a generic calibration cycle without prompting the user to remove the power cord.
Recalibration Count may be used to indicate that the BIOS cannot determine when calibration should be
preformed so bit 3 of the Status Flags will never be set. In that case, OSPM will attempt to count the
number of cycles.

Bit3 is used by systems that do not have individual control over the batteries and can only perform
calibration on all batteries in the system at once. On such a system, if one battery requests calibration and
another battery does not, the OS may suggest that the user remove the battery that doesn’t need calibration,
before initiating the calibration cycle. When this bit is set, reading the Recalibrate Time from either battery
should give the time to recalibrate all batteries present in the system.

10.2.2.11 _BMC (Battery Maintenance Control)

This object is used to initiate calibration cycles or to control the charger and whether or not a battery is
powering the system. This object is only present under a battery device if the _BMD Capabilities Flags
field has bit 0, 1, or 2 set.

Arguments: (1)
Arg0 – An Integer containing feature control flags

Bit0 – Set to initiate an AML controlled calibration cycle. Clear to end the calibration cycle
Bit1 – Set to disable charging. Clear to enable charging
Bit2 – Set to allow the battery to discharge while AC power is available. Clear to prevent

discharging while AC power is available

Return Value:
None

See section 3.9.5 for an overview of Battery Calibration.

Evaluating this object with bit0 set will initiate an AML controlled recalibration cycle if _BMD indicates
that this is supported. The calibration cycle is controlled by the platform and will typically include
disabling the AC adapter and discharging the battery, then charging the battery. While the battery is
charging, the BIOS should set Bit4 of the Status flags returned by _BMD if it is possible to put the system
into standby during calibration to speed up charging. Evaluating this with Bit0 equal to 0 will abort the
calibration cycle if one is in process. If the BIOS determines that the calibration cycle must be aborted (for
example AC power is lost), or the calibration completes successfully, the BIOS will end the cycle
automatically, clear the _BMD Status Flag Bit0, and send a notify 0x82. While the calibration cycle is in
process, the battery will report data normally, so the OS must disable battery alarms.

398 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Bit1 and Bit2 may not be used in conjunction with the AML controlled calibration cycle. Having Bit0 set
will override Bit1 and Bit2. Bit1 will prevent the battery from charging even though AC power is
connected. Bit2 will allow the system to draw its power from the battery even though AC power is
available. When the battery is no longer capable of delivering current, this setting is automatically cleared,
and the system will continue running off AC power without interruption. In addition, if AC power is lost
this bit will be cleared. When AC power comes back, the OS must set the bit again if the user wants to
continue discharging. When the system clears this bit automatically, it will result in a change in the Status
Flags returned by _BMD. This will cause a notify 0x82. Bit1 is only cleared automatically if an AML
controlled calibration cycle is initiated.

When a battery is discharging because Bit2 is set, the _PSR method of the AC adapter device will report
that AC is offline because the system is not running off of the AC adapter. If the batteries are controlled
individually (Bit3 of the _BMD Capabilities Flags), setting either battery to discharge will cause _PSR to
report AC offline. If more than one battery in the system has Bit2 set to discharge the battery, it is up to the
system to decide which battery to discharge, so only on a system that discharges the batteries one at a time,
a battery with Bit2 set may not be discharging if another battery in the system is being discharged.

If Batteries are not controlled individually, calling _BMC will initiate calibration, disable charge, and/or
allow discharge on all batteries in the system. The state of these batteries will be reflected in the _BMD
Status Flags for all batteries.

10.3 AC Adapters and Power Source Objects

The Power Source objects describe the system’s power source. These objects may be defined under a
Power Source device which is declared using a hardware identifier (_HID) of “ACPI0003”. Typically there
will be a power source device for each physical power supply contained within the system. However, in
cases where the power supply is shared, as in a blade server configuration, this may not be possible. Instead
the firmware can choose to expose a virtual power supply that represents one or more of the physical power
supplies.

Table 10-9 Power Source Objects

Object Description

_PSR Returns whether this power source device is currently online.

_PCL List of pointers to devices this power source is powering.

_PIF Returns static information about a power source.

_PRL List of pointers to all the other power source devices that belong in the same redundancy group
of which the power supply device is a member.

10.3.1 _PSR (Power Source)

Returns whether the power source device is currently in use. This can be used to determine if system is
running off this power supply or adapter. On mobile systes this will report that the system is not running on
the AC adapter if any of the batteries in the system is being forced to discharge. In systems that contains
multiple power sources, this object reports the power source’s online or offline status.

Arguments:
None

Return Value:
An Integer containing the power source status

0 – Off-line (not on AC power)
1 – On-line

Power Source and Power Meter Devices 399

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.3.2 _PCL (Power Consumer List)

This object evaluates to a list of pointers, each pointing to a device or a bus powered by the power source
device. Pointing to a bus indicates that all devices under the bus are powered by the power source device.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to devices or buses

10.3.3 _PIF (Power Source Information)

This object returns information about the Power Source, which remains constant until the Power Source is
changed. When the power source changes, the platform issues a Notify(0x0) (Bus Check) to the Power
Source device to indicate that OSPM must re-evaluate the _PIF object.

Arguments:
None

Return Value:
A Package with the following format:

Package {
Power Source State // Integer (DWORD)
Maximum Output Power // Integer (DWORD)
Maximum Input Power // Integer (DWORD)
Model Number // String (ASCIIZ)
Serial Number // String (ASCIIZ)
OEM Information // String (ASCIIZ)

}

Table 10-10 _PIF Method Result Codes

Element Object Type Description

Power Source
State

Integer
(DWORD)

Bit values that describe the type of this Power Source. These bits are
especially useful in server scenarios.

Bit0 – indicates the power source is a redundant one. If this bit is set,
this Power Source device should have a _PRL object.

Bit1 – indicates the power source is being shared across multiple
machines.

Bit2 – Bit31 – Reserved.

Maximum Output
Power

Integer
(DWORD)

The maximum rated output wattage of the power source device. [mW]

0xFFFFFFFF is returned if the information is unavailable.

Maximum Input
Power

Integer

(DWORD)

The maximum rated input wattage of the power source device. [mW]

0xFFFFFFFF is returned if the information is unavailable.

Model Number String
(ASCIIZ)

OEM-specific Power Source model number. This element is optional
and an empty string (a null character) should be used if this is not
supported.

Serial Number String
(ASCIIZ)

OEM-specific Power Source serial number. This element is optional
and an empty string (a null character) should be used if this is not
supported.

400 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Element Object Type Description

OEM Information String
(ASCIIZ)

OEM-specific information that the UI uses to display about the Power
Source device. This element is optional and a NULL string should be
used if this is not supported.

10.3.4 _PRL (Power Source Redundancy List)

This optional object evaluates to a list of Power Source devices that are in the same redundancy grouping
as Power Source device under which this object is defined. A redundancy grouping is a group of power
supplies that together provide redundancy. For example, on a system that contains two power supplies that
each could independently power the system, both power supplies would be part of the same redundancy
group. This is used in conjunction with the Power Source State values specified by the _PIF object.

The entries should be in the format of a fully qualified ACPI namespace path.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to power source devices. It has the
following format:

Package {
Power source[0], // Reference
Power source[1], // Reference

Power source[n] // Reference
}

10.4 Power Meters

The following section describes Power Metering objects. These objects may be defined under a Power
Meter device which is declared using the ACPI000D hardware identifier (_HID).

Table 10-11 Power Meter Objects

Object Description

_GAI Gets the averaging interval used by the power meter.

_GHL Gets the hardware power consumption limit that is enforced by the Power Meter.

_PAI Sets the power averaging interval used by the Power Meter.

_PMC Returns Power Meter capabilities.

_PMD Returns a list of devices whose power consumption is measured by the Power Meter.

_PMM Returns the power consumption measured by the Power Meter.

_PTP Sets Power Meter device trip points.

_SHL Sets the hardware power consumption limit that is enforced by the Power Meter.

10.4.1 _PMC (Power Meter Capabilities)

This object returns the capabilities of a power meter. This information remains constant unless either the
power meter’s firmware or the BMC hardware changes, at which time the platform is required to send
Notify(power_meter, 0x80) for the OSPM to re-evaluate _PMC.

Power Source and Power Meter Devices 401

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
A Package with the following format:

Package {
Supported Capabilities // Integer (DWORD)
Measurement Unit // Integer (DWORD)
Measurement Type // Integer (DWORD)
Measurement Accuracy // Integer (DWORD)
Measurement Sampling Time // Integer (DWORD)
Minimum Averaging Interval // Integer (DWORD)
Maximum Averaging Interval // Integer (DWORD)
Hysteresis Margin // Integer (DWORD)
Hardware Limit Is Configurable // Boolean (DWORD)
Min Configurable Hardware Limit // Integer (DWORD)
Max Configurable Hardware Limit // Integer (DWORD)
Model Number // String
Serial Number // String
OEM Information // String

}

Table 10-12 _PMC Method Result Codes

Element Object
Type

Description

Supported
Capabilities

Integer

(DWORD)

A bitmask that represents the capability flags:

Bit0 – indicates the power meter supports measurement.

Bit1 – indicates the power meter supports trip points.

Bit2 – indicates the power meter supports hardware enforced limit.

Bit3 – indicates that the power meter supports notifications when the
hardware limit is enforced.

Bit4 – Bit7 – reserved.

Bit8 – indicates the power meter only reports data when discharging. This
applies to power meters that are battery-type devices.

Measurement
Unit

Integer
(DWORD)

The units used by the power meter to report measurement and configure trip
points and hardware enforced limits.

0x00000000 – indicates measurements are reported in [mW].

Measurement
Type

Integer
(DWORD)

The type of measurement the power meter is measuring. A power meter
may measure either input or output power, not both.

0x00000000 – indicates the power meter is measuring input power.

0x00000001 – indicates the power meter is measuring output power.

Measurement
Accuracy

Integer
(DWORD)

The accuracy of the power meter device, in thousandth of a percent. (0% -
100.000%) For example, The value 80000 would mean 80% accuracy.

Measurement
Sampling Time

Integer
(DWORD)

The sampling time of the power meter device, in milliseconds. This is the
minimum amount of time at which the measurement value will change. In
other words, the same reading will be returned by _PMM if OSPM makes 2
consecutive reads within a measurement sampling time. 0xFFFFFFFF is
returned if the information is unavailable.

Minimum
Averaging
Interval

Integer
(DWORD)

This is the minimum length of time (in milliseconds) within which the
power meter firmware is capable of averaging the measurements within it.

402 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Maximum
Averaging
Interval

Integer
(DWORD)

This is the maximum length of time (in milliseconds) within which the
power meter firmware is capable of averaging the measurements within it.

Hysteresis
Margin

Integer
(DWORD)

The margin used by the BMC for hysteresis, in the unit of [Measurement
Unit / Measurement Sampling Time]. This indicates the margin built around
the trip points and hardware limit notifications. This margin prevents
unnecessary notifies to the OSPM when the reading is fluctuating very
close to one of the trip points or the hardware limit. 0xFFFFFFFF is
returned if the information is unavailable.

Hardware Limit
Is Configurable

Integer
(DWORD)

This boolean value represents whether hardware enforced limit is
configurable by the OSPM.

0x00000000 (zeros) – indicates the limit is read-only.

0xFFFFFFFF (ones) – indicates the limit is writable.

Minimum
Configurable
Hardware Limit

Integer
(DWORD)

The minimum value that can be configured into the hardware enforced
limit, expressed in the units as specified by Measurement Unit.

Maximum
Configurable
Hardware Limit

Integer
(DWORD)

The maximum value that can be configured into the hardware enforced
limit, expressed in the units as specified by Measurement Unit.

Model Number String
(ASCIIZ)

OEM-specific Power meter model number. This element is optional and an
empty string (a null character) should be used if this is not supported.

Serial Number String
(ASCIIZ)

OEM-specific Power meter serial number. This element is optional and an
empty string (a null character) should be used if this is not supported.

OEM
Information

String
(ASCIIZ)

OEM-specific information that the UI uses to display about the Power
meter device. This element is optional and a NULL string should be used if
this is not supported.

10.4.2 _PTP (Power Trip Points)

This object sets the upper and lower trip points for the power meter device. These 2 trip points define a
hysteresis range for which the OSPM can tolerate without re-reading the current measurement via _PMM.
When the power meter draw goes outside the range, a Notify(power_meter, 0x81) should be sent to notify
the OSPM, at which time the OSPM should re-evaluate _PMM and also set a pair of trip points around the
newest reading. If the latest value measured by the power meter is outside of the range defined by the trip
points by the time _PTP is called, a result code is returned.

Arguments: (2)
Arg0 (Integer) : Upper Trip Point
Arg1 (Integer) : Lower Trip Point

Return Value:
An Integer containing the status of the operation:

0x00000000 – Success
0x00000001 – Failure to set trip points because latest measurement is out of range
0x00000002 – Failure to set trip points due to hardware timeout
0x00000003 – Failure to set trip points due to unknown hardware error
0x00000004 – 0xFFFFFFFF - Reserved

Power Source and Power Meter Devices 403

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.4.3 _PMM (Power Meter Measurement)

This object returns the latest measurement reading from the power meter device. The value returned
represents real power (i.e. power factor is included in the value). In most cases this is a rolling average
value that is computed by the firmware over an averaging interval. On systems where this interval can be
configured, the _PAI object should be present under the power meter device (see 10.4.4).

Arguments:
None

Return Value:
An Integer is returned to represent the latest measurement reading from the power meter device. This
value should be in the unit specified in the power meter capabilities (typically in milliwatts), and is
required to be the RMS value if the power meter is measuring in AC. If an error occurs while obtaining
the meter reading or if the value is not available then an Integer with all bits set is returned.

10.4.4 _PAI (Power Averaging Interval)

This object sets the averaging interval used by the power meter. The averaging interval is the total time the
power meter will take instantaneous measurement samples for, before averaging them to produce the
average power measurement as returned by _PMM. If the platform changes the averaging interval
independently from OSPM, the platform must issue a Notify(power_meter, 0x84) to indicate the change to
the OSPM. Upon receiving the notification, OSPM evaluates the _GAI object to read the new averaging
interval.

Arguments: (1)
Arg0 – An Integer that represents the desired value OSPM chose to be the power averaging interval,

in milliseconds. This value needs to be within the minimum and maximum averaging interval
as specified by _PMC. Otherwise, a failure result code is returned.

Return Value:
An Integer containing the status of the operation:

0x00000000 – Success
0x00000001 – Failure to set power averaging interval because it is out of range
0x00000002 – Failure to set power averaging interval due to hardware timeout
0x00000003 – Failure to set power averaging interval due to unknown hardware error
0x00000004 – 0xFFFFFFFF - Reserved

10.4.5 _GAI (Get Averaging Interval)

This object gets the averaging interval used by the power meter. The averaging interval is the total time the
power meter will take instantaneous measurement samples for, before averaging them to produce the
average power measurement as returned by _PMM. If the platform changes the averaging interval
independently from OSPM, the platform must issue a Notify(power_meter, 0x84) to indicate the change to
the OSPM. Upon receiving the notification, OSPM evaluates the _GAI object to read the new averaging
interval.

Arguments:
None

Return Value:
An Integer containing the currently configured power averaging interval, in milliseconds. If an

error occurs while obtaining the averaging interval or if the value is not available then an Integer with
all bits set is returned.

404 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

10.4.6 _SHL (Set Hardware Limit)

This object sets the hardware limit enforced by the power meter. This limit, if supported, will be enforced
by the circuitry on the platform hardware, to the best of its effort. This value is typically also configurable
via other out-of-band management mechanism. When the enforcement happens, the platform should send a
Notify(power_meter, 0x83) to the OSPM.

Arguments: (1)
Arg0 – An Integer value that represent the desired value OSPM chose as the hardware enforced limit

of this power meter, in the unit specified in _PMC. This value needs to be within the minimum
and maximum hardware limit as specified by _PMC. Otherwise, a failure result code is
returned.

Return Value:
An Integer containing the status of the operation:

0x00000000 – Success
0x00000001 – Failure to set hardware limit because it is out of range
0x00000002 – Failure to set hardware limit due to the hardware timeout
0x00000003 – Failure to set hardware limit due to unknown hardware error
0x00000004 – 0xFFFFFFFF - Reserved

10.4.7 _GHL (Get Hardware Limit)

This object gets the hardware limit enforced by the power meter. This limit can be changed by either the
OSPM or by the platform through some out-of-band mechanism. When this value is changed, a
Notify(power_meter, 0x82) should be sent to notify the OSPM to re-read the hardware limit. If an error
occurs while obtaining the hardware limit or if the value is not available then an Integer with all bits set is
returned.

Arguments:
None

Return Value:
An Integer is returned to represent the currently configured hardware enforced limit of the power
meter, in the unit specified in _PMC.

10.4.8 _PMD (Power Metered Devices)

This object evaluates to a package of device names. Each name corresponds to a device in the ACPI
namespace that is being measured by the power meter device. The measurement reported by the power
meter is roughly correspondent to the total power draw of all the devices returned.

If this control method is present, the package needs to contain at least 1 device. On a system that supports
power metering, a system power meter that measures the power draw of the entire system should always be
present and have a _PMD that contains _SB as its sole entry.

Arguments:
None

Return Value:
A variable-length Package consisting of references to devices being measured by the power meter.

Package {
Power Meter[0] // NamePath
Power Meter[1] // NamePath
...
Power Meter[n] // NamePath

}

Power Source and Power Meter Devices 405

10.5 Example: Power Source and Power Meter Namespace

Figure 10-4 below shows the ACPI namespace for a computer with a power meter, AC adapter and two
batteries associated with a docking station which itself has an AC adapter.

Figu
re 10-4

d

\ (Root)

d

d

d

ACPI Namespace Root
Hew

Po

_SB

d

System Bus
let

wer

PMT1

_

PCI

BAT

BAT

ADP

Power Meter #1
_PMC

_PMD

Power Meter Capabilities

Power Metered Device List
PMM

_PAI

_

0

Power Meter Measurement

Power Averaging Interval
t

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

GAI Get Averaging Interval
PTP Power Trip Points
GHL Get Hardware Limit
-Packard/Intel/Microsoft/Pho

Meter and Power Source/Doc

SHL

P

d

BTP

PCL

BST

BIX

STA

HID

BTP

PCL

BST

BIX

DOCK

_PSR

ADP2

_PCL

1

STA

HID

2

PCL

PSR

1

Power Source Type

Power Source Type

Power Consumer List

AC Adapter #1

Battery #2

Plug and Play ID for BAT2

Battery 2 Device Status

Battery 2 Information

Battery 2 Status

Battery 2 Trip Point

Power Consumer List

PCI Root Bridge #0

Docking Station

AC Adapter #2

Battery #1

Plug and Play ID for BAT1

Battery 1 Device Status

Battery 1 Information

Battery 1 Status

Battery 1 Trip Point

Power Consumer List

Set Hardware Limit
enix/Toshiba

king Namespace Exam

ower Consumer List
ple

406 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Thermal Management 407

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11 Thermal Management

This section describes the ACPI thermal model and specifies the ACPI Namespace objects OSPM uses for
thermal management of the platform.

11.1 Thermal Control

ACPI defines interfaces that allow OSPM to be proactive in its system cooling policies. With OSPM in
control of the operating environment, cooling decisions can be made based on the system’s application
load, the user’s preference towards performance or energy conservation, and thermal heuristics. Graceful
shutdown of devices or the entire system at critical heat levels becomes possible as well. The following
sections describe the ACPI thermal model and the ACPI Namespace objects available to OSPM to apply
platform thermal management policy.

The ACPI thermal model is based around conceptual platform regions called thermal zones that physically
contain devices, thermal sensors, and cooling controls. Generally speaking, the entire platform is one large
thermal zone, but the platform can be partitioned into several ACPI thermal zones if necessary to enable
optimal thermal management.

ACPI Thermal zones are a logical collection of interfaces to temperature sensors, trip points, thermal
property information, and thermal controls. Thermal zone interfaces apply either thermal zone wide or to
specific devices, including processors, contained within the thermal zone. ACPI defines namespace objects
that provide the thermal zone-wide interfaces in section 11.3, “Thermal Objects”. A subset of these objects
may also be defined under devices. OS implementations compatible with the ACPI 3.0 thermal model,
interface with these objects but also support OS native device driver interfaces that perform similar
functions at the device level. This allows the integration of devices with embedded thermal sensors and
controls, perhaps not accessible by AML, to participate in the ACPI thermal model through their inclusion
in the ACPI thermal zone. OSPM is responsible for applying an appropriate thermal policy when a thermal
zone contains both thermal objects and native OS device driver interfaces for thermal control.

Some devices in a thermal zone may be comparatively large producers of thermal load in relation to other
devices in the thermal zone. Devices may also have varying degrees of thermal sensitivity. For example,
some devices may tolerate operation at a significantly higher temperature than other devices. As such, the
platform can provide OSPM with information about the platform’s device topology and the resulting
influence of one device’s thermal load generation on another device. This information must be
comprehended by OSPM for it to achieve optimal thermal management through the application of cooling
controls.

ACPI expects all temperatures to be represented in tenths of degrees. This resolution is deemed sufficient to
enable OSPM to perform robust platform thermal management.

408 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

T

Processor

T

Device

T

Represents a Temperature Sensor

Thermal Zone-wide active
cooling device (Fan)

Device with embedded temperature
sensor and local active cooling device

(Fan)

T

Thermal Zone-wide
temperature sensor

Processor with embedded
temperature sensor

Thermal Zone

Figure 11-1 ACPI Thermal Zone

11.1.1 Active, Passive, and Critical Policies

There are three cooling policies that OSPM uses to control the thermal state of the hardware. The policies
are active, passive and critical.

 Active Cooling. OSPM takes a direct action such as turning on one or more fans. Applying active
cooling controls typically consume power and produce some amount of noise, but are able to cool
a thermal zone without limiting system performance. Active cooling temperature trip points
declare the temperature thresholds OSPM uses to decide when to start or stop different active
cooling devices.

 Passive Cooling. OSPM reduces the power consumption of devices to reduce the temperature of a
thermal zone, such as slowing (throttling) the processor clock. Applying passive cooling controls
typically produces no user-noticeable noise. Passive cooling temperature trip points specify the
temperature thresholds where OSPM will start or stop passive cooling.

 Critical Trip Points. These are threshold temperatures at which OSPM performs an orderly, but
critical, shutdown of a device or the entire system. The _HOT object declares the critical
temperature at which OSPM may choose to transition the system into the S4 sleeping state, if
supported, The _CRT object declares the critical temperature at which OSPM must perform a
critical shutdown.

Thermal Management 409

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When a thermal zone appears in the ACPI Namespace or when a new device becomes a member of a
thermal zone, OSPM retrieves the temperature thresholds (trip points) at which it executes a cooling policy.
When OSPM receives a temperature change notification, it evaluates the thermal zone’s temperature
interfaces to retrieve current temperature values. OSPM compares the current temperature values against
the temperature thresholds. If any temperature is greater than or equal to a corresponding active trip point
then OSPM will perform active cooling . If any temperature is greater than or equal to a corresponding
passive trip point then OSPM will perform passive cooling. If the _TMP object returns a value greater than
or equal to the value returned by the _HOT object then OSPM may choose to transition the system into the
S4 sleeping state, if supported. If the _TMP object returns a value greater than or equal to the value
returned by the _CRT object then OSPM must shut the system down. Embedded Hot and Critical trip
points may also be exposed by individual devices within a thermal zone. Upon passing of these trip points,
OSPM must decide whether to shut down the device or the entire system based upon device criticality to
system operation. OSPM must also evaluate the thermal zone’s temperature interfaces when any thermal
zone appears in the namespace (for example, during system initialization) and must initiate a cooling policy
as warranted independent of receipt of a temperature change notification. This allows OSPM to cool
systems containing a thermal zone whose temperature has already exceeded temperature thresholds at
initialization time.

An optimally designed system that uses several thresholds can notify OSPM of thermal increase or
decrease by raising an event every several degrees. This enables OSPM to anticipate thermal trends and
incorporate heuristics to better manage the system’s temperature.

To implement a preference towards performance or energy conservation, OSPM can request that the
platform change the priority of active cooling (performance) versus passive cooling (energy
conservation/silence) by evaluating the _SCP (Set Cooling Policy) object for the thermal zone or a
corresponding OS-specific interface to individual devices within a thermal zone.

11.1.2 Dynamically Changing Cooling Temperature Trip Points

The platform or its devices can change the active and passive cooling temperature trip points and notify
OSPM to reevaluate the trip point interfaces to establish the new policy threshold settings. The following
are the primary uses for this type of thermal notification:

 When OSPM changes the platform’s cooling policy from one cooling mode to another.

 When a swappable bay device is inserted or removed. A swappable bay is a slot that can
accommodate several different devices that have identical form factors, such as a CD-ROM drive,
disk drive, and so on. Many mobile PCs have this concept already in place.

 After the crossing of an active or passive trip point is signaled to implement hysteresis.

In each situation, OSPM must be notified to re-evaluate the thermal zone’s trip points via the AML code
execution of a Notify(thermal_zone, 0x81) statement or via an OS specific interface invoked by device
drivers for zone devices participating in the thermal model.

11.1.2.1 OSPM Change of Cooling Policy

When OSPM changes the platform’s cooling policy from one cooling mode to the other, the following
occurs:

1. OSPM notifies the platform of the new cooling mode by running the Set Cooling Policy (_SCP)
control method in all thermal zones and invoking the OS-specific Set Cooling Policy interface to all
participating devices in each thermal zone.

2. Thresholds are updated in the hardware and OSPM is notified of the change.
3. OSPM re-evaluates the active and passive cooling temperature trip points for the zone and all devices

in the zone to obtain the new temperature thresholds.

410 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion
or Removal

The platform can adjust the thermal zone temperature to accommodate the maximum operating temperature
of a bay device as necessary. For example:

1. Hardware detects that a device was inserted into or removed from the bay, updates the temperature
thresholds, and then notifies OSPM of the thermal policy change and device insertion events.

2. OSPM re-enumerates the devices and re-evaluates the active and passive cooling temperature trip
points.

11.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis

An OEM can build hysteresis into platform thermal design by dynamically resetting cooling temperature
thresholds. For example:

1. When the temperature increases to the designated threshold, OSPM will turn on the associated active
cooling device or perform passive cooling.

2. The platform resets the threshold value to a lower temperature (to implement hysteresis) and notifies
OSPM of the change. Because of this new threshold value, the fan will be turned off at a lower
temperature than when it was turned on (therefore implementing a negative hysteresis).

3. When the temperature hits the lower threshold value, OSPM will turn off the associated active cooling
device or cease passive cooling. The hardware will reset _ACx to its original value and notify OSPM
that the trip points have once again been altered.

11.1.3 Detecting Temperature Changes

The ability of the platform and its devices to asynchronously notify an ACPI-compatible OS of meaningful
changes in the thermal zone’s temperature is a highly desirable capability that relieves OSPM from
implementing a poll-based policy and generally results in a much more responsive and optimal thermal
policy implementation. Each notification instructs OSPM to evaluate whether a trip point has been crossed
and allows OSPM to anticipate temperature trends for the thermal zone.

It is recognized that much of the hardware used to implement thermal zone functionality today is not
capable of generating ACPI-visible notifications (SCIs) or only can do so with wide granularity (for
example, only when the temperature crosses the critical threshold). In these environments, OSPM must poll
the thermal zone’s temperature periodically to implement an effective policy.

While ACPI specifies a mechanism that enables OSPM to poll thermal zone temperature, platform reliance
on thermal zone polling is strongly discouraged by this specification. OEMs should design systems that
asynchronously notify OSPM whenever a meaningful change in the zone’s temperature occurs – relieving
OSPM of the overhead associated with polling. In some cases, embedded controller firmware can
overcome limitations of existing thermal sensor capabilities to provide the desired asynchronous
notification.

Notice that the _TZP (thermal zone polling) object is used to indicate whether a thermal zone must be
polled by OSPM, and if so, a recommended polling frequency. See section 11.4.21, “_TZP,” for more
information.

Thermal Management 411

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.1.3.1 Temperature Change Notifications

Thermal zone-wide temperature sensor hardware that supports asynchronous temperature change
notifications does so using an SCI. The AML code that responds to this SCI must execute a
Notify(thermal_zone, 0x80) statement to inform OSPM that a meaningful change in temperature has
occurred. Alternatively, devices with embedded temperature sensors may signal their associated device
drivers and the drivers may use an OS-specific interface to signal OSPM’s thermal policy driver. A device
driver may also invoke a device specific control method that executes a Notify(thermal_zone, 0x80)
statement. When OSPM receives this thermal notification, it will evaluate the thermal zone’s temperature
interfaces to evaluate the current temperature values. OSPM will then compare the values to the
corresponding cooling policy trip point values (either zone-wide or device-specific). If the temperature has
crossed over any of the policy thresholds, then OSPM will actively or passively cool (or stop cooling) the
system, or shut the system down entirely.

Both the number and granularity of thermal zone trip points are OEM-specific. However, it is important to
notice that since OSPM can use heuristic knowledge to help cool the system, the more events OSPM
receives the better understanding it will have of the system’s thermal characteristic.

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Temperature Change
Events (SCIs)

_CRT: Critical shutdown threshold

_AC0: Fan high speed threshold

_AC1: Fan low speed threshold

_PSV: Passive cooling threshold

Figure 11-2 Thermal Events

For example, the simple thermal zone illustrated above includes hardware that will generate a temperature
change notification using a 5 Celsius granularity. All thresholds (_PSV, _AC1, _AC0, and _CRT) exist
within the monitored range and fall on 5 boundaries. This granularity is appropriate for this system as it
provides sufficient opportunity for OSPM to detect when a threshold is crossed as well as to understand the
thermal zone’s basic characteristics (temperature trends).

Note: The ACPI specification defines Kelvin as the standard unit for absolute temperature values. All
thermal zone objects must report temperatures in Kelvin when reporting absolute temperature values. All
figures and examples in this section of the specification use Celsius for reasons of clarity. ACPI allows
Kelvin to be declared in precision of 1/10th of a degree (for example, 310.5). Kelvin is expressed as /K =
TC + 273.2.

11.1.3.2 Polling

Temperature sensor hardware that is incapable of generating thermal change events, or that can do so for
only a few thresholds should inform OSPM to implement a poll-based policy. OSPM does this to ensure
that temperature changes across threshold boundaries are always detectable.

412 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Polling can be done in conjunction with hardware notifications. For example, thermal zone hardware that
only supports a single threshold might be configured to use this threshold as the critical temperature trip
point. Assuming that hardware monitors the temperature at a finer granularity than OSPM would, this
environment has the benefit of being more responsive when the system is overheating.

A thermal zone advertises the need to be polled by OSPM via the _TZP object. See section 11.4.21,
“_TZP,” for more information.

11.1.4 Active Cooling

Active cooling devices typically consume power and produce some amount of noise when enabled. These
devices attempt to cool a thermal zone through the removal of heat rather than limiting the performance of
a device to address an adverse thermal condition.

The active cooling interfaces in conjunction with the active cooling lists or the active cooling relationship
table (_ART) allow the platform to use an active device that offers varying degrees of cooling capability or
multiple cooling devices. The active cooling temperature trip points designate the temperature where
Active cooling is engaged or disengaged (depending upon the direction in which the temperature is
changing). For thermal zone-wide active cooling controls, the _ALx object evaluates to a list of devices that
actively cool the zone or the _ART object evaluates to describe the entire active cooling relationship of
various devices. For example:

 If a standard single-speed fan is the Active cooling device, then _AC0 evaluates to the temperature
where active cooling is engaged and the fan is listed in _AL0.

 If the zone uses two independently controlled single-speed fans to regulate the temperature, then
_AC0 will evaluate to the maximum cooling temperature using two fans, and _AC1 will evaluate
to the standard cooling temperature using one fan.

 If a zone has a single fan with a low speed and a high speed, the _AC0 will evaluate to the
temperature associated with running the fan at high-speed, and _AC1 will evaluate to the
temperature associated with running the fan at low speed. _AL0 and _AL1 will both point to
different device objects associated with the same physical fan, but control the fan at different
speeds.

 If the zone uses two independently controlled multiple-speed fans to regulate the temperature,
_AC0 of the target devices evaluates to the temperature at which OSPM will engage fan devices
described by the _ART object as needed up to a maximum capability level.

For ASL coding examples that illustrate these points, see sections 11.6, “Thermal Zone Interface
Requirements,” and 11.7, “Thermal Zone Examples.”

11.1.5 Passive Cooling

Passive cooling controls are able to cool a thermal zone without creating noise and without consuming
additional power (actually saving power), but do so by decreasing the performance of the devices in the
zone .

11.1.5.1 Processor Clock Throttling

The processor passive cooling threshold (_PSV) in conjunction with the processor list (_PSL) allows the
platform to indicate the temperature at which a passive control, for example clock throttling, will be applied
to the processor(s) residing in a given thermal zone. Unlike other cooling policies, during passive cooling
of processors OSPM may take the initiative to actively monitor the temperature in order to cool the
platform.

On an ACPI-compatible platform that properly implements CPU throttling, the temperature transitions will
be similar to the following figure, in a coolable environment, running a coolable workload:

Thermal Management 413

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

C
P

U
P

e
rfo

rm
a

n
c
e

Time

T
e

m
p

e
ra

tu
re

P

_TSP (Sampling period)

100%

50%

T
t

T
n - 1

T
n

Figure 11-3 Temperature and CPU Performance Versus Time

The following equation should be used by OSPM to assess the optimum CPU performance change
necessary to lower the thermal zone’s temperature:

Equation #1: P [%] = _TC1 * (Tn - Tn-1) + _TC2 * (Tn - Tt)
Where:

Tn = current temperature

Tt = target temperature (_PSV)

The two coefficients _TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants the
OEM must supply to OSPM (for more information, see section 11.4, “Thermal Objects”). The _TSP object
contains a time interval that OSPM uses to poll the hardware to sample the temperature. Whenever the time
value returned by _TSP has elapsed, OSPM will evaluate _TMP to sample the current temperature (shown
as Tn in the above equation). Then OSPM will use the sampled temperature and the passive cooling
temperature trip point (_PSV) (which is the target temperature Tt) to evaluate the equation for P. The
granularity of P is determined by the CPU duty width of the system.

Note: Equation #1 has an implied formula.

Equation #2: Pn = Pn-1 + HW[- P] where 0% <= Pn <= 100%

For Equation #2, whenever Pn-1 + P lies outside the range 0-100%, then Pn will be truncated to 0-100%.
For hardware that cannot assume all possible values of Pn between 0 and 100%, a hardware-specific
mapping function HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as follows:

For absolute temperatures:
1. If the right hand side of Equation #1 is negative, HW[P] is rounded to the next available higher

setting of frequency.
2. If the right hand side of Equation #1 is positive, HW[P] is rounded to the next available lower setting

of frequency.

For relative temperatures:

414 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1. If the right hand side of Equation #1 is positive, HW[P] is rounded to the next available higher
setting of frequency.

2. If the right hand side of Equation #1 is negative, HW[P] is rounded to the next available lower setting
of frequency.

The calculated Pn becomes Pn-1 during the next sampling period.

For more information about CPU throttling, see section 8.1.1, Processor Power State C0.” A detailed
explanation of this thermal feedback equation is beyond the scope of this specification.

11.1.6 Critical Shutdown
When the thermal zone-wide temperature sensor value reaches the threshold indicated by _CRT, OSPM
must immediately shut the system down. The system must disable the power either after the temperature
reaches some hardware-determined level above _CRT or after a predetermined time has passed. Before
disabling power, platform designers should incorporate some time that allows OSPM to run its critical
shutdown operation. There is no requirement for a minimum shutdown operation window that commences
immediately after the temperature reaches _CRT. This is because:
 Temperature might rise rapidly in some systems and slowly on others, depending on casing design and

environmental factors.
 Shutdown can take several minutes on a server and only a few seconds on a hand-held device.

Because of this indistinct discrepancy and the fact that a critical heat situation is a remarkably rare
occurrence, ACPI does not specify a target window for a safe shutdown. It is entirely up to the OEM to
build in a safe buffer that it sees fit for the target platform.

Thermal Management 415

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.2 Cooling Preferences
A robust OSPM implementation provides the means for the end user to convey a preference (or a level of
preference) for either performance or energy conservation to OSPM. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance. For example, if a user is taking
notes on her PC in a quiet environment, such as a library or a corporate meeting, she may want the system
to emphasize passive cooling so that the system operates quietly, even at the cost of system performance.

A user preference towards performance corresponds to the Active cooling mode while a user’s preference
towards energy conservation or quiet corresponds to the Passive cooling mode. ACPI defines an interface
to convey the cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal
policy intervention. For example, the platform indicates through thermal zone parameters that crossing a
thermal trip point requires a fan to be turned on. Passive cooling requires OSPM thermal policy to
manipulate device interfaces that reduce performance to reduce thermal zone temperature.

Either cooling mode will be activated only when the thermal condition requires it. When the thermal zone
is at an optimal temperature level where it does not warrant any cooling, both modes result in a system
operating at its maximum potential with all fans turned off.

Thermal zones supporting the Set Cooling Policy interface allow the user to switch the system’s cooling
mode emphasis. See section 11.4.11, “_SCP,” for more information.

Active Cooling Thresholds (_ACx) Passive Cooling Threshold (_PSV)

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Figure 11-4 Active and Passive Threshold Values

416 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

As illustrated in Figure 11-4, the platform must convey the value for each threshold to instruct OSPM to
initiate the cooling policies at the desired target temperatures. The platform can emphasize active or passive
cooling modes by assigning different threshold values. Generally, if _ACx is set lower than _PSV, then the
system emphasizes active cooling. Conversely, if _PSV is set lower than _ACx, then the emphasis is placed
on passive cooling.

For example, a thermal zone that includes a processor and one single-speed fan may use _PSV to indicate
the temperature value at which OSPM would enable passive cooling and _AC0 to indicate the temperature
at which the fan would be turned on. If the value of _PSV is less than _AC0 then the system will favor
passive cooling (for example, CPU clock throttling). On the other hand, if _AC0 is less than _PSV the
system will favor active cooling (in other words, using the fan). See Figure 11-5 below.

_CRT

_PSV

_AC0

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Active Cooling
Preference

_CRT

_AC0

_PSV

35
30

40
45
50
55
60
65
70
75
80
85
90
95

25

Passive Cooling
Preference

Figure 11-5 Cooling Preferences

The example on the left enables active cooling (for example, turn on a fan) when OSPM detects the
temperature has risen above 50. If for some reason the fan does not reduce the system temperature, then at
75 OSPM will initiate passive cooling (for example, CPU throttling) while still running the fan. If the
temperature continues to climb, OSPM will quickly shut the system down when the temperature reaches
90C. The example on the right is similar but the _AC0 and _PSV threshold values have been swapped to
emphasize passive cooling.

The ACPI thermal model allows flexibility in the thermal zone design. An OEM that needs a less elaborate
thermal implementation may consider using only a single threshold (for example, _CRT). Complex thermal
implementations can be modeled using multiple active cooling thresholds and devices, or through the use
of additional thermal zones.

11.2.1 Evaluating Thermal Device Lists

The Notify(thermal_zone, 0x82) statement is used to inform OSPM that a change has been made to the
thermal zone device lists. This thermal event instructs OSPM to re-evaluate the _ALx, _PSL, and _TZD
objects.

For example, a system that supports the dynamic insertions of processors might issue this notification to
inform OSPM of changes to _PSL following the insertion or removal of a processor. OSPM would re-
evaluate all thermal device lists and adjust its policy accordingly.

Notice that this notification can be used with the Notify(thermal_zone, 0x81) statement to inform OSPM to
both re-evaluate all device lists and all thresholds.

Thermal Management 417

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Alternatively, devices may include the _TZM (Thermal Zone Member) object their device scope to convey
their thermal zone association to OSPM. Section 11.4.20, “_TZM (Thermal Zone Member)”, for more
information.

11.2.2 Evaluating Device Thermal Relationship Information

The Notify(thermal_zone, 0x83) statement is used to inform OSPM that a change has been made to the
thermal relationship information. This thermal event instructs OSPM to re-evaluate the _TRT and _ART
objects. The thermal influence between devices may change when active cooling moves air across device
packages as compared to when only passive cooling controls are applied. Similarly, the active cooling
relationship may change as various fans are engaged to actively cool a platform or if user preferences
change.

11.2.3 Fan Device Notifications

Notify events of type 0x80 will cause OSPM to evaluate the _FST object to evaluate the fan’s current
speed.

11.3 Fan Device

ACPI 1.0 defined a simple fan device that is assumed to be in operation when it is in the D0 state. Thermal
zones reference fan device(s) as being responsible primarily for cooling within that zone. Notice that
multiple fan devices can be present for any one thermal zone. They might be actual different fans, or they
might be used to implement one fan of multiple speeds (for example, by turning both “fans” on the one fan
will run full speed).

ACPI 4.0 defines additional fan device interface objects enabling OSPM to perform more robust active
cooling thermal control. These objects are summarized in Table 11-1. OSPM requires that all of the objects
listed in Table 11-1 be defined under a fan device to enable advanced active cooling control. The absence
of any of these objects causes OSPM to perform ACPI 1.0 style simple fan control .

The Plug and Play ID of a fan device is PNP0C0B.

Table 11-1 Fan Specific Objects

Object Description

_FIF Returns fan device information.

_FPS Returns a list of supported fan performance states.

_FSL Control method that sets the fan device’s speed level (performance state).

_FST Returns current status information for a fan device.

While the Fan Device and its associated objects are optional, if the Fan Device is implemented by the
platform, all objects listed in Table 11-1 are required and must be provided.

11.3.1 Fan Objects

11.3.1.1 _FIF (Fan Information)

The optional _FIF object provides OSPM with fan device capability information.

418 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
A Package containing the fan device parameters as described in table 11-2 below

_FIF evaluation returns a package of the following format:

Package (){
Revision, // Integer
FineGrainControl, // Integer Boolean
StepSize // Integer DWORD
LowSpeedNotificationSupport // Integer Boolean

}

Table 11-2 _FIF Package Details

Field Format Description

Revision Integer Current revision is: 0

Fine Grain
Control

Integer
(Boolean)

A non zero value in this field indicates OSPM may evaluate the fan
device’s _FSL object with a Level argument value in the range of 0-100,
which represents a percentage of maximum speed. A zero value in this field
indicates that OSPM may evaluate the fan device’s _FSL object with a
Level argument value that is a Control field value from a package in the
_FPS object’s package list only.

Step Size Integer
(DWORD)

The recommended minimum step size in percentage points to be used when
OSPM performs fine-grained fan speed control. OSPM may utilize the
value of this field if the FineGrainControl field is non-zero the value in this
field is between 1 and 9.

Low Speed
Notification
Support

Integer
(Boolean)

A non zero value in this field indicates that the platform will issue a Notify
(0x80) to the fan device if a low (errant) fan speed is detected.

If a fan device supports fine-grained control, OSPM may evaluate a fan device’s _FSL object with any
Level argument value that is less than or equal to the Control field value specified in the package of the
_FPS object’s package list that corresponds to the active cooling trip point that has been exceeded. This
capability provides OSPM access to one hundred fan speed settings thus enabling fine-grained fan speed
control. The platform uses the StepSize field to help OSPM optimize its fan level selection policy by fine-
grained fan speed control. The platform uses the StepSize field to help OSPM optimize its fan level
selection policy by indicating recommended increments in the fan speed level value that are appropriate for
the fan when one percent increments are not optimal. In the event OSPM’s incremental selections of Level
using the StepSize field value do not sum to 100%, OSPM may select an appropriate ending Level
increment to reach 100%. OSPM should use the same residual step value first when reducing Level.

11.3.1.2 _FPS (Fan Performance States)

The optional _FPS object evaluates to a variable-length package containing a list of packages that describe
the fan device’s performance states. A temperature reading above an active cooling trip point defined by an
_ACx object in a thermal zone or above a native active cooling trip point of a device within the thermal
zone causes OSPM thermal control to engage the appropriate corresponding fan performance state from the
list of fan performance states described by the _FPS object if the fan device is present in the corresponding
_ALx device list or if an entry exists for the fan and trip point in the active cooling relationship table
(_ART).

Thermal Management 419

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

OSPM assumes a linear relationship for the acoustic impact and power consumption values between
successive entries in the fan performance state list. Notice that the acoustic impact measurement unit
(Decibels) is inherently non-linear. As such, the platform should populate _FPS entries as necessary to
enable OSPM to achieve optimal results.

Arguments:
None

Return Value:
A variable-length Package containing a Revision ID and a list of Packages that describe the fan
device’s performance states as described in table 11-3 below.

Return Value Information

Package {
Revision, // Integer - Current revision is: 0
FanPState[0], // Package
….
FanPState[n] // Package

}

Each FanPState sub-Package contains the elements described below:

Package () // Fan P-State
{

Control, // Integer DWORD
TripPoint, // Integer DWORD
Speed, // Integer DWORD
NoiseLevel, // Integer DWORD
Power // Integer DWORD

}

Table 11-3 _FPS FanPstate Package Details

Field Format Description

Control Integer
(DWORD)

Indicates the value to be used to set the fan speed to a specific level using the
_FSL object.

If the fan device supports fine-grained control as indicated by the _FIF object,
this value is a percentage (0-100) of maximum speed level.

If the fan device does not support fine-grained control, this field is an opaque
value that OSPM must simply use in its evaluation of the _FSL object to set
the level to this performance state.

TripPoint Integer
(DWORD)

0-9: The active cooling trip point number that corresponds to this performance
state. If the _ART object is defined, OSPM may optionally use information
provided by the _ART object and _FPS objects to select alternative fan
performance states. Only one entry per unique trip point number is allowed in
the _FPS.

0x0A- 0xFFFFFFFE: Reserved

0x0FFFFFFFF: Indicates that this performance state does not correspond with
a specific active cooling trip point.

Speed Integer
(DWORD)

Indicates the speed of the fan in revolutions per minute in this performance
state.

NoiseLevel Integer
(DWORD)

This optional field indicates the audible noise emitted by the fan in this
performance state. The value represents the noise in 10ths of decibels. For
example, if the fan emits noise at 28.3dB in this performance state, the value of
this field would be 283. A value of 0xFFFFFFFF indicates that this field is not
populated.

420 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Format Description

Power Integer
(DWORD)

This optional field indicates the power consumption (in milliwatts) of the fan
in this performance state. For example, if the fan consumes .5W in this
performance state, the value of this field would be 500. A value of
0xFFFFFFFF indicates that this field is not populated.

11.3.1.3 _FSL (Fan Set Level)

The optional _FSL object is a control method that OSPM evaluates to set a fan device’s speed
(performance state) to a specific level

Arguments: (1)
Arg0 – Level (Integer): conveys to the platform the fan speed level to be set.

Return Value:
None

Argument Information

Arg0: Level. If the fan supports fine-grained control, Level is a percentage of maximum level (0-100) that
the platform is to engage the fan. If the fan does not support fine-grained control, Level is a Control field
value from a package in the _FPS object’s package list. A Level value of zero causes the platform to turn
off the fan.

11.3.1.4 _FST (Fan Status)

The optional _FST object provides status information for the fan device.

Arguments:
None

Return Value:
A Package containing fan device status information as described in table 11-4 below

_FST evaluation returns a package of the following format:

Package (){
Revision, // Integer
Control, // Integer DWORD
Speed // Integer DWORD

}

Table 11-4 _FST Package Details

Field Format Description

Revision Integer Current revision is: 0

Control Integer
(DWORD)

The current control value used to operate the Fan. If the fan is not operating
Control will be zero. If the fan is operating, Control is the Level argument
passed in the evaluation of the _FSL object.

Speed Integer
(DWORD)

The current fan speed in revolutions per minute at which the fan is rotating. A
value of 0xFFFFFFFF indicates that the fan does not support speed reporting.

Thermal Management 421

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.4 Thermal Objects

Objects related to thermal management are listed in Table 11-5.

Table 11-5 Thermal Objects

Object Description

_ACx Returns active cooling policy threshold values in tenths of degrees.

_ALx List of active cooling device objects.

_ART Table of values that convey the Active Cooling Relationship between devices

_CRT Returns critical trip point in tenths of degrees where OSPM must perform a critical shutdown.

_HOT Returns critical trip point in tenths of degrees where OSPM may choose to transition the system
into S4.

_NTT Returns the temperature change threshold for devices containing native temperature sensors to
cause evaluation of the _TPT object

_PSL List of processor device objects for clock throttling.

_PSV Returns the passive cooling policy threshold value in tenths of degrees.

_RTV Conveys whether temperatures are expressed in terms of absolute or relative values.

_SCP Sets platform cooling policy (active or passive).

_TC1 Thermal constant for passive cooling.

_TC2 Thermal constant for passive cooling.

_TMP Returns the thermal zone’s current temperature in tenths of degrees.

_TPT Conveys the temperature of a devices internal temperature sensor to the platform when a
temperature trip point is crossed or a meaningful change in temperature occurs.

_TRT Table of values that convey the Thermal Relationship between devices

_TSP Thermal sampling period for Passive cooling in tenths of seconds.

_TST Conveys the minimum separation for a devices’ programmable temperature trip points.

_TZD List of devices whose temperature is measured by this thermal zone.

_TZM Returns the thermal zone for which a device is a member.

_TZP Thermal zone polling frequency in tenths of seconds.

422 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

With the exception of _TPT, _TST, and the _TZM objects, the objects described in the following sections
may exist under a thermal zone. Devices with embedded thermal sensors and controls may contain static
cooling temperature trip points or dynamic cooling temperature trip points that must be programmed by the
device’s driver. In this case, thermal objects defined under a device serve to convey the platform specific
values for these settings to the devices driver.

11.4.1 _ACx (Active Cooling)

This optional object, if present under a thermal zone, returns the temperature trip point at which OSPM
must start or stop Active cooling, where x is a value between 0 and 9 that designates multiple active cooling
levels of the thermal zone. If the Active cooling device has one cooling level (that is, “on”) then that
cooling level must be defined as _AC0. If the cooling device has two levels of capability, such as a high fan
speed and a low fan speed, then they must be defined as _AC0 and _AC1 respectively. The smaller the
value of x, the greater the cooling strength _ACx represents. In the above example, _AC0 represents the
greater level of cooling (the faster fan speed) and _AC1 represents the lesser level of cooling (the slower
fan speed). For every _ACx method, there must be a matching _ALx object or a corresponding entry in an
_ART object’s active cooling relationship list.

If this object it present under a device, the device’s driver evaluates this object to determine the device’s
corresponding active cooling temperature trip point. This value may then be used by the device’s driver to
program an internal device temperature sensor trip point. When this object is present under a device, the
device must contain a native OS device driver interface supporting a corresponding active cooling control,
a matching _ALx object under the thermal zone of which the device is a member must exist, or a
corresponding entry in an _ART object’s active cooling relationship list must.

Arguments:
None

Return Value:
An Integer containing the active cooling temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents tenths of degrees Kelvin. For example, 300.0K is represented
by the integer 3000.

11.4.2 _ALx (Active List)

This object is defined under a thermal zone and evaluates to a list of Active cooling devices to be turned on
when the corresponding _ACx temperature threshold is exceeded. For example, these devices could be
fans.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to active cooling devices

The return value is a package consisting of references to all active cooling devices that should be engaged
when the associated active cooling threshold (_ACx) is exceeded.

When the returned package consists of references to an active cooling device that is a fan device and the
fan device implements _FPS and _FSL objects, OSPM activates the identified fan at a capability level
matching the level identified by this object. For example, if the system has a fan that implements _FPS
object with 5 levels, and if _AL3 is evaluated by the OSPM causing it to return this fan’s reference, then
the fan is activated by evaluating _FSL with the value from the Control field of an _FPS entry whose
TripPoint field value equals 3.

If a thermal zone has the _ART object defined, then it is not necessary to have any _ALx objects
implemented.

Note: If a thermal zone has _ART object defined as well as _ALx defined, the OSPM ignores _ALx objects
and uses _ART exclusively.

Thermal Management 423

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.4.3 _ART (Active Cooling Relationship Table)

The optional _ART object evaluates to a variable-length package containing a list of packages each of
which describes the active cooling relationship between a device within a thermal zone and an active
cooling device. OSPM uses the combined information about the active cooling relationships of all devices
in the thermal zone to make active cooling policy decisions.

If _ART is implemented within a thermal zone, OSPM ignores all _ALx objects as _ART conveys a
mapping for each of the _ACx trip points to active cooling devices.

The platform can dynamically change the _ART object by notifying the thermal zone object with a Notify
code of 0x83, which will cause OSPM to re-evaluate both the _TRT and _ART objects. This allows the
platform to change the capability level mapping to various _ACx trip points dynamically at run time.

Arguments:
None

Return Value:
A variable-length Package containing a Revision ID and a list of Active Relationship Packages as
described below:

Return Value Information

Package {
Revision, // Integer – Current revision is: 0
ActiveRelationship[0] // Package
….
ActiveRelationship[n] // Package

}

Each ActiveRelationship sub-Package contains the elements described below:

Package {
SourceDevice, // Object Reference to a Fan Device Object
TargetDevice, // Object Reference to a Device Object
Weight, // Integer
AC0MaxLevel, // Integer
AC1MaxLevel, // Integer
AC2MaxLevel, // Integer
AC3MaxLevel, // Integer
AC4MaxLevel, // Integer
AC5MaxLevel, // Integer
AC6MaxLevel, // Integer
AC7MaxLevel, // Integer
AC8MaxLevel, // Integer
AC9MaxLevel // Integer

}

Table 11-6 Thermal Relationship Package Values

Element Object Type Description

SourceDevice Reference
(to a device)

The fan device that has an impact on the cooling of the device indicated
by TargetDevice.

TargetDevice Reference
(to a device)

The device that is impacted by the fan device indicated by
SourceDevice.

Weight Integer Indicates the SourceDevice’s contribution to the platform’s
TargetDevice total cooling capability when the fans of all entries in the
_ART with the same target device are engaged at their highest
(maximum capability) performance state. This is represented as a
percentage value (0-100).

424 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Element Object Type Description

AC0MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC0 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC1MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC1 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC2MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC2 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC3MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC3 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC4MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC4 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC5MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC5 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC6MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC6 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC7MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC7 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

AC8MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC8 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

Thermal Management 425

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Element Object Type Description

AC9MaxLevel Integer
(DWORD)

Indicates the maximum fans speed level in percent (0-100) that OSPM
may engage on the SourceDevice when a temperature exceeds the
_AC9 trip point value.

A value of 0xFFFFFFFF in this field indicates that the SourceDevice is
not to be engaged for the trip point.

In the case multiple active cooling trip points have been exceeded and _ART entries indicate various
maximum limits for the same SourceDevice, OSPM may operate the SourceDevice up to the highest
ACxMaxLevel value indicated for all exceeded trip points.

11.4.4 _CRT (Critical Temperature)

This object, when defined under a thermal zone, returns the critical temperature at which OSPM must
shutdown the system. If this object it present under a device, the device’s driver evaluates this object to
determine the device’s critical cooling temperature trip point. This value may then be used by the device’s
driver to program an internal device temperature sensor trip point.

Arguments:
None

Return Value:
An Integer containing the critical temperature threshold in tenths of degrees Kelvin

The result is an integer value that represents the critical shutdown threshold in tenths of degrees. For
example, 300.0K is represented by the integer 3000.

11.4.5 _DTI (Device Temperature Indication)

This optional object may be present under a device and is evaluated by OSPM when the device’s native
(driver managed) temperature sensor has crossed a cooling temperature trip point or when a meaningful
change in temperature (as indicated by evaluation of the _NTT object) has occurred. OSPM evaluation of
the _DTI object enables the platform to take action as a result of these events. For example, the platform
may choose to implement fan control hysteresis based on the conveyed value or signal the revaluation of
the _TDL or _PDL objects.

Arguments: (1)
Arg0 – An Integer containing the current value of the temperature sensor (in tenths Kelvin)

Return Value:
None

11.4.6 _HOT (Hot Temperature)

This optional object, when defined under a thermal zone, returns the critical temperature at which OSPM
may choose to transition the system into the S4 sleeping state. The platform vendor should define _HOT to
be far enough below _CRT so as to allow OSPM enough time to transition the system into the S4 sleeping
state. While dependent on the amount of installed memory, on typical platforms OSPM implementations
can transition the system into the S4 sleeping state in tens of seconds. If this object it present under a
device, the device’s driver evaluates this object to determine the device’s hot cooling temperature trip
point. This value may then be used by the device’s driver to program an internal device temperature sensor
trip point.

Arguments:
None

Return Value:
An Integer containing the critical temperature threshold in tenths of degrees Kelvin

426 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The return value is an integer that represents the critical sleep threshold tenths of degrees Kelvin. For
example, 300.0K is represented by the integer 3000.

11.4.7 _NTT (Notification Temperature Threshold)

This optional object may be defined under devices containing native temperature sensors and evaluates to
the temperature change threshold for the device where the platform requires notification of the change via
evaluation of the _TPT object.

Arguments:
None

Return Value:
An Integer containing the temperature threshold in tenths of degrees Kelvin.

The return value is an integer that represents the amount of change in device temperature that is meaningful
to the platform and for which the platform requires notification via evaluation of the _TPT object.

11.4.8 _PSL (Passive List)

This object is defined under a thermal zone and evaluates to a list of processor objects to be used for
passive cooling.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to processor objects

The return value is a package consisting of references to all processor objects that will be used for passive
cooling when the zone’s passive cooling threshold (_PSV) is exceeded.

11.4.9 _PSV (Passive)

This optional object, if present under a thermal zone, evaluates to the temperature at which OSPM must
activate passive cooling policy.

Arguments:
None

Return Value:
An Integer containing the passive cooling temperature threshold in tenths of degrees Kelvin

The return value is an integer that represents tenths of degrees Kelvin. For example, 300.0 Kelvin is
represented by 3000.

If this object it present under a device, the device’s driver evaluates this object to determine the device’s
corresponding passive cooling temperature trip point. This value may then be used by the device’s driver to
program an internal device temperature sensor trip point. When this object is present under a device, the
device must contain a native OS device driver interface supporting a passive cooling control.

11.4.10 _RTV (Relative Temperature Values)

This optional object may be present under a device or a thermal zone and is evaluated by OSPM to
determine whether the values returned by temperature trip point and current operating temperature
interfaces under the corresponding device or thermal zone represent absolute or relative temperature values.

Thermal Management 427

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer containing a relative versus absolute indicator

0 Temperatures are absolute
Other Temperatures are relative

The return value is an integer that indicates whether values returned by temperature trip point and current
operating temperature interfaces represent absolute or relative temperature values.

If the _RTV object is not present or is present and evaluates to zero then OSPM assumes that all values
returned by temperature trip point and current operating temperature interfaces under the device or thermal
zone represent absolute temperature values expressed in tenths of degrees Kelvin.

If the _RTV object is present and evaluates to a non zero value then all values returned by temperature trip
point and current operating temperature interfaces under the corresponding device or thermal zone
represent temperature values relative to a zero point that is defined as the maximum value of the device’s or
thermal zone’s critical cooling temperature trip point. In this case, temperature trip point and current
operating temperature interfaces return values in units that are tenths of degrees below the zero point.

OSPM evaluates the _RTV object before evaluating any other temperature trip point or current operating
temperature interfaces.

11.4.11 _SCP (Set Cooling Policy)

This optional object is a control method that OSPM invokes to set the platform’s cooling mode policy
setting. The platform may use the evaluation of _SCP to reassign _ACx and _PSV temperature trip points
according to the mode or limits conveyed by OSPM. OSPM will automatically evaluate _ACx and _PSV
objects after executing _SCP. This object may exist under a thermal zone or a device.

Arguments: (3)
Arg0 – Mode An Integer containing the cooling mode policy code
Arg1 – AcousticLimit An Integer containing the acoustic limit
Arg2 – PowerLimit An Integer containing the power limit

Return Value:
None

Argument Information:

Mode – 0 = Active, 1 = Passive

Acoustic Limit – Specifies the maximum acceptable acoustic level that active cooling devices may generate.
Values are 1 to 5 where 1 means no acoustic tolerance and 5 means maximum acoustic tolerance.

Power Limit – Specifies the maximum acceptable power level that active cooling devices may consume.
Values are from 1 to 5 where 1 means no power may be used to cool and 5 means maximum power may be
used to cool.

Example:

// Fan Control is defined as follows:
// Speed 1 (Fan is Off): Acoustic Limit 1, Power Limit 1, <= 64C
// Speed 2: Acoustic Limit 2, Power Limit 2, 65C - 74C
// Speed 3: Acoustic Limit 3, Power Limit 3, 75C - 84C
// Speed 4: Acoustic Limit 4, Power Limit 4, 85C - 94C
// Speed 5: Acoustic Limit 5, Power Limit 5, >= 95C

// _SCP Notifies the platform the current cooling mode.
// Arg0 = Mode
// 0 - Active cooling
// 1 - Passive cooling
// Arg1 = Acoustic Limit

428 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// 1 = No acoustic tolerance
// ...
// 5 = maximum acoustic tolerance
// Arg2 = Power Limit
// 1 = No power may be used to cool
// ...
// 5 = maximum power may be used to cool

Method(_SCP,3,Serialized)
{

// Store the Cooling Mode in NVS and use as needed in
// the rest of the ASL Code.
Store(Arg0, CTYP)

// Set PSVT to account for a Legacy OS that does not pass
// in either the acoustic limit or Power Limit.
If(Arg0)
{

Store(60,PSVT)
}
Else
{

Store(97,PSVT)
}
If (CondRefOf (_OSI,Local0))
{
If (_OSI ("3.0 _SCP Extensions"))
{
// Determine Power Limit.
//
// NOTE1: PSVT = Passive Cooling Trip Point stored
// in NVS in Celsius.
//
// NOTE2: 4 Active Cooling Trips Points correspond to 5
// unique Power Limit regions and 5 unique acoustic limit
// regions.
//
// NOTE3: This code will define Passive cooling so that
// CPU throttling will be initiated within the Power Limit
// Region passed in such that the next higher Power Limit
// Region will not be reached.
Switch(Arg2)
{

Case(1) // Power Limit = 1.
{

// Stay in Acoustic Limit 1.
Store(60,PSVT) // Passive = 60C.

}
Case(2) // Power Limit = 2.
{

// Store Highest supported Acoustic Level
// at this Power Limit (1 or 2).
Store(70,PSVT)
If(Lequal(Arg1,1))
{

// Stay in Acoustic Level 1.
Store(60,PSVT)

}
}
Case(3) // Power Limit = 3.
{

// Store Highest supported Acoustic Level
// at this Power Limit (1, 2, or 3).
Store(80,PSVT)
If(Lequal(Arg1,2))
{

// Stay in Acoustic Level 1 or 2.
Store(70,PSVT)

}
If(Lequal(Arg1,1))
{

Thermal Management 429

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Stay in Acoustic Level 1.
Store(60,PSVT)

}
}
Case(4) // Power Limit = 4.
{

// Store Highest supported Acoustic Level
// at this Power Limit (1, 2, 3, or 4).
Store(90,PSVT)
If(Lequal(Arg1,3))
{

// Stay in Acoustic Level 1 or 2.
Store(80,PSVT)

}
If(Lequal(Arg1,2))
{

// Stay in Acoustic Level 1 or 2.
Store(70,PSVT)

}
If(Lequal(Arg1,1))
{

// Stay in Acoustic Level 1.
Store(60,PSVT)

}
}
Case(5) // Power Limit = 5.
{

// Store Highest supported Acoustic Level
// at this Power Limit (1, 2, 3, 4, or 5).
Store(97,PSVT)
If(Lequal(Arg1,4))
{

// Stay in Acoustic Level 1 or 2.
Store(90,PSVT)

}
If(Lequal(Arg1,3))
{

// Stay in Acoustic Level 1 or 2.
Store(80,PSVT)

}
If(Lequal(Arg1,2))
{

// Stay in Acoustic Level 1 or 2.
Store(70,PSVT)

}
If(Lequal(Arg1,1))
{

// Stay in Acoustic Level 1.
Store(60,PSVT)

}
} // Case 5

} // Switch Arg 2
} // _OSI - Extended _SCP

} // CondRefOf _OSI
} // Method _SCP

11.4.12 _TC1 (Thermal Constant 1)

This object evaluates to the constant _TC1 for use in the Passive cooling formula:

Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 * (Tn. - Tt)

Arguments:
None

Return Value:
An Integer containing Thermal Constant #1

430 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

11.4.13 _TC2 (Thermal Constant 2)

This object evaluates to the constant _TC2 for use in the Passive cooling formula:

Performance [%]= _TC1 * (Tn - Tn-1) + _TC2 *(Tn - Tt)

Arguments:
None

Return Value:
An Integer containing Thermal Constant #2

11.4.14 _TMP (Temperature)

This control method returns the thermal zone’s current operating temperature.

Arguments:
None

Return Value:
An Integer containing the current temperature of the thermal zone (in tenths of degrees Kelvin)

The return value is the current temperature of the thermal zone in tenths of degrees Kelvin. For example,
300.0K is represented by the integer 3000.

11.4.15 _TPT (Trip Point Temperature)

This optional object may be present under a device and is invoked by OSPM to indicate to the platform that
the devices’ embedded temperature sensor has crossed a cooling temperature trip point. After invocation,
OSPM immediately evaluates the devices’ Active and Passive cooling temperature trip point values. This
enables the platform to implement hysteresis.

Arguments: (1)
Arg0 – An Integer containing the current value of the temperature sensor (in tenths Kelvin)

Return Value:
None

The _TPT object is deprecated in ACPI 4.0. The _DTI object , section 11.3.4 “_DTI (Device Temperature
Indication)”, should be used instead.

11.4.16 _TRT (Thermal Relationship Table)

This object evaluates to a package of packages each of which describes the thermal relationship between
devices within a thermal zone. OSPM uses the combined information about the thermal relationships of all
devices in the thermal zone to make thermal policy decisions.

Arguments:
None

Return Value:
A variable-length Package containing a list of Thermal Relationship Packages as described below

Return Value Information

Package {
ThermalRelationship[0] // Package
….
ThermalRelationship[n] // Package

}

Thermal Management 431

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Each ThermalRelationship sub-Package contains the elements described below:

Package {
SourceDevice, // Object Reference to a Device Object
TargetDevice, // Object Reference to a Device Object
Influence, // Integer
SamplingPeriod, // Integer
Reserved1, // Integer
Reserved2, // Integer
Reserved3, // Integer
Reserved4 // Integer

},

Table 11-7 Thermal Relationship Package Values

Element Object Type Description

Source
Device

Reference
(to a device)

The device that is influencing the device indicated by TargetDevice.

Target
Device

Reference
(to a device)

The device that is influenced by the device indicated by SourceDevice.

Influence Integer The thermal influence of SourceDevice on TargetDevice - represented as
tenths of degrees Kelvin that the device indicated by SourceDevice raises the
temperature of the device indicated by TargetDevice per watt of thermal
load that SourceDevice generates.

Sampling
Period

Integer The minimum period of time in tenths of seconds that OSPM should wait
after applying a passive control to the device indicated by SourceDevice to
detect its impact on the device indicated by TargetDevice.

Reserved
(1-4)

Integer Reserved for future use.

11.4.17 _TSP (Thermal Sampling Period)

This object evaluates to a thermal sampling period (in tenths of seconds) used by OSPM to implement the
Passive cooling equation. This value, along with _TC1 and _TC2, will enable OSPM to provide the proper
hysteresis required by the system to accomplish an effective passive cooling policy.

Arguments:
None

Return Value:
An Integer containing the sampling period in tenths of seconds

The granularity of the sampling period is 0.1 seconds. For example, if the sampling period is 30.0 seconds,
then _TSP needs to report 300; if the sampling period is 0.5 seconds, then it will report 5. OSPM can
normalize the sampling over a longer period if necessary.

11.4.18 _TST (Temperature Sensor Threshold)

This optional object may be present under a device and is evaluated by OSPM to determine the minimum
separation for a devices’ programmable temperature trip points. When a device contains multiple
programmable temperature trip points, it may not be necessary for OSPM to poll the device’s temperature
after crossing a temperature trip point when performing passive cooling control policy.

432 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Arguments:
None

Return Value:
An Integer containing the sensor threshold (in tenths of degrees Kelvin)

To eliminate polling, the device can program intermediate trip points of interest (higher or lower than the
current temperature) and signal the crossing of the intermediate trip points to OSPM. The distance between
the current temperature and these intermediate trip points may be platform specific and must be set far
enough away from the current temperature so as to not to miss the crossing of a meaningful temperature
point. The _TST object conveys the recommended minimum separation between the current temperature
and an intermediate temperature trip point to OSPM.

11.4.19 _TZD (Thermal Zone Devices)

This optional object evaluates to a package of device names. Each name corresponds to a device in the
ACPI namespace that is associated with the thermal zone. The temperature reported by the thermal zone is
roughly correspondent to that of each of the devices.

Arguments:
None

Return Value:
A variable-length Package containing a list of References to thermal zone devices

The list of devices returned by the control method need not be a complete and absolute list of devices
affected by the thermal zone. However, the package should at least contain the devices that would uniquely
identify where this thermal zone is located in the machine. For example, a thermal zone in a docking station
should include a device in the docking station, a thermal zone for the CD-ROM bay, should include the
CD-ROM.

11.4.20 _TZM (Thermal Zone Member)

This optional object may exist under any device definition and evaluates to a reference to the thermal zone
of which the device is a member.

Arguments:
None

Return Value:
A Reference to the parent device

11.4.21 _TZP (Thermal Zone Polling)

This optional object evaluates to a recommended polling frequency (in tenths of seconds) for this thermal
zone. A value of zero indicates that OSPM does not need to poll the temperature of this thermal zone in
order to detect temperature changes (the hardware is capable of generating asynchronous notifications).

Arguments:
None

Return Value:
An Integer containing the recommended polling frequency in tenths of seconds

The return value contains the recommended polling frequency, in tenths of seconds. A value of zero
indicates that polling is not necessary.

The use of polling is allowed but strongly discouraged by this specification. OEMs should design systems
that asynchronously notify OSPM whenever a meaningful change in the zone’s temperature occurs—
relieving the OS of the overhead associated with polling. See section 11.1.3, “Detecting Temperature
Changes,” for more information.

Thermal Management 433

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

This value is specified as tenths of seconds with a 1 second granularity. A minimum value of 30 seconds
(_TZP evaluates to 300) and a maximum value of 300 seconds (in other words, 5 minutes) (_TZP evaluates
to 3000) may be specified. As this is a recommended value, OSPM will consider other factors when
determining the actual polling frequency to use.

11.5 Native OS Device Driver Thermal Interfaces

OS implementations compatible with the ACPI 3.0 thermal model, interface with the thermal objects of a
thermal zone but also comprehend the thermal zone devices’ OS native device driver interfaces that
perform similar functions to the thermal objects at the device level.

The recommended native OS device driver thermal interfaces that enable OSPM to perform optimal
performance / thermal management include:

 Reading a value from a device’s embedded thermal sensor

 Reading a value that indicates whether temperature and trip point values are reported in absolute
or relative temperatures

 Setting the platform’s cooling mode policy setting

 Reading the embedded thermal sensor’s threshold

 Reading the device’s active and passive cooling temperature trip points

 Reading the device’s association to a thermal zone

 Signaling the crossing of a thermal trip point

 Reading the desired polling frequency at which to check the devices temperature if the device
cannot signal OSPM or signal OSPM optimally (both before and after a temperature trip point is
crossed)

 Setting / limiting a device’s performance / throttling states

 Engaging / disengaging a device’s active cooling controls

These interfaces are OS specific and as such the OS vendor defines the exact interface definition for each
target operating system.

11.6 Thermal Zone Interface Requirements

While not all thermal zone interfaces are required to be present in each thermal zone, OSPM levies
conditional requirements for the presence of specific thermal zone interfaces based on the existence of
other related thermal zone interfaces. These interfaces may be implemented by thermal zone-wide objects
or by OS-specific device driver exposed thermal interfaces. The requirements are outlined below:
 A thermal zone must contain at least one temperature interface; either the _TMP object or a member

device temperature interface.
 A thermal zone must contain at least one trip point (critical, near critical, active, or passive).
 If _ACx is defined then an associated _ALx must be defined (e.g. defining _AC0 requires _AL0 also

be defined).
 If _PSV is defined then either the _PSL or _TZD objects must exist. The _PSL and _TZD objects may

both exist.
 If _PSL is defined then:

 If a linear performance control register is defined (via either P_BLK or the _PTC, _TSS, _TPC
objects) for a processor defined in _PSL or for a processor device in the zone as indicated by
_TZM then the _TC1, _TC2, and objects must exist. The _TSP object must also be defined if the
device requires polling.

 If a linear performance control register is not defined (via either P_BLK or the _PTC, _TSS, _TPC
objects) for a processor defined in _PSL or for a processor device in the zone as indicated by
_TZM then the processor must support processor performance states (in other words, the
processor’s processor object must include _PCT, _PSS, and _PPC).

 If _PSV is defined and _PSL is not defined then at least one device in thermal zone, as indicated by
either the _TZD device list or devices’ _TZM objects, must support device performance states.

 _SCP is optional.

434 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 _TZD is optional outside of the _PSV requirement outlined above.
 If _HOT is defined then the system must support the S4 sleeping state.

11.7 Thermal Zone Examples

11.7.1 Example: The Basic Thermal Zone

The following ASL describes a basic configuration where the entire system is treated as a single thermal
zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan. This is an
example only.

Notice that this thermal zone object (TZ0) is defined in the _SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For example, a
thermal zone that is isolated to a docking station should be defined within the scope of the docking station
device. Besides providing for a well-organized namespace, this configuration allows OSPM to dynamically
adjust its thermal policy as devices are added or removed from the system.

Scope(_SB) {
Processor(

CPU0,
1, // unique number for this processor
0x110, // system IO address of Pblk Registers
0x06 // length in bytes of PBlk

) {}

Scope(_SB.PCI0.ISA0) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC
// current resource description for this EC
Name(_CRS, ResourceTemplate() {

IO(Decode16,0x62,0x62,0,1)
IO(Decode16,0x66,0x66,0,1)

})
Name(_GPE, 0) // GPE index for this EC

// create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN, 1, // fan power (on/off)
, 6, // reserved
TMP, 16, // current temp
AC0, 16, // active cooling temp (fan high)
, 16, // reserved
PSV, 16, // passive cooling temp
HOT 16, // critical S4 temp
CRT, 16 // critical temp

}

// following is a method that OSPM will schedule after
// it receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
} // end of Notify method

// fan cooling on/off - engaged at AC0 temp
PowerResource(PFAN, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN) } // turn on fan
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN) } // turn off fan

}

Thermal Management 435

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Create FAN device object
Device (FAN) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
// list power resource for the fan
Name(_PR0, Package(){PFAN})

}

// create a thermal zone
ThermalZone (TZ0) {

Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
Name(_AL0, Package(){_SB.PCI0.ISA0.EC0.FAN}) // fan is act cool dev
Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
Name(_PSL, Package (){_SB.CPU0}) // passive cooling devices
Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get critical temp
Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
Name(_TC1, 4) // bogus example constant
Name(_TC2, 3) // bogus example constant
Name(_TSP, 150) // passive sampling = 15 sec
Name(_TZP, 0) // polling not required

} // end of TZ0

} // end of ECO
} // end of _SB.PCI0.ISA0 scope-

} // end of _SB scope

11.7.2 Example: Multiple-Speed Fans

The following ASL describes a thermal zone consisting of a processor and one dual-speed fan. As with the
previous example, this thermal zone object (TZ0) is defined in the _SB scope and represents the entire
system. This is an example only.

Scope(_SB) {
Processor(

CPU0,
1, // unique number for this processor
0x110, // system IO address of Pblk Registers
0x06 // length in bytes of PBlk

) {}

Scope(_SB.PCI0.ISA0) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC
// current resource description for this EC
Name(_CRS, ResourceTemplate() {

IO(Decode16,0x62,0x62,0,1)
IO(Decode16,0x66,0x66,0,1)

})
Name(_GPE, 0) // GPE index for this EC

// create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN0, 1, // fan strength high/off
FAN1, 1, // fan strength low/off
, 5, // reserved
TMP, 16, // current temp
AC0, 16, // active cooling temp (high)
AC1, 16, // active cooling temp (low)
PSV, 16, // passive cooling temp
HOT 18, // critical S4 temp
CRT, 16 // critical temp

}

436 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// following is a method that OSPM will schedule after it
// receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
} end of Notify method

// fan cooling mode high/off - engaged at AC0 temp
PowerResource(FN10, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) }// turn off fan

}

// fan cooling mode low/off - engaged at AC1 temp
PowerResource(FN11, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN1) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN1) } // turn on fan at low
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN1) }// turn off fan

}

// Following is a single fan with two speeds. This is represented
// by creating two logical fan devices. When FN2 is turned on then
// the fan is at a low speed. When FN1 and FN2 are both on then
// the fan is at high speed.
//
// Create FAN device object FN1
Device (FN1) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_UID, 0)
Name(_PR0, Package(){FN10, FN11})

}

// Create FAN device object FN2
Device (FN2) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_UID, 1)
Name(_PR0, Package(){FN10})

}

// create a thermal zone
ThermalZone (TZ0) {

Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan high temp
Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan low temp
Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling (high)
Name(_AL1, Package() {_SB.PCI0.ISA0.EC0.FN2}) // active cooling (low)
Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
Name(_PSL, Package() {_SB.CPU0}) // passive cooling devices
Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
Method(_SCP, 1) { Store (Arg1, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
Name(_TC1, 4) // bogus example constant
Name(_TC2, 3) // bogus example constant
Name(_TSP, 150) // passive sampling = 15 sec
Name(_TZP, 0) // polling not required

} // end of TZ0

} // end of ECO
} // end of _SB.PCI0.ISA0 scope

} // end of _SB scope

11.7.3 Example: Thermal Zone with Multiple Devices

Scope(_SB) {
Device(CPU0) {

Thermal Management 437

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Name(_HID, "ACPI0007")
Name(_UID, 0)

//
// Load additional objects if 3.0 Thermal model support is available
//
Method(_INI, 0) {

If (_OSI("3.0 Thermal Model")) {
LoadTable("OEM1", "PmRef", "Cpu0", "_SB.CPU0") // 3.0 Thermal Model

}
}

// For brevity, most processor objects have been excluded
// from this example (such as _PSS, _CST, _PCT, _PPC, etc.)

// Processor Throttle Control object
Name(_PTC, ResourceTemplate() {

Register(SystemIO, 32, 0, 0x120) // Processor Control
Register(SystemIO, 32, 0, 0x120) // Processor Status

})

// Throttling Supported States
// The values shown are for exemplary purposes only
Name(_TSS, Package() {

// Read: freq percentage, power, latency, control, status
Package() {0x64, 1000, 0x0, 0x7, 0x0}, // Throttle off (100%)
Package() {0x58, 800, 0x0, 0xF, 0x0}, // 87.5%
Package() {0x4B, 600, 0x0, 0xE, 0x0}, // 75%
Package() {0x3F, 400, 0x0, 0xD, 0x0} // 62.5%

})

// Throttling Present Capabilities
// The values shown are for exemplary purposes only
Method(_TPC) {

If(_SB.AC) {
Return(0) // All throttle states available

} Else {
Return(2) // Throttle states >= 2 are available

}
}

} // end of CPU0 scope

Device(CPU1) {

Name(_HID, "ACPI0007")
Name(_UID, 1)

//
// Load additional objects if 3.0 Thermal model support is available
//
Method(_INI, 0) {

If (_OSI("3.0 Thermal Model")) {
LoadTable("OEM1", "PmRef", "Cpu1", "_SB.CPU1") // 3.0 Thermal Model

}
}

// For brevity, most processor objects have been excluded
// from this example (such as _PSS, _CST, _PCT, _PPC, _PTC, etc.)

// Processor Throttle Control object
Name(_PTC, ResourceTemplate() {

Register(SystemIO, 32, 0, 0x120) // Processor Control
Register(SystemIO, 32, 0, 0x120) // Processor Status

})

// Throttling Supported States
// The values shown are for exemplary purposes only
Name(_TSS, Package() {

// Read: freq percentage, power, latency, control, status
Package() {0x64, 1000, 0x0, 0x7, 0x0}, // Throttle off (100%)
Package() {0x58, 800, 0x0, 0xF, 0x0}, // 87.5%

438 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Package() {0x4B, 600, 0x0, 0xE, 0x0}, // 75%
Package() {0x3F, 400, 0x0, 0xD, 0x0} // 62.5%

})

// Throttling Present Capabilities
// The values shown are for exemplary purposes only
Method(_TPC) {

If(_SB.AC) {
Return(0) // All throttle states available

} Else {
Return(2) // Throttle states >= 2 are available

}
}

} // end of CPU1 scope

Scope(_SB.PCI0.ISA0) {
Device(EC0) {

Name(_HID, EISAID("PNP0C09")) // ID for this EC

//
// Load additional objects if 3.0 Thermal model support is available
//
Method(_INI, 0) {

If (_OSI("3.0 Thermal Model")) {
LoadTable("OEM1", "PmRef", "Tz3", "_SB.PCI0.ISA0.EC0") // 3.0 Tz

}
}

// Current resource description for this EC
Name(_CRS,

ResourceTemplate() {
IO(Decode16,0x62,0x62,0,1)
IO(Decode16,0x66,0x66,0,1)

})

Name(_GPE, 0) // GPE index for this EC

// Create EC's region and field for thermal support
OperationRegion(EC0, EmbeddedControl, 0, 0xFF)
Field(EC0, ByteAcc, Lock, Preserve) {

MODE, 1, // thermal policy (quiet/perform)
FAN0, 1, // fan strength high/off
, 6, // reserved
TMP, 16, // current temp
AC0, 16, // active cooling temp
PSV, 16, // passive cooling temp
HOT, 16, // critical S4 temp
CRT, 16 // critical temp

}

// Following is a method that OSPM will schedule after it
// fan cooling mode high/off - engaged at AC0 temp
PowerResource(FN10, 0, 0) {

Method(_STA) { Return (_SB.PCI0.ISA0.EC0.FAN0) } // check power state
Method(_ON) { Store (One, _SB.PCI0.ISA0.EC0.FAN0) } // turn on fan at high
Method(_OFF) { Store (Zero, _SB.PCI0.ISA0.EC0.FAN0) }// turn off fan

}

// Following is a single fan with one speed.
// Create FAN device object FN1
Device (FN1) {

// Device ID for the FAN
Name(_HID, EISAID("PNP0C0B"))
Name(_UID, 0)
Name(_PR0, Package(){FN10})

}

// Receives an SCI and queries the EC to receive value 7
Method(_Q07) {

Notify (_SB.PCI0.ISA0.EC0.TZ0, 0x80)
} // end of Notify method

Thermal Management 439

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Create standard specific thermal zone
ThermalZone (TZ0) {

Method(_TMP) { Return (_SB.PCI0.ISA0.EC0.TMP)} // get current temp
Name(_PSL, Package() {_SB.CPU0, _SB.CPU1}) // passive cooling devices
Name(_AL0, Package() {_SB.PCI0.ISA0.EC0.FN1}) // active cooling
Method(_AC0) { Return (_SB.PCI0.ISA0.EC0.AC0) } // fan temp (high)
Method(_AC1) { Return (_SB.PCI0.ISA0.EC0.AC1) } // fan temp (low)
Method(_PSV) { Return (_SB.PCI0.ISA0.EC0.PSV) } // passive cooling temp
Method(_HOT) { Return (_SB.PCI0.ISA0.EC0.HOT) } // get critical S4 temp
Method(_CRT) { Return (_SB.PCI0.ISA0.EC0.CRT) } // get crit. temp
Name(_TC1, 4) // bogus example constant
Name(_TC2, 3) // bogus example constant
Method(_SCP, 1) { Store (Arg0, _SB.PCI0.ISA0.EC0.MODE) } // set cooling mode
Name(_TSP, 150) // passive sampling = 15 sec

} // end of TZ0

} // end of ECO
} // end of _SB.PCI0.ISA0 scope
} // end of _SB scope

//
// ACPI 3.0 Thermal Model SSDT
//
DefinitionBlock (

"TZASSDT.aml",
"OEM1",
0x01,
"PmRef",
"Tz3",
0x3000
)

{
External(_SB.PCI0.ISA0.EC0, DeviceObj)
External(_SB.CPU0, DeviceObj)
External(_SB.CPU1, DeviceObj)

Scope(_SB.PCI0.ISA0.EC0)
{

// Create an ACPI 3.0 specific thermal zone
ThermalZone (TZ0) {

// This TRT is for exemplary purposes only
Name(_TRT, Package() {

// Thermal relationship package data. A package is generated for
// each permutation of device sets. 2 devices = 4 entries.
// Read: source, target, thermal influence, sampling period, 4 reserved
Package () {_SB.CPU0, _SB.CPU0, 20, 1, 0, 0, 0, 0},
Package () {_SB.CPU0, _SB.CPU1, 10, 15, 0, 0, 0, 0},
Package () {_SB.CPU1, _SB.CPU0, 10, 15, 0, 0, 0, 0},
Package () {_SB.CPU1, _SB.CPU1, 20, 1, 0, 0, 0, 0}

}) // end of TRT
} // end of TZ0

} // end of EC0 Scope
} // end of SSDT

440 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

//
// CPU0 3.0 Thermal Model SSDT
//
DefinitionBlock (

"CPU0SSDT.aml",
"OEM1",
0x01,
"PmRef",
"CPU0",
0x3000
)

{
External(_SB.CPU0, DeviceObj)
External(_SB.PCI0.ISA0.TZ0, ThermalZoneObj)

Scope(_SB.CPU0)
{

//
// Add the objects required for 3.0 extended thermal support
//
// Create a region and fields for thermal support; the platform
// fills in the values and traps on writes to enable hysteresis.
// The Operation Region location is invalid
OperationRegion(CP00, SystemMemory, 0x00000000, 0xA)
Field(CP00, ByteAcc, Lock, Preserve) {

SCP, 1, // thermal policy (passive/active)
RTV, 1, // absolute or relative temperature
, 6, // reserved
AC0, 16, // active cooling temp
PSV, 16, // passive cooling temp
CRT, 16, // critical temp
TPT, 16, // Temp trip point crossed
TST, 8 // Temp sensor threshold

}

Method(_TZM, 0) { Return(_SB.PCI0.ISA0.TZ0) } // thermal zone member

// Some thermal zone methods are now located under the
// thermal device participating in the 3.0 thermal model.
// These methods provide device specific thermal information
Method(_SCP, 1) { Store (Arg0, _SB.CPU0.SCP) } // set cooling mode
Method(_RTV) { Return (_SB.CPU0.RTV) } // absolute or relative temp
Method(_AC0) { Return (_SB.CPU0.AC0) } // active cooling (fan) temp
Method(_PSV) { Return (_SB.CPU0.PSV) } // passive cooling temp
Method(_CRT) { Return (_SB.CPU0.CRT) } // critical temp
Name(_TC1, 4) // thermal constant 1 (INVALID)
Name(_TC2, 3) // thermal constant 2 (INVALID)
Method(_TPT, 1) { Store (Arg0, _SB.CPU0.TPT)} // trip point temp
Method(_TST) { Return (_SB.CPU0.TST) } // temp sensor threshold

} // end of CPU0 scope
} // end of SSDT

Thermal Management 441

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

//
// CPU1 3.0 Thermal Model SSDT
//
DefinitionBlock (

"CPU1SSDT.aml",
"OEM1",
0x01,
"PmRef",
"CPU1",
0x3000
)

{
External(_SB.CPU1, DeviceObj)
External(_SB.PCI0.ISA0.TZ0, ThermalZoneObj)

Scope(_SB.CPU1)
{

//
// Add the objects required for 3.0 extended thermal support
//
// Create a region and fields for thermal support; the platform
// fills in the values and traps on writes to enable hysteresis.
// The Operation Region location is invalid
OperationRegion(CP01, SystemIO, 0x00000008, 0xA)
Field(CP01, ByteAcc, Lock, Preserve) {

SCP, 1, // thermal policy (passive/active)
RTV, 1, // absolute or relative temperature
, 6, // reserved
AC0, 16, // active cooling temp
PSV, 16, // passive cooling temp
CRT, 16, // critical temp
TPT, 16, // Temp trip point crossed
TST, 8 // Temp sensor threshold

}

Method(_TZM, 0) { Return(_SB.PCI0.ISA0.TZ0) } // thermal zone member

// Some thermal zone methods are now located under the
// thermal device participating in the 3.0 thermal model.
// These methods provide device specific thermal information
Method(_SCP, 1) { Store (Arg0, _SB.CPU1.SCP) } // set cooling mode
Method(_RTV) { Return (_SB.CPU1.RTV) } // absolute or relative temp
Method(_AC0) { Return (_SB.CPU1.AC0) } // active cooling (fan) temp
Method(_PSV) { Return (_SB.CPU1.PSV) } // passive cooling temp
Method(_CRT) { Return (_SB.CPU1.CRT) } // critical temp
Name(_TC1, 4) // thermal constant 1 (INVALID)
Name(_TC2, 3) // thermal constant 2 (INVALID)
Method(_TPT, 1) { Store (Arg0, _SB.CPU1.TPT)} // trip point temp
Method(_TST) { Return (_SB.CPU1.TST) } // temp sensor threshold

} // end of CPU1 scope
} // end of SSDT

442 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Embedded Controller Interface Specification 443

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12 ACPI Embedded Controller Interface Specification

ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers. This in turn enables the OEM to provide platform
features that the OS OSPM and applications can take advantage of.

ACPI also defines a standard hardware and software communications interface between an OS driver and
an Embedded Controller-based SMB-HC (EC-SMB-HC).

The ACPI standard supports multiple embedded controllers in a system, each with its own resources. Each
embedded controller has a flat byte-addressable I/O space, currently defined as 256 bytes. Features
implemented in the embedded controller have an event “query” mechanism that allows feature hardware
implemented by the embedded controller to gain the attention of an OS driver or ASL/AML code handler.
The interface has been specified to work on the most popular embedded controllers on the market today,
only requiring changes in the way the embedded controller is “wired” to the host interface.

Two interfaces are specified:
 A private interface, exclusively owned by the embedded controller driver.
 A shared interface, used by the embedded controller driver and some other driver.

This interface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller as the
keyboard controller function, but the ECI requires its own unique host resources (interrupt event and access
registers).

This interface does support sharing the ECI with an inter-environment interface (such as SMI) and relies on
the ACPI-defined “Global Lock” protocol. For information about the Global Lock interface, see section
5.2.10.1, “Global Lock.” Both the shared and private EC interfaces are described in the following sections.

The ECI has been designed such that a platform can use it in either the legacy or ACPI modes with minimal
changes between the two operating environments. This is to encourage standardization for this interface to
enable faster development of platforms as well as opening up features within these controllers to higher
levels of software.

12.1 Embedded Controller Interface Description

Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations. The ACPI specification supports embedded controllers in any platform design, as long as
the microcontroller conforms to one of the models described in this section. The embedded controller is a
unique feature in that it can perform complex low-level functions through a simple interface to the host
microprocessor(s).

Although there is a large variety of microcontrollers in the market today, the most commonly used
embedded controllers include a host interface that connects the embedded controller to the host data bus,
allowing bi-directional communications. A bi-directional interrupt scheme reduces the host processor
latency in communicating with the embedded controller.

444 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Currently, the most common host interface architecture incorporated into microcontrollers is modeled after
the standard IA-PC architecture keyboard controller. This keyboard controller is accessed at 0x60 and 0x64
in system I/O space. Port 0x60 is termed the data register, and allows bi-directional data transfers to and
from the host and embedded controller. Port 0x64 is termed the command/status register; it returns port
status information upon a read, and generates a command sequence to the embedded controller upon a
write. This same class of controllers also includes a second decode range that shares the same properties as
the keyboard interface by having a command/status register and a data register. The following diagram
graphically depicts this interface.

EC STATUS
REGISTER

EC OUTPUT
BUFFER

EC INPUT
BUFFER

INTERFACE
ARBITRATION

CODE

SMI
INTERFACE

CODE

SCI
INTERFACE

CODE

COMMAND WRITE (SMI/SCI)

DATA WRITE (SMI/SCI)

DATA READ (SMI/SCI)

STATUS READ (SMI/SCI)

EC_SCI_EN

EC_SMI_EN

EC_SMI_STS

EC_SCI_STS

EC_SMI

EC_SCI

I/O
MAIN

FIRMWARE

Figure 12-1 Shared Interface

The diagram above depicts the general register model supported by the ACPI Embedded Controller
Interface.

ACPI Embedded Controller Interface Specification 445

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The first method uses an embedded controller interface shared between OSPM and the system management
code, which requires the Global Lock semaphore overhead to arbitrate ownership. The second method is a
dedicated embedded controller decode range for sole use by OSPM driver. The following diagram
illustrates the embedded controller architecture that includes a dedicated ACPI interface.

SCI
INTERFACE

CODE

I/O

EC_SCI_EN

EC_SCI_STS

EC_SCI

SCI STATUS
REGISTER

SCI OUTPUT
BUFFER

SCI INPUT
BUFFER

COMMAND WRITE (SCI)

DATA WRITE (SCI)

DATA READ (SCI)

STATUS READ (SCI)

SMI STATUS
REGISTER

SMI OUTPUT
BUFFER

SMI INPUT
BUFFER

SMI
INTERFACE

CODE

COMMAND WRITE (SMI)

DATA WRITE (SMI)

DATA READ (SMI)

STATUS READ (SMI)

EC_SMI_EN

EC_SMI_STS

EC_SMI

MAIN
FIRMWARE

Figure 12-2 Private Interface

446 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The private interface allows OSPM to communicate with the embedded controller without the additional
software overhead associated with using the Global Lock. Several common system configurations can
provide the additional embedded controller interfaces:
 Non-shared embedded controller. This will be the most common case where there is no need for the

system management handler to communicate with the embedded controller when the system transitions
to ACPI mode. OSPM processes all normal types of system management events, and the system
management handler does not need to take any actions.

 Integrated keyboard controller and embedded controller. This provides three host interfaces as
described earlier by including the standard keyboard controller in an existing component (chip set, I/O
controller) and adding a discrete, standard embedded controller with two interfaces for system
management activities.

 Standard keyboard controller and embedded controller. This provides three host interfaces by
providing a keyboard controller as a distinct component, and two host interfaces are provided in the
embedded controller for system management activities.

 Two embedded controllers. This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host interfaces, and
one controller for keyboard controller functions providing up to two host interfaces.

 Embedded controller and no keyboard controller. Future platforms might provide keyboard
functionality through an entirely different mechanism, which would allow for two host interfaces in an
embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a method
is available to make the embedded controller a shareable resource between multiple tasks running under the
operating system’s control and the system management interrupt handler. This method, as described in this
section, requires several changes:
 Additional external hardware
 Embedded controller firmware changes
 System management interrupt handler firmware changes
 Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between the
operating system’s use of the interface and the system management handler’s use of the interface. This is
done using the Global Lock as described in section 5.2.10.1, “Global Lock.”

This interface sharing protocol also requires embedded controller firmware changes, in order to ensure that
collisions do not occur at the interface. A collision could occur if a byte is placed in the system output
buffer and an interrupt is then generated. There is a small window of time when the incorrect recipient
could receive the data. This problem is resolved by ensuring that the firmware in the embedded controller
does not place any data in the output buffer until it is requested by OSPM or the system management
handler.

More detailed algorithms and descriptions are provided in the following sections.

12.2 Embedded Controller Register Descriptions

The embedded controller contains three registers at two address locations: EC_SC and EC_DATA. The
EC_SC, or Embedded Controller Status/Command register, acts as two registers: a status register for reads
to this port and a command register for writes to this port. The EC_DATA (Embedded Controller Data
register) acts as a port for transferring data between the host CPU and the embedded controller.

ACPI Embedded Controller Interface Specification 447

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.2.1 Embedded Controller Status, EC_SC (R)

This is a read-only register that indicates the current status of the embedded controller interface.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

IGN SMI_EVT SCI_EVT BURST CMD IGN IBF OBF

Where:

IGN: Ignored

SMI_EVT: 1 – Indicates SMI event is pending (requesting SMI query).

0 – No SMI events are pending.

SCI_EVT: 1 – Indicates SCI event is pending (requesting SCI query).

0 – No SCI events are pending.

BURST: 1 – Controller is in burst mode for polled command processing.

0 – Controller is in normal mode for interrupt-driven command processing.

CMD: 1 – Byte in data register is a command byte (only used by controller).

0 – Byte in data register is a data byte (only used by controller).

IBF: 1 – Input buffer is full (data ready for embedded controller).

0 – Input buffer is empty.

OBF: 1 – Output buffer is full (data ready for host).

0 – Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of data into the
command or data port but the host has not yet read it. After the host reads the status byte and sees the OBF
flag set, the host reads the data port to get the byte of data that the embedded controller has written. After
the host reads the data byte, the OBF flag is cleared automatically by hardware. This signals the embedded
controller that the data has been read by the host and the embedded controller is free to write more data to
the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or data port,
but the embedded controller has not yet read it. After the embedded controller reads the status byte and sees
the IBF flag set, the embedded controller reads the data port to get the byte of data that the host has written.
After the embedded controller reads the data byte, the IBF flag is automatically cleared by hardware. This
is the signal to the host that the data has been read by the embedded controller and that the host is free to
write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event that
requires the operating system’s attention. The embedded controller sets this bit in the status register, and
generates an SCI to OSPM. OSPM needs this bit to differentiate command-complete SCIs from notification
SCIs. OSPM uses the query command to request the cause of the SCI_EVT and take action. For more
information, see section 13.3, “Embedded Controller Command Set.”)

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event that
requires the system management interrupt handler’s attention. The embedded controller sets this bit in the
status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable command
from the host, has halted normal processing, and is waiting for a series of commands to be sent from the
host. This allows OSPM or system management handler to quickly read and write several bytes of data at a
time without the overhead of SCIs between the commands.

448 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.2.2 Embedded Controller Command, EC_SC (W)

This is a write-only register that allows commands to be issued to the embedded controller. Writes to this
port are latched in the input data register and the input buffer full flag is set in the status register. Writes to
this location also cause the command bit to be set in the status register. This allows the embedded controller
to differentiate the start of a command sequence from a data byte write operation.

12.2.3 Embedded Controller Data, EC_DATA (R/W)

This is a read/write register that allows additional command bytes to be issued to the embedded controller,
and allows OSPM to read data returned by the embedded controller. Writes to this port by the host are
latched in the input data register, and the input buffer full flag is set in the status register. Reads from this
register return data from the output data register and clear the output buffer full flag in the status register.

12.3 Embedded Controller Command Set

The embedded controller command set allows OSPM to communicate with the embedded controllers.
ACPI defines the commands and their byte encodings for use with the embedded controller that are shown
in the following table.

Table 12-1 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding

Read Embedded Controller (RD_EC) 0x80

Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller (BE_EC) 0x82

Burst Disable Embedded Controller (BD_EC) 0x83

Query Embedded Controller (QR_EC) 0x84

12.3.1 Read Embedded Controller, RD_EC (0x80)

This command byte allows OSPM to read a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command consists of a command byte written to the Embedded Controller
Command register (EC_SC), followed by an address byte written to the Embedded Controller Data register
(EC_DATA). The embedded controller then returns the byte at the addressed location. The data is read at
the data port after the OBF flag is set.

12.3.2 Write Embedded Controller, WR_EC (0x81)

This command byte allows OSPM to write a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by OSPM, and it indicates to the embedded controller to
generate SCIs in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command allows OSPM to write a byte in the address space of the embedded
controller. It consists of a command byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register (EC_DATA), followed by a
data byte written to the Embedded Controller Data Register (EC_DATA); this is the data byte written at the
addressed location.

ACPI Embedded Controller Interface Specification 449

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)

This command byte allows OSPM to request dedicated attention from the embedded controller and (except
for critical events) prevents the embedded controller from doing tasks other than receiving command and
data from the host processor (either the system management interrupt handler or OSPM). This command is
an optimization that allows the host processor to issue several commands back to back, in order to reduce
latency at the embedded controller interface. When the controller is in the burst mode, it should transition
to the burst disable state if the host does not issue a command within the following guidelines:
 First Access – 400 microseconds
 Subsequent Accesses – 50 microseconds each
 Total Burst Time – 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process a critical event. If
the embedded controller disables burst mode for any reason other than the burst disable command, it should
generate an SCI to OSPM to indicate the change.

While in burst mode, the embedded controller follows these guidelines for OSPM driver:

SCIs are generated as normal, including IBF=0 and OBF=1.

Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

OSPM driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then the
Embedded Controller will prepare to enter the Burst mode. This includes processing any routine activities
such that it should be able to remain dedicated to OSPM interface for ~ 1 microsecond.

The Embedded Controller sets the Burst bit of the Embedded Controller Status Register, puts the Burst
Acknowledge byte (0x90) into the SCI output buffer, sets the OBF bit, and generates an SCI to signal
OSPM that it is in Burst mode.

Burst mode is exited the following manner:

OSPM driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and then the
Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded Controller Status
register and generating an SCI signal (due to IBF=0).

The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)

This command byte releases the embedded controller from a previous burst enable command and allows it
to resume normal processing. This command is sent by OSPM or system management interrupt handler
after it has completed its entire queued command sequence to the embedded controller.

12.3.5 Query Embedded Controller, QR_EC (0x84)

OSPM driver sends this command when the SCI_EVT flag in the EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to OSPM, it first sets the
SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for OSPM to send the query
(QR_EC) command. OSPM detects the embedded controller SCI, sees the SCI_EVT flag set, and sends the
query command to the embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a notification byte with a value between 0-255, indicating the cause of the notification.
The notification byte indicates which interrupt handler operation should be executed by OSPM to process
the embedded controller SCI. The query value of zero is reserved for a spurious query result and indicates
“no outstanding event.”

450 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT

This query command notification header is the special return code that indicates events with an SMBus
controller implemented within an embedded controller. These events include:
 Command completion
 Command error
 Alarm reception

The actual notification value is declared in the EC-SMB-HC device object in the ACPI Namespace.

12.5 Embedded Controller Firmware

The embedded controller firmware must obey the following rules in order to be ACPI-compatible:

 SMI Processing. Although it is not explicitly stated in the command specification section, a shared
embedded controller interface has a separate command set for communicating with each environment
it plans to support. In other words, the embedded controller knows which environment is generating
the command request, as well as which environment is to be notified upon event detection, and can
then generate the correct interrupts and notification values. This implies that a system management
handler uses commands that parallel the functionality of all the commands for ACPI including query,
read, write, and any other implemented specific commands.

 SCI/SMI Task Queuing. If the system design is sharing the interface between both a system
management interrupt handler and OSPM, the embedded controller should always be prepared to
queue a notification if it receives a command. The embedded controller only sets the appropriate event
flag in the status (EC_SC) register if the controller has detected an event that should be communicated
to the OS or system management handler. The embedded controller must be able to field commands
from either environment without loss of the notification event. At some later time, the OS or system
management handler issues a query command to the embedded controller to request the cause of the
notification event.

 Notification Management. The use of the embedded controller means using the query (QR_EC)
command to notify OSPM of system events requiring action. If the embedded controller is shared with
the operating system, the SMI handler uses the SMI_EVT flag and an SMI query command (not
defined in this document) to receive the event notifications. The embedded controller doesn’t place
event notifications into the output buffer of a shared interface unless it receives a query command from
OSPM or the system management interrupt handler.

12.6 Interrupt Model

The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt is firmware
generated using an EC general-purpose output and has the waveform shown in Figure 12-3. The embedded
controller SCI is always wired directly to a GPE input, and OSPM driver treats this as an edge event (the
EC SCI GPE cannot be shared).

T
HOLD

Interrupt detected

Interrupt serviced
and cleared

Figure 12-3 EC Interrupt Waveform

ACPI Embedded Controller Interface Specification 451

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.6.1 Event Interrupt Model

The embedded controller must generate SCIs for the events listed in the following table.

Table 12-2 Events for Which Embedded Controller Must Generate SCIs

Event Description

IBF=0 Signals that the embedded controller has read the last command or data from the input
buffer and the host is free to send more data.

OBF=1 Signals that the embedded controller has written a byte of data into the output buffer
and the host is free to read the returned data.

SCI_EVT=1 Signals that the embedded controller has detected an event that requires OS attention.
OSPM should issue a query (QR_EC) command to find the cause of the event.

12.6.2 Command Interrupt Model

The embedded controller must generate SCIs for commands as follows:

 Read Command (3 Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to read) No Interrupt

Byte #3 (Data read to host) Interrupt on OBF=1

 Write Command (3 Bytes)

Byte #1 (Command byte Header) Interrupt on IBF=0

Byte #2 (Address byte to write) Interrupt on IBF=0

Byte #3 (Data to read) Interrupt on IBF=0

 Query Command (2 Bytes)

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Query value to host) Interrupt on OBF=1

 Burst Enable Command (2 Bytes)

Byte #1 (Command byte Header) No Interrupt

Byte #2 (Burst acknowledge byte) Interrupt on OBF=1

 Burst Disable Command (1 Byte)

Byte #1 (Command byte Header) Interrupt on IBF=0

12.7 Embedded Controller Interfacing Algorithms

To initiate communications with the embedded controller, OSPM or system management handler acquires
ownership of the interface. This ownership is acquired through the use of the Global Lock (described in
section 5.2.10.1, “Global Lock”), or is owned by default by OSPM as a non-shared resource (and the
Global Lock is not required for accessibility).

452 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

After ownership is acquired, the protocol always consists of the passing of a command byte. The command
byte will indicate the type of action to be taken. Following the command byte, zero or more data bytes can
be exchanged in either direction. The data bytes are defined according to the command byte that is
transferred.

The embedded controller also has two status bits that indicate whether the registers have been read. This is
used to ensure that the host or embedded controller has received data from the embedded controller or host.
When the host writes data to the command or data register of the embedded controller, the input buffer flag
(IBF) in the status register is set within 1 microsecond. When the embedded controller reads this data from
the input buffer, the input buffer flag is reset. When the embedded controller writes data into the output
buffer, the output buffer flag (OBF) in the status register is set. When the host processor reads this data
from the output buffer, the output buffer flag is reset.

12.8 Embedded Controller Description Information

Certain aspects of the embedded controller’s operation have OEM-definable values associated with them.
The following is a list of values that are defined in the software layers of the ACPI specification:
 Status flag indicating whether the interface requires the use of the Global Lock.
 Bit position of embedded controller interrupt in general-purpose status register.
 Decode address for command/status register.
 Decode address for data register.
 Base address and query value of any EC-SMBus controller.

For implementation details of the above listed information, see sections 12.11, “Defining an Embedded
Controller Device in ACPI Namespace,” and 12.12, “Defining an EC SMBus Host Controller in ACPI
Namespace.”

An embedded controller will require the inclusion of the GLK method in its ACPI namespace if potentially
contentious accesses to device resources are performed by non-OS code. See section 6.5.7, “_GLK (Global
Lock)” for details about the _GLK method.

12.9 SMBus Host Controller Interface via Embedded Controller

This section specifies a standard interface that an ACPI-compatible OS can use to communicate with
embedded controller-based SMBus host controllers (EC-SMB-HC). This interface allows the host
processor (under control of OSPM) to manage devices on the SMBus. Typical devices residing on the
SMBus include Smart Batteries, Smart Battery Chargers, contrast/backlight control, and temperature
sensors.

The EC-SMB-HC interface consists of a block of registers that reside in embedded controller space. These
registers are used by software to initiate SMBus transactions and receive SMBus notifications. By using a
well-defined register set, OS software can be written to operate with any vendor’s embedded controller
hardware.

Certain SMBus segments have special requirements that the host controller filters certain SMBus
commands (for example, to prevent an errant application or virus from potentially damaging the battery
subsystem). This is most easily accomplished by implementing the host interface controller through an
embedded controller—as embedded controller can easily filter out potentially problematic commands.

Notice that an EC-SMB-HC interface will require the inclusion of the GLK method in its ACPI namespace
if potentially contentious accesses to device resources are performed by non-OS code. See section 6.5.7,
“_GLK (Global Lock)” for details on using the _GLK method.

12.9.1 Register Description

The EC-SMBus host interface is a flat array of registers that are arranged sequentially in the embedded
controller address space.

ACPI Embedded Controller Interface Specification 453

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.9.1.1 Status Register, SMB_STS

This register indicates general status on the SMBus. This includes SMB-HC command completion status,
alarm received status, and error detection status (the error codes are defined later in this section). This
register is cleared to zeroes (except for the ALRM bit) whenever a new command is issued using a write to
the protocol (SMB_PRTCL) register. This register is always written with the error code before clearing the
protocol register. The SMB-HC query event (that is, an SMB-HC interrupt) is raised after the clearing of
the protocol register.

Note: OSPM must ensure the ALRM bit is cleared after it has been serviced by writing ‘00’ to the
SMB_STS register.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DONE ALRM RES STATUS

Where:

DONE: Indicates the last command has completed and no error.

ALRM: Indicates an SMBus alarm message has been received.

RES: Reserved

STATUS: Indicates SMBus communication status for one of the reasons listed in the following
table.

Table 12-3 SMBus Status Codes

Status
Code Name Description

00h SMBus OK Indicates the transaction has been successfully completed.

07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.

10h SMBus Device Address
Not Acknowledged

Indicates the transaction failed because the slave device address was
not acknowledged.

11h SMBus Device Error
Detected

Indicates the transaction failed because the slave device signaled an
error condition.

12h SMBus Device Command
Access Denied

Indicates the transaction failed because the SMBus host does not
allow the specific command for the device being addressed. For
example, the SMBus host might not allow a caller to adjust the
Smart Battery Charger’s output.

13h SMBus Unknown Error Indicates the transaction failed because the SMBus host encountered
an unknown error.

17h SMBus Device Access
Denied

Indicates the transaction failed because the SMBus host does not
allow access to the device addressed. For example, the SMBus host
might not allow a caller to directly communicate with an SMBus
device that controls the system’s power planes.

18h SMBus Timeout Indicates the transaction failed because the SMBus host detected a
timeout on the bus.

19h SMBus Host Unsupported
Protocol

Indicates the transaction failed because the SMBus host does not
support the requested protocol.

454 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Status
Code Name Description

1Ah SMBus Busy Indicates that the transaction failed because the SMBus host reports
that the SMBus is presently busy with some other transaction. For
example, the Smart Battery might be sending charging information
to the Smart Battery Charger.

1Fh SMBus PEC (CRC-8)
Error

Indicates that a Packet Error Checking (PEC) error occurred during
the last transaction.

All other error codes are reserved.

12.9.1.2 Protocol Register, SMB_PRTCL

This register determines the type of SMBus transaction generated on the SMBus. In addition to indicating
the protocol type to the SMB-HC, a write to this register initiates the transaction on the SMBus. Notice that
bit 7 of the protocol value is used to indicate whether packet error checking should be employed. A value
of 1 (one) in this bit indicates that PEC format should be used for the specified protocol, and a value of 0
(zero) indicates the standard (non-PEC) format should be used.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

PEC PROTOCOL

Where:

PROTOCOL: 0x00 – Controller Not In Use

0x01 – Reserved

0x02 – Write Quick Command

0x03 – Read Quick Command

0x04 – Send Byte

0x05 – Receive Byte

0x06 – Write Byte

0x07 – Read Byte

0x08 – Write Word

0x09 – Read Word

0x0A – Write Block

0x0B – Read Block

0x0C – Process Call

0x0D – Block Write-Block Read Process Call

For example, the protocol value of 0x09 would be used to communicate to a device that supported the
standard read word protocol. If this device also supported packet error checking for this protocol, a value of
0x89 (read word with PEC) could optionally be used. See the SMBus specification for more information on
packet error checking.

When OSPM initiates a new command such as write to the SMB_PRTCL register, the SMBus controller
first updates the SMB_STS register and then clears the SMB_PRTCL register. After the SMB_PRTCL
register is cleared, the host controller query value is raised.

ACPI Embedded Controller Interface Specification 455

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

All other protocol values are reserved.

12.9.1.3 Address Register, SMB_ADDR

This register contains the 7-bit address to be generated on the SMBus. This is the first byte to be sent on the
SMBus for all of the different protocols.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

Where:

RES: Reserved

ADDRESS: 7-bit SMBus address. This address is not zero aligned (in other words, it is only a 7-
bit address (A6:A0) that is aligned from bit 1-7).

12.9.1.4 Command Register, SMB_CMD

This register contains the command byte that will be sent to the target device on the SMBus and is used for
the following protocols: send byte, write byte, write word, read byte, read word, process call, block read
and block write. It is not used for the quick commands or the receive byte protocol, and as such, its value is
a “don’t care” for those commands.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

COMMAND

Where:

COMMAND: Command byte to be sent to SMBus device.

12.9.1.5 Data Register Array, SMB_DATA[i], i=0-31

This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA[i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA

Where:

DATA: One byte of data to be sent or received (depending upon protocol).

12.9.1.6 Block Count Register, SMB_BCNT

This register contains the number of bytes of data present in the SMB_DATA[i] registers preceding any
write block and following any read block transaction. The data size is defined on a per protocol basis.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

RES BCNT

456 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.9.1.7 Alarm Address Register, SMB_ALRM_ADDR

This register contains the address of an alarm message received by the host controller, at slave address 0x8,
from the SMBus master that initiated the alarm. The address indicates the slave address of the device on the
SMBus that initiated the alarm message. The status of the alarm message is contained in the
SMB_ALRM_DATAx registers. Once an alarm message has been received, the SMB-HC will not receive
additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

ADDRESS (A6:A0) RES

Where:

RES: Reserved

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.

12.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0],
SMB_ALRM_DATA[1]

These registers contain the two data bytes of an alarm message received by the host controller, at slave
address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the specific reason
for the alarm message, such that OSPM can take actions. Once an alarm message has been received, the
SMB-HC will not receive additional alarm messages until the ALRM status bit is cleared.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

DATA (D7:D0)

Where:

DATA: Data byte received in alarm message.

The alarm address and alarm data registers are not read by OSPM until the alarm status bit is set. OSPM
driver then reads the 3 bytes, and clears the alarm status bit to indicate that the alarm registers are now
available for the next event.

12.9.2 Protocol Description

This section describes how to initiate the different protocols on the SMBus through the interface described
in section 13.9.1, “Register Descriptions.” The registers should all be written with the appropriate values
before writing the protocol value that starts the SMBus transaction. All transactions can be completed in
one pass.

12.9.2.1 Write Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x02 to initiate the write quick protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

ACPI Embedded Controller Interface Specification 457

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.9.2.2 Read Quick

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x03 to initiate the read quick protocol.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.3 Send Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x04 to initiate the send byte protocol, or 0x84 to initiate the send byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.4 Receive Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_PRTCL: Write 0x05 to initiate the receive byte protocol, or 0x85 to initiate the receive byte
protocol with PEC.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.5 Write Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Data byte to be sent.

SMB_PRTCL: Write 0x06 to initiate the write byte protocol, or 0x86 to initiate the write byte
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

458 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.9.2.6 Read Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x07 to initiate the read byte protocol, or 0x87 to initiate the read byte
protocol with PEC.

Data Returned:

SMB_DATA[0]: Data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.7 Write Word

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x08 to initiate the write word protocol, or 0x88 to initiate the write word
protocol with PEC.

Data Returned:

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.8 Read Word

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x09 to initiate the read word protocol, or 0x89 to initiate the read word
protocol with PEC.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

ACPI Embedded Controller Interface Specification 459

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.9.2.9 Write Block

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-32).

SMB_BCNT: Number of data bytes (1-32) to be sent.

SMB_PRTCL: Write 0x0A to initiate the write block protocol, or 0x8A to initiate the write block
protocol with PEC.

Data Returned:

SMB_PRTCL: 0x00 to indicate command completion.

SMB_STS: Status code for transaction.

12.9.2.10 Read Block

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_PRTCL: Write 0x0B to initiate the read block protocol, or 0x8B to initiate the read block
protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-32) received.

SMB_DATA[0-31]: Data bytes received (1-32).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

12.9.2.11 Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0]: Low data byte to be sent.

SMB_DATA[1]: High data byte to be sent.

SMB_PRTCL: Write 0x0C to initiate the process call protocol, or 0x8C to initiate the process call
protocol with PEC.

Data Returned:

SMB_DATA[0]: Low data byte received.

SMB_DATA[1]: High data byte received.

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

460 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.9.2.12 Block Write-Block Read Process Call

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.

SMB_DATA[0-31]: Data bytes to write (1-31).

SMB_BCNT: Number of data bytes (1-31) to be sent.

SMB_PRTCL: Write 0x0D to initiate the write block-read block process call protocol, or 0x8D to
initiate the write block-read block process call protocol with PEC.

Data Returned:

SMB_BCNT: Number of data bytes (1-31) received.

SMB_DATA[0-31]: Data bytes received (1-31).

SMB_STS: Status code for transaction.

SMB_PRTCL: 0x00 to indicate command completion.

Note: The following restrictions apply: The aggregate data length of the write and read blocks must not
exceed 32 bytes and each block (write and read) must contain at least 1 byte of data.

12.9.3 SMBus Register Set

The register set for the SMB-HC has the following format. All registers are 8 bit.

Table 12-4 SMB EC Interface

Location Register Name Description

BASE+0 SMB_PRTCL Protocol register

BASE+1 SMB_STS Status register

BASE+2 SMB_ADDR Address register

BASE+3 SMB_CMD Command register

BASE+4 SMB_DATA[0] Data register zero

BASE+5 SMB_DATA[1] Data register one

BASE+6 SMB_DATA[2] Data register two

BASE+7 SMB_DATA[3] Data register three

BASE+8 SMB_DATA[4] Data register four

BASE+9 SMB_DATA[5] Data register five

BASE+10 SMB_DATA[6] Data register six

BASE+11 SMB_DATA[7] Data register seven

BASE+12 SMB_DATA[8] Data register eight

BASE+13 SMB_DATA[9] Data register nine

BASE+14 SMB_DATA[10] Data register ten

BASE+15 SMB_DATA[11] Data register eleven

BASE+16 SMB_DATA[12] Data register twelve

ACPI Embedded Controller Interface Specification 461

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Location Register Name Description

BASE+17 SMB_DATA[13] Data register thirteen

BASE+18 SMB_DATA[14] Data register fourteen

BASE+19 SMB_DATA[15] Data register fifteen

BASE+20 SMB_DATA[16] Data register sixteen

BASE+21 SMB_DATA[17] Data register seventeen

BASE+22 SMB_DATA[18] Data register eighteen

BASE+23 SMB_DATA[19] Data register nineteen

BASE+24 SMB_DATA[20] Data register twenty

BASE+25 SMB_DATA[21] Data register twenty-one

BASE+26 SMB_DATA[22] Data register twenty-two

BASE+27 SMB_DATA[23] Data register twenty-three

BASE+28 SMB_DATA[24] Data register twenty-four

BASE+29 SMB_DATA[25] Data register twenty-five

BASE+30 SMB_DATA[26] Data register twenty-six

BASE+31 SMB_DATA[27] Data register twenty-seven

BASE+32 SMB_DATA[28] Data register twenty-eight

BASE+33 SMB_DATA[29] Data register twenty-nine

BASE+34 SMB_DATA[30] Data register thirty

BASE+35 SMB_DATA[31] Data register thirty-one

BASE+36 SMB_BCNT Block Count Register

BASE+37 SMB_ALRM_ADDR Alarm address

BASE+38 SMB_ALRM_DATA[0] Alarm data register zero

BASE+39 SMB_ALRM_DATA[1] Alarm data register one

462 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.10 SMBus Devices

The embedded controller interface provides the system with a standard method to access devices on the
SMBus. It does not define the data and/or access protocol(s) used by any particular SMBus device. Further,
the embedded controller can (and probably will) serve as a gatekeeper to prevent accidental or malicious
access to devices on the SMBus.

Some SMBus devices are defined by their address and a specification that describes the data and the
protocol used to access that data. For example, the Smart Battery System devices are defined by a series of
specifications including:
 Smart Battery Data specification
 Smart Battery Charger specification
 Smart Battery Selector specification
 Smart Battery System Manager specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

12.10.1 SMBus Device Access Restrictions

In some cases, the embedded controller interface will not allow access to a particular SMBus device. Some
SMBus devices can and do communicate directly between themselves. Unexpected accesses can interfere
with their normal operation and cause unpredictable results.

12.10.2 SMBus Device Command Access Restriction

There are cases where part of an SMBus device’s commands are public while others are private. Extraneous
attempts to access these commands might cause interference with the SMBus device’s normal operation.

The Smart Battery and the Smart Battery Charger are good examples of devices that should not have their
entire command set exposed. The Smart Battery commands the Smart Battery Charger to supply a specific
charging voltage and charging current. Attempts by anyone to alter these values can cause damage to the
battery or the mobile system. To protect the system’s integrity, the embedded controller interface can
restrict access to these commands by returning one of the following error codes: Device Command Access
Denied (0x12) or Device Access Denied (0x17).

12.11 Defining an Embedded Controller Device in ACPI Namespace

An embedded controller device is created using the named device object. The embedded controller’s device
object requires the following elements:

Table 12-5 Embedded Controller Device Object Control Methods

Object Description

_CRS Named object that returns the Embedded Controller’s current resource settings. Embedded
Controllers are considered static resources; hence only return their defined resources. The
embedded controller resides only in system I/O or memory space. The first address region
returned is the data port, and the second address region returned is the status/command port for
the embedded controller. CRS is a standard device configuration control method defined in
section 6.2.1, “_CRS (Current Resource Settings).”

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. This value is
set to PNP0C09. _HID is a standard device configuration control method defined in section
6.1.4, “_HID (Hardware ID).”

ACPI Embedded Controller Interface Specification 463

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Object Description

_GPE Named Object that evaluates to either an integer or a package. If _GPE evaluates to an integer,
the value is the bit assignment of the SCI interrupt within the GPEx_STS register of a GPE
block described in the FADT that the embedded controller will trigger.

If _GPE evaluates to a package, then that package contains two elements. The first is an object
reference to the GPE Block device that contains the GPE register that will be triggered by the
embedded controller. The second element is numeric (integer) that specifies the bit assignment
of the SCI interrupt within the GPEx_STS register of the GPE Block device referenced by the
first element in the package. This control method is specific to the embedded controller.

12.11.1 Example: EC Definition ASL Code

Example ASL code that defines an embedded controller device is shown below:

Device(EC0) {
// PnP ID
Name(_HID, EISAID(“PNP0C09”))
// Returns the “Current Resources” of EC
Name(_CRS,

ResourceTemplate(){ // port 0x62 and 0x66
IO(Decode16, 0x62, 0x62, 0, 1),
IO(Decode16, 0x66, 0x66, 0, 1)
}

)

// Define that the EC SCI is bit 0 of the GP_STS register
Name(_GPE, 0)

OperationRegion(ECOR, EmbeddedControl, 0, 0xFF)
Field(ECOR, ByteAcc, Lock, Preserve) {

// Field definitions go here
}

}

12.12 Defining an EC SMBus Host Controller in ACPI Namespace

An EC-SMB-HC device is defined using the named device object. The EC-SMB- HC’s device object
requires the following elements:

Table 12-6 EC SMBus HC Device Objects

Object Description

_HID Named object that provides the EC-SMB- HC’s Plug and Play identifier. This value is be set to
ACPI0001. _HID is a standard device configuration control method defined in section 6.1.4,
“_HID (Hardware ID).”

_EC Named object that evaluates to a WORD that defines the SMBus attributes needed by the
SMBus driver. _EC is the Embedded Controller Offset Query Control Method. The most
significant byte is the address offset in embedded controller space of the SMBus controller; the
least significant byte is the query value for all SMBus events.

464 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

12.12.1 Example: EC SMBus Host Controller ASL-Code

Example ASL code that defines an SMB-HC from within an embedded controller device is shown below:

Device(EC0)
{

Name(_HID, EISAID("PNP0C09"))
Name(_CRS, ResourceTemplate()
{

IO(Decode16, 0x62, 0x62, 0, 1), // Status port
IO(Decode16, 0x66, 0x66, 0, 1) // command port

})
Name(_GPE, 0)

Device (SMB0)
{

Name(_HID, "ACPI0001") // EC-SMB-HC
Name(_UID, 0) // Unique device identifier
Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30

:
}

Device (SMB1)
{

Name(_HID, "ACPI0001") // EC-SMB-HC
Name(_UID, 1) // Unique device identifier
Name(_EC, 0x8031) // EC offset 0x80, query bit 0x31

:
}

} // end of EC0

ACPI System Management Bus Interface Specification 465

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

13 ACPI System Management Bus Interface Specification

This section describes the System Management Bus (SMBus) generic address space and the use of this
address space to access SMBus devices from AML.

Unlike other address spaces, SMBus operation regions are inherently non-linear, where each offset within
an SMBus address space represents a variable-sized (from 0 to 32 bytes) field. Given this uniqueness,
SMBus operation regions include restrictions on their field definitions and require the use of an SMBus-
specific data buffer for all transactions.

The SMBus interface presented in this section is intended for use with any hardware implementation
compatible with the SMBus specification. SMBus hardware is broadly classified as either non-EC–based or
EC-based. EC-based SMBus implementations comply with the standard register set defined in section 13,
ACPI Embedded Controller Interface Specification.”

Non-EC SMBus implementations can employ any hardware interface and are typically used for their cost
savings when SMBus security is not required. Non–EC-based SMBus implementations require the
development of hardware specific drivers for each OS implementation. See section 13.2, “Declaring
SMBus Host Controller Objects,” for more information.

Support of the SMBus generic address space by ACPI-compatible operating systems is optional. As such,
the Smart Battery System Implementer’s Forum (SBS-IF) has defined an SMBus interface based on a
standard set of control methods. This interface is documented in the SMBus Control Method Interface
Specification, available from the SBS-IF Web site at: http://www.sbs-forum.org/.

13.1 SMBus Overview

SMBus is a two-wire interface based upon the I²C protocol. The SMBus is a low-speed bus that provides
positive addressing for devices, as well as bus arbitration. For more information, refer to the complete set
of SMBus specifications published by the SBS-IF.

13.1.1 SMBus Slave Addresses

Slave addresses are specified using a 7-bit non-shifted notation. For example, the slave address of the
Smart Battery Selector device would be specified as 0x0A (1010b), not 0x14 (10100b) as might be found in
other documents. These two different forms of addresses result from the format in which addresses are
transmitted on the SMBus.

During transmission over the physical SMBus, the slave address is formatted in an 8-bit block with bits 7-1
containing the address and bit 0 containing the read/write bit. ASL code, on the other hand, presents the
slave address simply as a 7-bit value making it the responsibility of the OS (driver) to shift the value if
needed. For example, the ASL value would have to be shifted left 1 bit before being written to the
SMB_ADDR register in the EC based SMBus as described in section 12.9.1.3, “Address Register,
SMB_ADDR.”

13.1.2 SMBus Protocols

There are seven possible command protocols for any given SMBus slave device, and a device may use any
or all of the protocols to communicate. The protocols and associated access type indicators are listed below.
Notice that the protocols values are similar to those defined for the EC-based SMBus in section 12.9.1.2,
“Protocol Register, SMB_PRTCL,” except that protocol pairs (for example, Read Byte, Write Byte) have
been joined.

466 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 13-1 SMBus Protocol Types

Value Type Description

0x02 SMBQuick SMBus Read/Write Quick Protocol

0x04 SMBSendReceive SMBus Send/Receive Byte Protocol

0x06 SMBByte SMBus Read/Write Byte Protocol

0x08 SMBWord SMBus Read/Write Word Protocol

0x0A SMBBlock SMBus Read/Write Block Protocol

0x0C SMBProcessCall SMBus Process Call Protocol

0x0D SMBBlockProcessCall SMBus Write Block-Read Block Process Call Protocol

All other protocol values are reserved.

Notice that bit 7 of the protocol value is used by this interface to indicate to the SMB-HC whether or not
packet error checking (PEC) should be employed for a transaction. Packet error checking is described in
section 7.4 of the System Management Bus Specification, Version 1.1. This highly desirable capability
improves the reliability and robustness of SMBus communications.

The bit encoding of the protocol value is shown below. For example, the value 0x86 would be used to
specify the PEC version of the SMBus Read/Write Byte protocol.

Bit 7 = Packet Error Checking

Bits 6:0 = Protocol

45 12367 0

Figure 13-1 Bit Encoding Example

Notice that bit 0 of the protocol value is always zero (even number hexadecimal values). In a manner
similar to the slave address, software that implements the SMBus interface is responsible for setting this bit
to indicate whether the transaction is a read (for example, Read Byte) or write (for example, Write Byte)
operation.

For example, software implanting this interface for EC-SMBus segments would set bit 0 for read
transactions. For the SMBByte protocol (0x06), this would result in the value 0x07 being placed into the
SMB_PRTCL register (or 0x87 if PEC is requested) for write transactions.

13.1.3 SMBus Status Codes

The use of status codes helps AML determine whether an SMBus transaction was successful. In general, a
status code of zero indicates success, while a non-zero value indicates failure. The SMBus interface uses
the same status codes defined for the EC-SMBus (see section 12.9.1.1, “Status Register, SMB_STS”).

13.1.4 SMBus Command Values

SMBus devices may optionally support up to 256 device-specific commands. For these devices, each
command value supported by the device is modeled by this interface as a separate virtual register.
Protocols that do not transmit a command value (for example, Read/Write Quick and Send/Receive Byte)
are modeled using a single virtual register (with a command value = 0x00).

ACPI System Management Bus Interface Specification 467

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

13.2 Accessing the SMBus from ASL Code

The following sections demonstrate how to access and use the SMBus from ASL code.

13.2.1 Declaring SMBus Host Controller Objects

EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in section
13.12, “Defining an Embedded Controller SMBus Host Controller in ACPI Namespace.” An example
definition is given below. Using the HID value “ACPI0001” identifies that this SMB-HC is implemented
on an embedded controller using the standard SMBus register set defined in section 12.9, SMBus Host
Controller Interface via Embedded Controller.”

Device (SMB0)
{

Name(_HID, "ACPI0001") // EC-based SMBus 1.0 compatible Host Controller
Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
:

}

EC-based SMBus 2.0-compatible host controllers should be defined similarly in the namespace as follows:

Device (SMB0)
{

Name(_HID, "ACPI0005") // EC-based SMBus 2.0 compatible Host Controller
Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30
:

}

Non–EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An
example definition is given below. These devices use a vendor-specific hardware identifier (HID) to
specify the type of SMB-HC (do not use “ACPI0001” or “ACPI0005”). Using a vendor-specific HID
allows the correct software to be loaded to service this segment’s SMBus address space.

Device(SMB0)
{

Name(_HID, "<Vendor-Specific HID>") // Vendor-Specific HID
:

}

Regardless of the type of hardware, some OS software element (for example, the SMBus HC driver) must
register with OSPM to support all SMBus operation regions defined for the segment. This software allows
the generic SMBus interface defined in this section to be used on a specific hardware implementation by
translating between the conceptual (for example, SMBus address space) and physical (for example, process
of writing/reading registers) models. Because of this linkage, SMBus operation regions must be defined
immediately within the scope of the corresponding SMBus device.

13.2.2 Declaring SMBus Devices

The SMBus, as defined by the SMBus 1.0 Specification, is not an enumerable bus. As a result, an SMBus
1.0-compatible SMB-HC driver cannot discover child devices on the SMBus and load the appropriate
corresponding device drivers. As such, SMBus 1.0-compatible devices are declared in the ACPI
namespace, in like manner to other motherboard devices, and enumerated by OSPM.

The SMBus 2.0 specification adds mechanisms enabling device enumeration on the bus while providing
compatibility with existing devices. ACPI defines and associates the “ACPI0005” HID value with an EC-
based SMBus 2.0-compatible host controller. OSPM will enumerate SMBus 1.0-compatible devices when
declared in the namespace under an SMBus 2.0-compatible host controller.

The responsibility for the definition of ACPI namespace objects, required by an SMBus 2.0-compatible
host controller driver to enumerate non–bus-enumerable devices, is relegated to the Smart Battery System
Implementers Forum (http://www.sbs-forum.org).

Starting in ACPI 2.0, _ADR is used to associate SMBus devices with their lowest SMBus slave address.

468 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

13.2.3 Declaring SMBus Operation Regions

Each SMBus operation region definition identifies a single SMBus slave address. Operation regions are
defined only for those SMBus devices that need to be accessed from AML. As with other regions, SMBus
operation regions are only accessible via the Field term (see section 13.5, “Declaring SMBus Fields”).

This interface models each SMBus device as having a 256-byte linear address range. Each byte offset
within this range corresponds to a single command value (for example, byte offset 0x12 equates to
command value 0x12), with a maximum of 256 command values. By doing this, SMBus address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the OperationRegion term (from section 18.5.89, “OperationRegion (Declare Operation
Region]”) is described below.

OperationRegion (
RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg=>Integer
Length // TermArg=>Integer

)

Where:
 RegionName specifies a name for this slave device (for example, “SBD0”).
 RegionSpace must be set to SMBus (operation region type value 0x04).
 Offset is a word-sized value specifying the slave address and initial command value offset for the target

device. The slave address is stored in the high byte and the command value offset is stored in the low
byte. For example, the value 0x4200 would be used for an SMBus device residing at slave address
0x42 with an initial command value offset of zero (0).

 Length is set to the 0x100 (256), representing the maximum number of possible command values, for
regions with an initial command value offset of zero (0). The difference of these two values is used for
regions with non-zero offsets. For example, a region with an Offset value of 0x4210 would have a
corresponding Length of 0xF0 (0x100 minus 0x10).

For example, the Smart Battery Subsystem (illustrated below) consists of the Smart Battery Charger at
slave address 0x09, the Smart Battery System Manager at slave address 0x0A, and one or more batteries
(multiplexed) at slave address 0x0B. (Notice that Figure 13-2 represents the logical connection of a Smart
Battery Subsystem. The actual physical connections of the Smart Battery(s) and the Smart Battery Charger
are made through the Smart Battery System Manager.) All devices support the Read/Write Word protocol.
Batteries also support the Read/Write Block protocol.

EC

'SMB0'

Smart Battery
System Manager

[0x0A]

[0x0B]
Smart Battery

Device(s)

[0x09]
Smart Battery

Charger

Figure 13-2 Smart Battery Subsystem Devices

ACPI System Management Bus Interface Specification 469

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following ASL code shows the use of the OperationRegion term to describe these SMBus devices:

Device (SMB0)
{

Name(_HID, "ACPI0001") // EC-SMBus Host Controller
Name(_EC, 0x2030) // EC offset 0x20, query bit 0x30

OperationRegion(SBC0, SMBus, 0x0900, 0x100) // Smart Battery Charger
OperationRegion(SBS0, SMBus, 0x0A00, 0x100) // Smart Battery Selector
OperationRegion(SBD0, SMBus, 0x0B00, 0x100) // Smart Battery Device(s)
:

}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ EC-SMBus device. Each definition corresponds to a separate slave address (device), and happens
to use an initial command value offset of zero (0).

13.2.4 Declaring SMBus Fields

As with other regions, SMBus operation regions are only accessible via the Field term. Each field element
is assigned a unique command value and represents a virtual register on the targeted SMBus device.

The syntax for the Field term (from section 18.5.38, “Event (Declare Event Synchronization Object]”) is
described below.

Field(
RegionName, // NameString=>OperationRegion
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword – ignored

) {FieldUnitList}

Where:
 RegionName specifies the operation region name previously defined for the device.
 AccessType must be set to BufferAcc. This indicates that access to field elements will be done using a

region-specific data buffer. For this access type, the field handler is not aware of the data buffer’s
contents which may be of any size. When a field of this type is used as the source argument in an
operation it simply evaluates to a buffer. When used as the destination, however, the buffer is passed
bi-directionally to allow data to be returned from write operations. The modified buffer then becomes
the execution result of that operation. This is slightly different than the normal case in which the
execution result is the same as the value written to the destination. Note that the source is never
changed, since it could be a read only object (see section 13.6, “Declaring an SMBus Data Buffer” and
section 18.1.5, “Opcode Terms”).

 LockRule indicates if access to this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to Lock on system with firmware that may access the SMBus,
and NoLock otherwise.

 UpdateRule is not applicable to SMBus operation regions since each virtual register is accessed in its
entirety. This field is ignored for all SMBus field definitions.

SMBus operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to its individual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. This limitation is
imposed both to simplify the SMBus interface and to maintain consistency with the physical model defined
by the SMBus specification.

SMBus protocols are assigned to field elements using the AccessAs term within the field definition. The
syntax for this term (from section 18.1.3, “ASL Root and SecondaryTerms”) is described below.

470 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

AccessAs(
AccessType,//AccessTypeKeyword
AccessAttribute //Nothing | ByteConst | AccessAttribKeyword

)

Where:
 AccessType must be set to BufferAcc.
 AccessAttribute indicates the SMBus protocol to assign to command values that follow this term. See

section 13.1.2, “SMBus Protocols,” for a listing of the SMBus protocol types and values.

An AccessAs term must appear as the first entry in a field definition to set the initial SMBus protocol for
the field elements that follow. A maximum of one SMBus protocol may be defined for each field element.
Devices supporting multiple protocols for a single command value can be modeled by specifying multiple
field elements with the same offset (command value), where each field element is preceded by an AccessAs
term specifying an alternate protocol.

For example, the register at command value 0x08 for a Smart Battery device (illustrated below) represents
a word value specifying the battery temperature (in degrees Kelvin), while the register at command value
0x20 represents a variable-length (0 to 32 bytes) character string specifying the name of the company that
manufactured the battery.

RemainingCapacityAlarm()

Smart Battery Device

0x00 (Word)

0x01 (Word)

0x08 (Word)

0x20 (Block)

0x21 (Block)

:

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 Byte 1

Byte 0 ... Byte 31

Byte 0 ... Byte 31

:

Command Value Register

ManufacturerAccess()

Temperature()

ManufacturerName()

DeviceName()

:

Figure 13-3 Smart Battery Device Virtual Registers

The following ASL code shows the use of the OperationRegion, Field, AccessAs, and Offset terms to
represent these Smart Battery device virtual registers:

OperationRegion(SBD0, SMBus, 0x0B00, 0x0100)
Field(SBD0, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBWord) // Use the SMBWord protocol for the following…
MFGA, 8, // ManufacturerAccess() [command value 0x00]
RCAP, 8, // RemainingCapacityAlarm() [command value 0x01]
Offset(0x08) // Skip to command value 0x08…
BTMP, 8, // Temperature() [command value 0x08]
Offset(0x20) // Skip to command value 0x20…
AccessAs(BufferAcc, SMBBlock) // Use the SMBBlock protocol for the following…
MFGN, 8, // ManufacturerName() [command value 0x20]
DEVN, 8 // DeviceName() [command value 0x21]

}

Notice that command values are equivalent to the field element’s byte offset (for example, MFGA=0,
RCAP=1, BTMP=8). The AccessAs term indicates which SMBus protocol to use for each command value.

ACPI System Management Bus Interface Specification 471

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

13.2.5 Declaring and Using an SMBus Data Buffer

The use of a data buffer for SMBus transactions allows AML to receive status and data length values, as
well as making it possible to implement the Process Call protocol. As previously mentioned, the BufferAcc
access type is used to indicate to the field handler that a region-specific data buffer will be used.

For SMBus operation regions, this data buffer is defined as a fixed-length 34-byte buffer that, if
represented using a ‘C’-styled declaration, would be modeled as follows:

typedef struct
{

BYTE Status; // Byte 0 of the data buffer
BYTE Length; // Byte 1 of the data buffer
BYTE[32] Data; // Bytes 2 through 33 of the data buffer

}

Where:
 Status (byte 0) indicates the status code of a given SMBus transaction. See section 14.1.3, “SMBus

Status Code,” for more information.
 Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. Use of this

field is only defined for the Read/Write Block protocol, where valid Length values are 0 through 32.
For other protocols—where the data length is implied by the protocol—this field is reserved.

 Data (bytes 2-33) represents a 32-byte buffer, and is the location where actual data is stored.

For example, the following ASL shows the use of the SMBus data buffer for performing transactions to a
Smart Battery device. This code is based on the example ASL presented in section 13.5, “Declaring SMBus
Fields,” which lists the operation region and field definitions for the Smart Battery device.

/* Create the SMBus data buffer */
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)
CreateByteField(BUFF, 0x01, OB2) // OB2 = Length (Byte)
CreateWordField(BUFF, 0x02, OB3) // OB3 = Data (Word – Bytes 2 & 3)
CreateField(BUFF, 0x10, 256, OB4) // OB4 = Data (Block – Bytes 2-33)

/* Read the battery temperature */
Store(BTMP, BUFF) // Invoke Read Word transaction
If(LEqual(OB1, 0x00)) // Successful?
{

// OB3 = Battery temperature in 1/10th degrees Kelvin
}

/* Read the battery manufacturer name */
Store(MFGN, BUFF) // Invoke Read Block transaction
If(LEqual(OB1, 0x00)) // Successful?
{

// OB2 = Length of the manufacturer name
// OB4 = Manufacturer name (as a counted string)

}

Notice the use of the CreateField primitives to access the data buffer’s sub-elements (Status, Length, and
Data), where Data (bytes 2-33) is ‘typecast’ as both word (OB3) and block (OB4) data.

The example above demonstrates the use of the Store() operator to invoke a Read Block transaction to
obtain the name of the battery manufacturer. Evaluation of the source operand (MFGN) results in a 34-byte
buffer that gets copied by Store() to the destination buffer (BUFF).

Capturing the results of a write operation, for example to check the status code, requires an additional
Store() operator, as shown below.

Store(Store(BUFF, MFGN), BUFF) // Invoke Write Block transaction
If(LEqual(OB1, 0x00)) {…} // Transaction successful?

472 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Note that the outer Store() copies the results of the Write Block transaction back into BUFF. This is the
nature of BufferAcc’s bi-directionality described in section 13.5, “Declaring SMBus Fields” It should be
noted that storing (or parsing) the result of an SMBus Write transaction is not required although useful for
ascertaining the outcome of a transaction.

SMBus Process Call protocols require similar semantics due to the fact that only destination operands are
passed bi-directionally. These transactions require the use of the double-Store() semantics to properly
capture the return results.

13.3 Using the SMBus Protocols

This section provides information and examples on how each of the SMBus protocols can be used to access
SMBus devices from AML.

13.3.1 Read/Write Quick (SMBQuick)

The SMBus Read/Write Quick protocol (SMBQuick) is typically used to control simple devices using a
device-specific binary command (for example, ON and OFF). Command values are not used by this
protocol and thus only a single element (at offset 0) can be specified in the field definition. This protocol
transfers no data.

The following ASL code illustrates how a device supporting the Read/Write Quick protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBQuick) // Use the SMBus Read/Write Quick protocol
FLD0, 8 // Virtual register at command value 0.

}

/* Create the SMBus data buffer */

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, OB1) // OB1 = Status (Byte)

/* Signal device (e.g. OFF) */
Store(FLD0, BUFF) // Invoke Read Quick transaction
If(LEqual(OB1, 0x00)) {…} // Successful?

/* Signal device (e.g. ON) */
Store(BUFF, FLD0) // Invoke Write Quick transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s read/write
bit. Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field results in a
Read Quick, and writing to the field results in a Write Quick. In either case data is not transferred—access
to the register is simply used as a mechanism to invoke the transaction.

13.3.2 Send/Receive Byte (SMBSendReceive)

The SMBus Send/Receive Byte protocol (SMBSendReceive) transfers a single byte of data. Like
Read/Write Quick, command values are not used by this protocol and thus only a single element (at offset
0) can be specified in the field definition.

The following ASL code illustrates how a device supporting the Send/Receive Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBSendReceive) // Use the SMBus Send/Receive Byte protocol
FLD0, 8 // Virtual register at command value 0.

}

ACPI System Management Bus Interface Specification 473

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Create the SMBus data buffer

Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Receive a byte of data from the device
Store(FLD0, BUFF) // Invoke a Receive Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{

// DATA = Received byte…
}

// Send the byte ‘0x16’ to the device
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD0) // Invoke a Send Byte transaction

In this example, a single field element (FLD0) at offset 0 is defined to represent the protocol’s data byte.
Access to FLD0 will cause an SMBus transaction to occur to the device. Reading the field results in a
Receive Byte, and writing to the field results in a Send Byte.

13.3.3 Read/Write Byte (SMBByte)

The SMBus Read/Write Byte protocol (SMBByte) also transfers a single byte of data. But unlike
Send/Receive Byte, this protocol uses a command value to reference up to 256 byte-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Byte protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBByte) // Use the SMBus Read/Write Byte protocol
FLD0, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

}

// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x02, DATA) // DATA = Data (Byte)

// Read a byte of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Byte transaction
If(LEqual(STAT, 0x00)) // Successful?
{

// DATA = Byte read from FLD1…
}

// Write the byte ‘0x16’ to the device using command value 2
Store(0x16, DATA) // Save 0x16 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Byte transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Byte with a command value of 1, and writing to FLD2
results in a Write Byte with command value 2.

13.3.4 Read/Write Word (SMBWord)

The SMBus Read/Write Word protocol (SMBWord) transfers 2 bytes of data. This protocol also uses a
command value to reference up to 256 word-sized virtual device registers.

The following ASL code illustrates how a device supporting the Read/Write Word protocol should be
accessed:

474 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBWord) // Use the SMBus Read/Write Word protocol
FLD0, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

}

// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Read two bytes of data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Word transaction
If(LEqual(STAT, 0x00)) // Successful?
{

// DATA = Word read from FLD1…
}
// Write the word ‘0x5416’ to the device using command value 2
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Word with a command value of 1, and writing to
FLD2 results in a Write Word with command value 2.

Notice that although accessing each field element transmits a word (16 bits) of data, the fields are listed as
8 bits each. The actual data size is determined by the protocol. Every field element is declared with a length
of 8 bits so that command values and byte offsets are equivalent.

13.3.5 Read/Write Block (SMBBlock)

The SMBus Read/Write Block protocol (SMBBlock) transfers variable-sized (0-32 bytes) data. This
protocol uses a command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Read/Write Block protocol should be
accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBBlock) // Use the SMBus Read/Write Block protocol
FLD0, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

}

// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // DATA = Data (Block)

// Read block data from the device using command value 1
Store(FLD1, BUFF) // Invoke a Read Block transaction
If(LEqual(STAT, 0x00)) // Successful?
{

// SIZE = Size (number of bytes) of the block data read from FLD1…
// DATA = Block data read from FLD1…

}

// Write the block ‘TEST’ to the device using command value 2
Store(“TEST”, DATA) // Save “TEST” into the data buffer
Store(4, SIZE) // Length of valid data in the data buffer
Store(BUFF, FLD2) // Invoke a Write Word transaction

ACPI System Management Bus Interface Specification 475

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading FLD1 results in a Read Block with a command value of 1, and writing to
FLD2 results in a Write Block with command value 2.

13.3.6 Word Process Call (SMBProcessCall)

The SMBus Process Call protocol (SMBProcessCall) transfers 2 bytes of data bi-directionally (performs a
Write Word followed by a Read Word as an atomic transaction). This protocol uses a command value to
reference up to 256 word-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMBus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBProcessCall) // Use the SMBus Process Call protocol
FLD0, 8, // Virtual register at command value 0.
FLD1, 8, // Virtual register at command value 1.
FLD2, 8 // Virtual register at command value 2.

}

// Create the SMBus data buffer
Name(BUFF, Buffer(34){}) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateWordField(BUFF, 0x02, DATA) // DATA = Data (Word)

// Process Call with input value ‘0x5416’ to the device using command value 1
Store(0x5416, DATA) // Save 0x5416 into the data buffer
Store(Store(BUFF, FLD1), BUFF) // Invoke a Process Call transaction
If(LEqual(STAT, 0x00)) // Successful?
{

// DATA = Word returned from FLD1…
}

In this example, three field elements (FLD0, FLD1, and FLD2) are defined to represent the virtual registers
for command values 0, 1, and 2. Access to any of the field elements will cause an SMBus transaction to
occur to the device. Reading or writing FLD1 results in a Process Call with a command value of 1. Notice
that unlike other protocols, Process Call involves both a write and read operation in a single atomic
transaction. This means that the Data element of the SMBus data buffer is set with an input value before
the transaction is invoked, and holds the output value following the successful completion of the
transaction.

13.3.7 Block Process Call (SMBBlockProcessCall)

The SMBus Block Write-Read Block Process Call protocol (SMBBlockProcessCall) transfers a block of
data bi-directionally (performs a Write Block followed by a Read Block as an atomic transaction). The
maximum aggregate amount of data that may be transferred is limited to 32 bytes. This protocol uses a
command value to reference up to 256 block-sized virtual registers.

The following ASL code illustrates how a device supporting the Process Call protocol should be accessed:

OperationRegion(SMBD, SMBus, 0x4200, 0x100) // SMbus device at slave address 0x42
Field(SMBD, BufferAcc, NoLock, Preserve)
{

AccessAs(BufferAcc, SMBBlockProcessCall) // Use the Block Process Call protocol
FLD0, 8, // Virtual register representing a command value of 0
FLD1, 8 // Virtual register representing a command value of 1

}

// Create the SMBus data buffer as BUFF
Name(BUFF, Buffer(34)()) // Create SMBus data buffer as BUFF
CreateByteField(BUFF, 0x00, STAT) // STAT = Status (Byte)
CreateByteField(BUFF, 0x01, SIZE) // SIZE = Length (Byte)
CreateField(BUFF, 0x10, 256, DATA) // Data (Block)

476 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Process Call with input value "ACPI" to the device using command value 1

Store("ACPI", DATA) // Fill in outgoing data
Store(8, SIZE) // Length of the valid data
Store(Store(BUFF, FLD1), BUFF) // Execute the PC
if (LEqual(STAT, 0x00)) // Test the status
{
// BUFF now contains information returned from PC
// SIZE now equals size of data returned
}

System Address Map Interfaces 477

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

14 System Address Map Interfaces

This section explains how an ACPI-compatible system conveys its memory resources/type mappings to
OSPM. There are three ways for the system to convey memory resources /mappings to OSPM. The first is
an INT 15 BIOS interface that is used in IA-PC–based systems to convey the system’s initial memory map.
UEFI enabled systems use the UEFI GetMemoryMap() boot services function to convey memory
resources to the OS loader. These resources must then be conveyed by the OS loader to OSPM. See the
UEFI Specification for more information on UEFI services.

Lastly, if memory resources may be added or removed dynamically, memory devices are defined in the
ACPI Namespace conveying the resource information described by the memory device (see section 9.12,
“Memory Devices”).

ACPI defines five address range types; AddressRangeMemory, AddressRangeACPI, AddressRangeNVS,
AddressRangeUnusable, and AddressRangeReserved as described in the table below:

Table 14-1 Address Range Types

Value Mnemonic Description

1 AddressRangeMemory This range is available RAM usable by the operating system.

2 AddressRangeReserved This range of addresses is in use or reserved by the system and is not
to be included in the allocatable memory pool of the operating
system's memory manager.

3 AddressRangeACPI ACPI Reclaim Memory. This range is available RAM usable by the
OS after it reads the ACPI tables.

4 AddressRangeNVS ACPI NVS Memory. This range of addresses is in use or reserve by
the system and must not be used by the operating system. This range
is required to be saved and restored across an NVS sleep.

5 AddressRangeUnusuable This range of addresses contains memory in which errors have been
detected. This range must not be used by OSPM.

6 AddressRangeDisabled This range of addresses contains memory that is not enabled. This
range must not be used by OSPM.

Other Undefined Undefined. Reserved for future use. OSPM must treat any range of
this type as if the type returned was AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various addresses as not
suitable for use by a programmable device. Some of the reasons a BIOS would do this are:
 The address range contains system ROM.
 The address range contains RAM in use by the ROM.
 The address range is in use by a memory-mapped system device.
 The address range is, for whatever reason, unsuitable for a standard device to use as a device memory

space.
 The address range is within an NVRAM device where reads and writes to memory locations are no

longer successful, that is, the device was worn out.

Note: OSPM will not save or restore memory reported as AddressRangeReserved, AddressRangeUnusable,
or AddressRangeDisabled when transitioning to or from the S4 sleeping state.

14.1 INT 15H, E820H - Query System Address Map

This interface is used in real mode only on IA-PC-based systems and provides a memory map for all of the
installed RAM, and of physical memory ranges reserved by the BIOS. The address map is returned through
successive invocations of this interface; each returning information on a single range of physical addresses.
Each range includes a type that indicates how the range of physical addresses is to be treated by the OSPM.

478 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If the information returned from E820 in some way differs from INT-15 88 or INT-15 E801, the
information returned from E820 supersedes the information returned from INT-15 88 or INT-15 E801. This
replacement allows the BIOS to return any information that it requires from INT-15 88 or INT-15 E801 for
compatibility reasons. For compatibility reasons, if E820 returns any AddressRangeACPI or
AddressRangeNVS memory ranges below 16 MB, the INT-15 88 and INT-15 E801 functions must return
the top of memory below the AddressRangeACPI and AddressRangeNVS memory ranges.

The memory map conveyed by this interface is not required to reflect any changes in available physical
memory that have occurred after the BIOS has initially passed control to the operating system. For
example, if memory is added dynamically, this interface is not required to reflect the new system memory
configuration.

Table 14-2 Input to the INT 15h E820h Call

Register Contents Description

EAX Function
Code

E820h

EBX Continuation Contains the continuation value to get the next range of physical memory. This
is the value returned by a previous call to this routine. If this is the first call,
EBX must contain zero.

ES:DI Buffer
Pointer

Pointer to an Address Range Descriptor structure that the BIOS fills in.

ECX Buffer Size The length in bytes of the structure passed to the BIOS. The BIOS fills in the
number of bytes of the structure indicated in the ECX register, maximum, or
whatever amount of the structure the BIOS implements. The minimum size that
must be supported by both the BIOS and the caller is 20 bytes. Future
implementations might extend this structure.

EDX Signature ‘SMAP’ Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.

Table 14-3 Output from the INT 15h E820h Call

Register Contents Description

CF Carry Flag Non-Carry – Indicates No Error

EAX Signature ‘SMAP.’ Signature to verify correct BIOS revision.

ES:DI Buffer
Pointer

Returned Address Range Descriptor pointer. Same value as on input.

ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor. The
minimum size structure returned by the BIOS is 20 bytes.

EBX Continuation Contains the continuation value to get the next address range descriptor. The
actual significance of the continuation value is up to the discretion of the BIOS.
The caller must pass the continuation value unchanged as input to the next
iteration of the E820 call in order to get the next Address Range Descriptor. A
return value of zero means that this is the last descriptor.

Note: the BIOS can also indicate that the last descriptor has already been
returned during previous iterations by returning the carry flag set. The caller
will ignore any other information returned by the BIOS when the carry flag is
set.

System Address Map Interfaces 479

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 14-4 Address Range Descriptor Structure

Offset in Bytes Name Description

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

8 LengthLow Low 32 Bits of Length in Bytes

12 LengthHigh High 32 Bits of Length in Bytes

16 Type Address type of this range

20 Extended Attributes See Table 14-5

The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of this range. The base address
is the physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of this range. The length is the physical
contiguous length in bytes of a range being specified.

The Type field describes the usage of the described address range as defined in Table 14-1.

Table 14-5 Extended Attributes for Address Range Descriptor Structure

Bit Mnemonic Description

0 Reserved Reserved, nust be set to 1.

1 AddressRangeNonVolatile If set, the Address Range Descriptor represents non-volatile
memory. Memory reported as non-volatile may require
characterization to determine its suitability for use as
conventional RAM.

2 AddressRangeSlowAccess If set, accesses to the described range may incur considerable
latencies

3 AddressRangeErrorLog If set, the address range descriptor represents memory used for
logging hardware errors.

4-31 Reserved Reserved for future use.

14.2 E820 Assumptions and Limitations

 The BIOS returns address ranges describing baseboard memory.
 The BIOS does not return a range description for the memory mapping of PCI devices, ISA Option

ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect them.
 The BIOS returns chip set-defined address holes that are not being used by devices as reserved.
 Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are returned as

reserved.
 All occurrences of the system BIOS are mapped as reserved, including the areas below 1 MB, at 16

MB (if present), and at end of the 4-GB address space.
 Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF physical

addresses are not described by this function. The range from E0000 to EFFFF is specific to the
baseboard and is reported as it applies to that baseboard.

 All of lower memory is reported as normal memory. The OS must handle standard RAM locations that
are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS data area (40:0).

480 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

14.3 UEFI GetMemoryMap() Boot Services Function

EFI enabled systems use the UEFI GetMemoryMap() boot services function to convey memory resources
to the OS loader. These resources must then be conveyed by the OS loader to OSPM.

The GetMemoryMap interface is only available at boot services time. It is not available as a run-time
service after OSPM is loaded. The OS or its loader initiates the transition from boot services to run-time
services by calling ExitBootServices(). After the call to ExitBootServices() all system memory map
information must be derived from objects in the ACPI Namespace.

The GetMemoryMap() interface returns an array of UEFI memory descriptors. These memory descriptors
define a system memory map of all the installed RAM, and of physical memory ranges reserved by the
firmware. Each descriptor contains a type field that dictates how the physical address range is to be treated
by the operating system. The table below describes the memory types returned by the UEFI
GetMemoryMap() interface along with a mapping from UEFI memory type to ACPI address range types.
See the UEFI Specification for more information on UEFI memory types.

Table 14-6 UEFI Memory Types and mapping to ACPI address range types

Type Mnemonic Description ACPI Address Range
Type

0 EfiReservedMemoryType Not used. AddressRangeReserved

1 EfiLoaderCode The Loader and/or OS may use this
memory as they see fit.

Note: the OS loader that called
ExitBootServices() is executing out of
one or more EfiLoaderCode sections.

AddressRangeMemory

2 EfiLoaderData The Loader and/or OS may use this
memory as they see fit.

Note: the OS loader that called
ExitBootServices() is utilizing out of one
or more EfiLoaderData sections.

AddressRangeMemory

3 EfiBootServicesCode Memory available for general use. AddressRangeMemory

4 EfiBootServicesData Memory available for general use. AddressRangeMemory

5 EfiRuntimeServiceCode The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeReserved

6 EfiRuntimeServicesData The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeReserved

7 EfiConventionalMemory Memory available for general use. AddressRangeMemory

8 EfiUnusableMemory Memory that should not be used by the
OS. For example, memory that failed
UEFI memory test.

AddressRangeReserved

9 EfiACPIReclainMemory The memory is to be preserved by the
loader and OS until ACPI in enabled.
Once ACPI is enabled, the memory in
this range is available for general use.

AddressRangeACPI

System Address Map Interfaces 481

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Type Mnemonic Description ACPI Address Range
Type

10 EfiACPIMemoryNVS The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeNVS

11 EfiMemoryMappedIO The OS does not use this memory. All
system memory-mapped I/O port space
information should come from ACPI
tables.

AddressRangeReserved

12 EfiMemoryMappedIOPor
tSpace

The OS does not use this memory. All
system memory-mapped I/O port space
information should come from ACPI
tables.

AddressRangeReserved

13 EfiPalCode The OS and loader must preserve this
memory range in the working and ACPI
S1–S3 states.

AddressRangeReserved

14.4 UEFI Assumptions and Limitations

 The firmware returns address ranges describing the current system memory configuration.
 The firmware does not return a range description for the memory mapping of PCI devices, ISA Option

ROMs, and ISA Plug and Play cards because the OS has mechanisms available to detect them.
 The firmware returns chip set-defined address holes that are not being used by devices as reserved.
 Address ranges defined for baseboard memory-mapped I/O devices, such as APICs, are returned as

reserved.
 All occurrences of the system firmware are mapped as reserved, including the areas below 1 MB, at 16

MB (if present), and at end of the 4-GB address space. This can include PAL code on Itanium™
Processor Family (IPF)- based platforms.

 Standard PC address ranges are not reported. For example, video memory at A0000 to BFFFF physical
addresses are not described by this function. The range from E0000 to EFFFF is specific to the
baseboard and is reported as it applies to that baseboard.

 All of lower memory is reported as normal memory. The OS must handle standard RAM locations that
are reserved for specific uses, such as the interrupt vector table (0:0) and the BIOS data area (40:0).

 EFI contains descriptors for memory mapped I/O and memory mapped I/O port space to allow for
virtual mode calls to UEFI run-time functions. The OS must never use these regions.

14.5 Example Address Map

This sample address map (for an Intel processor-based system) describes a machine that has 128 MB of
RAM, 640 KB of base memory and 127 MB of extended memory. The base memory has 639 KB available
for the user and 1 KB for an extended BIOS data area. A 4-MB Linear Frame Buffer (LFB) is based at 12
MB. The memory hole created by the chip set is from 8 MB to 16 MB. Memory-mapped APIC devices are
in the system. The I/O Unit is at FEC00000 and the Local Unit is at FEE00000. The system BIOS is
remapped to 1 GB–64 KB.

The 639-KB endpoint of the first memory range is also the base memory size reported in the BIOS data
segment at 40:13. The following table shows the memory map of a typical system.

482 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 14-7 Sample Memory Map

Base (Hex) Length Type Description

0000 0000 639 KB AddressRangeMemory Available Base memory. Typically the same value as
is returned using the INT 12 function.

0009 FC00 1 KB AddressRangeReserved Memory reserved for use by the BIOS(s). This area
typically includes the Extended BIOS data area.

000F 0000 64 KB AddressRangeReserved System BIOS

0010 0000 7 MB AddressRangeMemory Extended memory, which is not limited to the 64-MB
address range.

0080 0000 4 MB AddressRangeReserved Chip set memory hole required to support the LFB
mapping at 12 MB.

0100 0000 120 MB AddressRangeMemory Baseboard RAM relocated above a chip set memory
hole.

FEC0 0000 4 KB AddressRangeReserved I/O APIC memory mapped I/O at FEC00000.

FEE0 0000 4 KB AddressRangeReserved Local APIC memory mapped I/O at FEE00000.

FFFF 0000 64 KB AddressRangeReserved Remapped System BIOS at end of address space.

System Address Map Interfaces 483

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

14.6 Example: Operating System Usage

The following code segment illustrates the algorithm to be used when calling the Query System Address
Map function. It is an implementation example and uses non-standard mechanisms.

E820Present = FALSE;
Reg.ebx = 0;
do {

Reg.eax = 0xE820;
Reg.es = SEGMENT (&Descriptor);
Reg.di = OFFSET (&Descriptor);
Reg.ecx = sizeof (Descriptor);
Reg.edx = 'SMAP';

_int(15, regs);

if ((Regs.eflags & EFLAG_CARRY) || Regs.eax != 'SMAP') {
break;

}

if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {
// bug in bios - all returned descriptors must be
// at least 20 bytes long, and cannot be larger then
// the input buffer.

break;
}

E820Present = TRUE;
.
.
.

Add address range Descriptor.BaseAddress through
Descriptor.BaseAddress + Descriptor.Length
as type Descriptor.Type

.

.

.

} while (Regs.ebx != 0);

if (!E820Present) {
.
.
.

call INT-15 88 and/or INT-15 E801 to obtain old style
memory information

.

.

.
}

484 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Waking and Sleeping 485

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

15 Waking and Sleeping

ACPI defines a mechanism to transition the system between the working state (G0) and a sleeping state
(G1) or the soft-off (G2) state. During transitions between the working and sleeping states, the context of
the user’s operating environment is maintained. ACPI defines the quality of the G1 sleeping state by
defining the system attributes of four types of ACPI sleeping states (S1, S2, S3, and S4). Each sleeping
state is defined to allow implementations that can tradeoff cost, power, and wake latencies. Additionally,
ACPI defines the sleeping states such that an ACPI platform can support multiple sleeping states, allowing
the platform to transition into a particular sleeping state for a predefined period of time and then transition
to a lower power/higher wake latency sleeping state (transitioning through the G0 state) 15.

ACPI defines a programming model that provides a mechanism for OSPM to initiate the entry into a
sleeping or soft-off state (S1-S5); this consists of a 3-bit field SLP_TYPx16 that indicates the type of sleep
state to enter, and a single control bit SLP_EN to start the sleeping process.

Note: Systems containing processors without a hardware mechanism to place the processor in a low-power
state may additionally require the execution of appropriate native instructions to place the processor in a
low-power state after OSPM sets the SLP_EN bit. The hardware may implement a number of low-power
sleeping states and then associate these states with the defined ACPI sleeping states (through the
SLP_TYPx fields). The ACPI system firmware creates a sleeping object associated with each supported
sleeping state (unsupported sleeping states are identified by the lack of the sleeping object). Each sleeping
object contains two constant 3-bit values that OSPM will program into the SLP_TYPa and SLP_TYPb
fields (in fixed register space).

ACPI also defines an alternate mechanism for entering and exiting the S4 state that passes control to the
BIOS to save and restore platform context. Context ownership is similar in definition to the S3 state, but
hardware saves and restores the context of memory to non-volatile storage (such as a disk drive), and
OSPM treats this as an S4 state with implied latency and power constraints. This alternate mechanism of
entering the S4 state is referred to as the S4BIOS transition.

Prior to entering a sleeping state (S1-S4), OSPM will execute OEM-specific AML/ASL code contained in
the _PTS (Prepare To Sleep) control method. One use of the _PTS control method is that it can indicate to
the embedded controller what sleeping state the system will enter when the SLP_EN bit is set. The
embedded controller can then respond by executing the proper power-plane sequencing upon this bit being
set.

Immediately prior to entering a system sleeping state, OSPM will execute the _GTS (Going To Sleep)
control method. _GTS allows ACPI system firmware to perform any necessary system specific functions
prior to entering a system sleeping state.

Upon waking, OSPM will execute the _BFS (Back From Sleep) control method. This allows ACPI system
firmware to perform any necessary system specific functions prior to returning control to OSPM. The
_WAK (Wake) control method is then executed. This control method again contains OEM-specific
AML/ASL code. One use of the _WAK control method requests OSPM to check the platform for any
devices that might have been added or removed from the system while the system was asleep. For example,
a PC Card controller might have had a PC Card added or removed, and because the power to this device
was off in the sleeping state, the status change event was not generated.

15 OSPM uses the RTC wakeup feature to program in the time transition delay. Prior to sleeping, OSPM
will program the RTC alarm to the closest (in time) wakeup event: either a transition to a lower power
sleeping state, or a calendar event (to run some application).

16 Notice that there can be two fixed PM1x_CNT registers, each pointing to a different system I/O space
region. Normally a register grouping only allows a bit or bit field to reside in a single register group
instance (a or b); however, each platform can have two instances of the SLP_TYP (one for each grouping
register: a and b). The _Sx control method gives a package with two values: the first is the SLP_TYPa
value and the second is the SLP_TYPb value.

486 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

This section discusses the system initialization sequence of an ACPI-enabled platform. This includes the
boot sequence, different wake scenarios, and an example to illustrate how to use the system address map
reporting interfaces. This sequence is part of the ACPI event programming model.

For detailed information on the power management control methods described above, see section 7, “Power
and Performance Management.”

15.1 Sleeping States

The illustration below shows the transitions between the working state, the sleeping states, and the Soft Off
state.

SLP_TYPx=S1
and

SLP_EN

S1
Sleeping

S2
Sleeping

S3
Sleeping

SLP_TYPx=S5
and

SLP_EN
or

PWRBTN_OR

Wake
Event

S4
Sleeping

ACPI
Boot

(SCI_EN=1)

G2 (S5) -
Soft Off

SLP_TYPx=S2
and

SLP_EN

SLP_TYPx=S3
and

SLP_EN

SLP_TYPx=S4
and

SLP_EN

G0 (S0) -
Working

G1

S4BIOS_REQ
to

SMI_CMD

OEM S4 BIOS
Handler

SLP_TYPx=S4
and

SLP_EN

Figure 15-1 Example Sleeping States

ACPI defines distinct differences between the G0 and G1 system states.
 In the G0 state, work is being performed by the OS/application software and the hardware. The CPU or

any particular hardware device could be in any one of the defined power states (C0-C3 or D0-D3);
however, some work will be taking place in the system.

 In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state, OSPM will
place devices in a device power state compatible with the system sleeping state to be entered; if a
device is enabled to wake the system, then OSPM will place these devices into the lowest Dx state
from which the device supports wake. This is defined in the power resource description of that device
object. This definition of the G1 state implies:
 The CPUs execute no instructions in the G1 state.
 Hardware devices are not operating (except possibly to generate a wake event).
 ACPI registers are affected as follows:

 Wake event bits are enabled in the corresponding fixed or general-purpose registers according
to enabled wake options.

 PM1 control register is programmed for the desired sleeping state.

Waking and Sleeping 487

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 WAK_STS is set by hardware in the sleeping state.

All sleeping states have these specifications. ACPI defines additional attributes that allow an ACPI
platform to have up to four different sleeping states, each of which has different attributes. The attributes
were chosen to allow differentiation of sleeping states that vary in power, wake latency, and
implementation cost tradeoffs.

Running processors at reduced levels of performance is not an ACPI sleeping state (G1); this is a working
(G0) state–defined event.

The CPU cannot execute any instructions when in the sleeping state; OSPM relies on this fact. A platform
designer might be tempted to support a sleeping system by reducing the clock frequency of the system,
which allows the platform to maintain a low-power state while at the same time maintaining
communication sessions that require constant interaction (as with some network environments). This is
definitely a G0 activity where an OS policy decision has been made to turn off the user interface (screen)
and run the processor in a reduced performance mode. This type of reduced performance state as a sleeping
state is not defined by the ACPI specification; ACPI assumes no code execution during sleeping states.

ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Notice that S4 and S5 are very similar
from a hardware standpoint.) ACPI-compatible platforms can support multiple sleeping states. ACPI
specifies that a 3-bit binary number be associated with each sleeping state (these numbers are given objects
within ACPI’s root namespace: _S0, _S1, _S2, _S3, _S4 and _S5). When entering a system sleeping
state, OSPM will do the following:

1. Pick the deepest sleeping state supported by the platform and enabled waking devices.
2. Execute the _PTS control method (which passes the type of intended sleep state to OEM AML

code).
3. If OS policy decides to enter the S4 state and chooses to use the S4BIOS mechanism and S4BIOS

is supported by the platform, OSPM will pass control to the BIOS software by writing the
S4BIOS_REQ value to the SMI_CMD port.

4. If not using the S4BIOS mechanism, OSPM gets the SLP_TYPx value from the associated
sleeping object (_S1, _S2, _S3, _S4 or _S5).

5. Program the SLP_TYPx fields with the values contained in the selected sleeping object.
6. Execute the _GTS control method, passing an argument that indicates the sleeping state to be

entered (1, 2, 3, or 4 representing S1, S2, S3, and S4).
7. If entering S1, S2, or S3, flush the processor caches.
8. If not entering S4BIOS, set the SLP_EN bit to start the sleeping sequence. (This actually occurs

on the same write operation that programs the SLP_TYPx field in the PM1_CNT register.) If
entering S4BIOS, write the S4BIOS_REQ value into the SMI_CMD port.

9. On systems containing processors without a hardware mechanism to place the processor in a low-
power state, execute appropriate native instructions to place the processor in a low-power state.

The _PTS control method provides the BIOS a mechanism for performing some housekeeping, such as
writing the sleep type value to the embedded controller, before entering the system sleeping state. Control
method execution occurs “just prior” to entering the sleeping state and is not an event synchronized with
the write to the PM1_CNT register. Execution can take place several seconds prior to the system actually
entering the sleeping state. As such, no hardware power-plane sequencing takes place by execution of the
_PTS control method.

Upon waking, the _BFS control method is executed. OSPM then executes the _WAK control method. This
control method executes OEM-specific ASL/AML code that can search for any devices that have been
added or removed during the sleeping state.

The following sections describe the sleeping state attributes.

488 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

15.1.1 S1 Sleeping State

The S1 state is defined as a low wake-latency sleeping state. In this state, all system context is preserved
with the exception of CPU caches. Before setting the SLP_EN bit, OSPM will flush the system caches. If
the platform supports the WBINVD instruction (as indicated by the WBINVD and WBINVD_FLUSH
flags in the FADT), OSPM will execute the WBINVD instruction. The hardware is responsible for
maintaining all other system context, which includes the context of the CPU, memory, and chipset.

Examples of S1 sleeping state implementation alternatives follow.

15.1.1.1 Example 1: S1 Sleeping State Implementation

This example references an IA processor that supports the stop grant state through the assertion of the
STPCLK# signal. When SLP_TYPx is programmed to the S1 value (the OEM chooses a value, which is
then placed in the _S1 object) and the SLP_ENx bit is subsequently set, the hardware can implement an S1
state by asserting the STPCLK# signal to the processor, causing it to enter the stop grant state.

In this case, the system clocks (PCI and CPU) are still running. Any enabled wake event causes the
hardware to de-assert the STPCLK# signal to the processor whereby OSPM must first invalidate the CPU
caches and then transition back into the working state.

15.1.1.2 Example 2: S1 Sleeping State Implementation

When SLP_TYPx is programmed to the S1 value and the SLP_ENx bit is subsequently set, the hardware
will implement an S1 sleeping state transition by doing the following:

1. Placing the processor into the stop grant state.
2. Stopping the processor’s input clock, placing the processor into the stop clock state.
3. Placing system memory into a self-refresh or suspend-refresh state. Refresh is maintained by the

memory itself or through some other reference clock that is not stopped during the sleeping state.
4. Stopping all system clocks (asserts the standby signal to the system PLL chip). Normally the RTC

will continue running.

In this case, all clocks in the system have been stopped (except for the RTC). Hardware must reverse the
process (restarting system clocks) upon any enabled wake event whereby OSPM must first invalidate the
CPU caches and then transition back into the working state.

15.1.2 S2 Sleeping State

The S2 state is defined as a low wake latency sleep state. This state is similar to the S1 sleeping state where
any context except for system memory may be lost. Additionally, control starts from the processor’s reset
vector after the wake event. Before setting the SLP_EN bit, OSPM will flush the system caches. If the
platform supports the WBINVD instruction (as indicated by the WBINVD and WBINVD_FLUSH flags in
the FADT), OSPM will execute the WBINVD instruction. The hardware is responsible for maintaining
chip set and memory context. An example of an S2 sleeping state implementation follows.

15.1.2.1 Example: S2 Sleeping State Implementation

When the SLP_TYPx register(s) are programmed to the S2 value (found in the _S2 object) and the
SLP_EN bit is set, the hardware will implement an S2 sleeping state transition by doing the following:

1. Stopping system clocks (the only running clock is the RTC).
2. Placing system memory into a self-refresh or suspend-refresh state.
3. Powering off the CPU and cache subsystem.

In this case, the CPU is reset upon detection of the wake event; however, core logic and memory maintain
their context. Execution control starts from the CPU’s boot vector. The BIOS is required to:

 Program the initial boot configuration of the CPU (such as the CPU’s MSR and MTRR registers).
 Initialize the cache controller to its initial boot size and configuration.
 Enable the memory controller to accept memory accesses.
 Jump to the waking vector.

Waking and Sleeping 489

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

15.1.3 S3 Sleeping State

The S3 state is defined as a low wake-latency sleep state. From the software viewpoint, this state is
functionally the same as the S2 state. The operational difference is that some Power Resources that may
have been left ON in the S2 state may not be available to the S3 state. As such, some devices may be in a
lower power state when the system is in S3 state than when the system is in the S2 state. Similarly, some
device wake events can function in S2 but not S3. An example of an S3 sleeping state implementation
follows.

15.1.3.1 Example: S3 Sleeping State Implementation

When the SLP_TYPx register(s) are programmed to the S3 value (found in the _S3 object) and the
SLP_EN bit is set, the hardware will implement an S3 sleeping state transition by doing the following:

1. Placing the memory into a low-power auto-refresh or self-refresh state.
2. Devices that are maintaining memory isolating themselves from other devices in the system.
3. Removing power from the system. At this point, only devices supporting memory are powered

(possibly partially powered). The only clock running in the system is the RTC clock.

In this case, the wake event repowers the system and resets most devices (depending on the
implementation).

Execution control starts from the CPU’s boot vector. The BIOS is required to:
1. Program the initial boot configuration of the CPU (such as the MSR and MTRR registers).
2. Initialize the cache controller to its initial boot size and configuration.
3. Enable the memory controller to accept memory accesses.
4. Jump to the waking vector.

Notice that if the configuration of cache memory controller is lost while the system is sleeping, the BIOS is
required to reconfigure it to either the pre-sleeping state or the initial boot state configuration. The BIOS
can store the configuration of the cache memory controller into the reserved memory space, where it can
then retrieve the values after waking. OSPM will call the _PTS method once per session (prior to sleeping).

The BIOS is also responsible for restoring the memory controller’s configuration. If this configuration data
is destroyed during the S3 sleeping state, then the BIOS needs to store the pre-sleeping state or initial boot
state configuration in a non-volatile memory area (as with RTC CMOS RAM) to enable it to restore the
values during the waking process.

When OSPM re-enumerates buses coming out of the S3 sleeping state, it will discover any devices that
have been inserted or removed, and configure devices as they are turned on.

15.1.4 S4 Sleeping State

The S4 sleeping state is the lowest-power, longest wake-latency sleeping state supported by ACPI. In order
to reduce power to a minimum, it is assumed that the hardware platform has powered off all devices.
Because this is a sleeping state, the platform context is maintained. Depending on how the transition into
the S4 sleeping state occurs, the responsibility for maintaining system context changes. S4 supports two
entry mechanisms: OS initiated and BIOS-initiated. The OSPM-initiated mechanism is similar to the entry
into the S1-S3 sleeping states; OSPM driver writes the SLP_TYPx fields and sets the SLP_EN bit. The
BIOS-initiated mechanism occurs by OSPM transferring control to the BIOS by writing the S4BIOS_REQ
value to the SMI_CMD port.

In OSPM-initiated S4 sleeping state, OSPM is responsible for saving all system context. Before entering
the S4 state, OSPM will save context of all memory with the exception of memory reported as type
AddressRangeReserved (see section 15, “System Address Map Interfaces,” for more information). Upon
waking, OSPM will then restore the system context. When OSPM re-enumerates buses coming out of the
S4 sleeping state, it will discover any devices that have come and gone, and configure devices as they are
turned on.

490 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

In the BIOS-initiated S4 sleeping state, OSPM is responsible for the same system context as described in
the S3 sleeping state (BIOS restores the memory and some chip set context). The S4BIOS transition
transfers control to the BIOS, allowing it to save context to non-volatile memory (such as a disk partition).

15.1.4.1 Operating System-Initiated S4 Transition

If OSPM supports OSPM-initiated S4 transition, it will not generate a BIOS-initiated S4 transition.
Platforms that support the BIOS-initiated S4 transition also support OSPM-initiated S4 transition.

OSPM-initiated S4 transition is initiated by OSPM by saving system context, writing the appropriate values
to the SLP_TYPx register(s), and setting the SLP_EN bit. Upon exiting the S4 sleeping state, the BIOS
restores the chipset to its POST condition, updates the hardware signature (described later in this section),
and passes control to OSPM through a normal boot process.

When the BIOS builds the ACPI tables, it generates a hardware signature for the system. If the hardware
configuration has changed during an OS-initiated S4 transition, the BIOS updates the hardware signature in
the FACS table. A change in hardware configuration is defined to be any change in the platform hardware
that would cause the platform to fail when trying to restore the S4 context; this hardware is normally
limited to boot devices. For example, changing the graphics adapter or hard disk controller while in the S4
state should cause the hardware signature to change. On the other hand, removing or adding a PC Card
device from a PC Card slot should not cause the hardware signature to change.

15.1.4.2 The S4BIOS Transition

The BIOS-initiated S4 transition begins with OSPM writing the S4BIOS_REQ value into the SMI_CMD
port (as specified in the FADT). Once gaining control, the BIOS then saves the appropriate memory and
chip set context, and then places the platform into the S4 state (power off to all devices).

In the FACS memory table, there is the S4BIOS_F bit that indicates hardware support for the BIOS-
initiated S4 transition. If the hardware platform supports the S4BIOS state, it sets the S4BIOS_F flag
within the FACS memory structure prior to booting the OS. If the S4BIOS_F flag in the FACS table is set,
this indicates that OSPM can request the BIOS to transition the platform into the S4BIOS sleeping state by
writing the S4BIOS_REQ value (found in the FADT) to the SMI_CMD port (identified by the SMI_CMD
value in the FADT).

Upon waking the BIOS, software restores memory context and jumps to the waking vector (similar to wake
from an S3 state). Coming out of the S4BIOS state, the BIOS must only configure boot devices (so it can
read the disk partition where it saved system context). When OSPM re-enumerates buses coming out of the
S4BIOS state, it will discover any devices that have come and gone, and configure devices as they are
turned on.

15.1.5 S5 Soft Off State

OSPM places the platform in the S5 soft off state to achieve a logical off. Notice that the S5 state is not a
sleeping state (it is a G2 state) and no context is saved by OSPM or hardware but power may still be
applied to parts of the platform in this state and as such, it is not safe to disassemble. Also notice that from
a hardware perspective, the S4 and S5 states are nearly identical. When initiated, the hardware will
sequence the system to a state similar to the off state. The hardware has no responsibility for maintaining
any system context (memory or I/O); however, it does allow a transition to the S0 state due to a power
button press or a Remote Start. Upon start-up, the BIOS performs a normal power-on reset, loads the boot
sector, and executes (but not the waking vector, as all ACPI table context is lost when entering the S5 soft
off state).

The _TTS control method allows the BIOS a mechanism for performing some housekeeping, such as
storing the targeted sleep state in a “global” variable that is accessible by other control methods (such as
_PS3 and _DSW).

Waking and Sleeping 491

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

15.1.6 Transitioning from the Working to the Sleeping State

On a transition of the system from the working to the sleeping state, the following occurs:
1. OSPM decides (through a policy scheme) to place the system into the sleeping state.
2. OSPM invokes the _TTS method to indicate the deepest possible system state the system will

transition to (1, 2, 3, or 4 representing S1, S2, S3, and S4).
3. OSPM examines all devices enabled to wake the system and determines the deepest possible sleeping

state the system can enter to support the enabled wake functions. The _PRW named object under each
device is examined, as well as the power resource object it points to.

4. OSPM places all device drivers into their respective Dx state. If the device is enabled for wake, it
enters the Dx state associated with the wake capability. If the device is not enabled to wake the system,
it enters the D3 state.

5. OSPM executes the _PTS control method, passing an argument that indicates the desired sleeping state
(1, 2, 3, or 4 representing S1, S2, S3, and S4).

6. OSPM saves any other processor’s context (other than the local processor) to memory.
7. OSPM writes the waking vector into the FACS table in memory.
8. OSPM executes the _GTS control method, passing an argument that indicates the sleeping state to be

entered (1, 2, 3, or 4 representing S1, S2, S3, and S4).
9. OSPM clears the WAK_STS in the PM1a_STS and PM1b_STS registers.
10. OSPM saves the local processor’s context to memory.
11. OSPM flushes caches (only if entering S1, S2 or S3).
12. OSPM sets GPE enable registers to ensure that all appropriate wake signals are armed.
13. If entering an S4 state using the S4BIOS mechanism, OSPM writes the S4BIOS_REQ value (from the

FADT) to the SMI_CMD port. This passes control to the BIOS, which then transitions the platform
into the S4BIOS state.

14. If not entering an S4BIOS state, then OSPM writes SLP_TYPa (from the associated sleeping object)
with the SLP_ENa bit set to the PM1a_CNT register.

15. OSPM writes SLP_TYPb with the SLP_EN bit set to the PM1b_CNT register.
16. On systems containing processors without a hardware mechanism to place the processor in a low-

power state, OSPM executes appropriate native instructions to place the processor in a low-power
state.

17. OSPM loops on the WAK_STS bit (in both the PM1a_CNT and PM1b_CNT registers).
18. The system enters the specified sleeping state.

Note: this is accomplished after step 14 or 15 above.

15.1.7 Transitioning from the Working to the Soft Off State

On a transition of the system from the working to the soft off state, the following occurs:

1. OSPM executes the _PTS control method, passing the argument 5.

2. OSPM prepares its components to shut down (flushing disk caches).

3. OSPM executes the _GTS control method, passing the argument 5.

4. OSPM writes SLP_TYPa (from the _S5 object) with the SLP_ENa bit set to the PM1a_CNT
register.

5. OSPM writes SLP_TYPb (from the _S5 object) with the SLP_ENb bit set to the PM1b_CNT
register.

6. The system enters the Soft Off state.

15.2 Flushing Caches

Before entering the S1, S2 or S3 sleeping states, OSPM is responsible for flushing the system caches. ACPI
provides a number of mechanisms to flush system caches. These include:

 Using a native instruction (for example, the IA-32 architecture WBINVD instruction) to flush and
invalidate platform caches.
WBINVD_FLUSH flag set (1) in the FADT indicates the system provides this support level.

492 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Using the IA-32 instruction WBINVD to flush but not invalidate the platform caches.
WBINVD flag set (1) in the FADT indicates the system provides this support level.

The manual flush mechanism has two caveats:
 Largest cache is 1 MB in size (FLUSH_SIZE is a maximum value of 2 MB).
 No victim caches (for which the manual flush algorithm is unreliable).

Processors with built-in victim caches will not support the manual flush mechanism and are therefore
required to support the WBINVD mechanism to use the S2 or S3 state.

The manual cache-flushing mechanism relies on the two FADT fields:
 FLUSH_SIZE. Indicates twice the size of the largest cache in bytes.
 FLUSH_STRIDE. Indicates the smallest line size of the caches in bytes.

The cache flush size value is typically twice the size of the largest cache size, and the cache flush stride
value is typically the size of the smallest cache line size in the platform. OSPM will flush the system caches
by reading a contiguous block of memory indicated by the cache flush size.

15.3 Initialization

This section covers the initialization sequences for an ACPI platform. After a reset or wake from an S2, S3,
or S4 sleeping state (as defined by the ACPI sleeping state definitions), the CPU will start execution from
its boot vector. At this point, the initialization software has many options, depending on what the hardware
platform supports. This section describes at a high level what should be done for these different options.
Figure 15-2 illustrates the flow of the boot-up software.

Waking and Sleeping 493

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Boot Vector

SLP_TYP=S2
?

SLP_TYP=S3
?

Jump To
Waking Vector

No

No

Yes

Yes

Initialize Memory
Image
* System
* Reserved
* ACPI NVS
* ACPI Reclaim
* ACPI Tables
* MPS Tables
* ...

Boot OS Loader

POST

Initialize CPU
Init Memory Controller
Enable Memory
Configure Caches
Enable Caches
Initialize Chipset

Initialize CPU
Enable Memory
Configure Caches

SLP_TYP=
S4BIOS

?

No

Restore memory
Image

Yes

Figure 15-2 BIOS Initialization

The processor will start executing at its power-on reset vector when waking from an S2, S3, or S4 sleeping
state, during a power-on sequence, or as a result of a hard or soft reset.

When executing from the power-on reset vector as a result of a power-on sequence, a hard or soft reset, or
waking from an S4 sleep state, the platform firmware performs complete hardware initialization; placing
the system in a boot configuration. The firmware then passes control to the operating system boot loader.

494 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When executing from the power-on reset vector as a result of waking from an S2 or S3 sleep state, the
platform firmware performs only the hardware initialization required to restore the system to either the state
the platform was in prior to the initial operating system boot, or to the pre-sleep configuration state. In
multiprocessor systems, non-boot processors should be placed in the same state as prior to the initial
operating system boot. The platform firmware then passes control back to OSPM system by jumping to
either the Firmware_Waking_Vector or the X_Firmware_Waking_Vector in the FACS (see table 5-12 for
more information). The contents of operating system memory contents may not be changed during the S2
or S3 sleep state.

First, the BIOS determines whether this is a wake from S2 or S3 by examining the SLP_TYP register
value, which is preserved between sleeping sessions. If this is an S2 or S3 wake, then the BIOS restores
minimum context of the system before jumping to the waking vector. This includes:

 CPU configuration. BIOS restores the pre-sleep configuration or initial boot configuration of
each CPU (MSR, MTRR, BIOS update, SMBase, and so on). Interrupts must be disabled (for IA-
32 processors, disabled by CLI instruction).

 Memory controller configuration. If the configuration is lost during the sleeping state, the BIOS
initializes the memory controller to its pre-sleep configuration or initial boot configuration.

 Cache memory configuration. If the configuration is lost during the sleeping state, the BIOS
initializes the cache controller to its pre-sleep configuration or initial boot configuration.

 Functional device configuration. The BIOS doesn’t need to configure/restore context of
functional devices such as a network interface (even if it is physically included in chipset) or
interrupt controller. OSPM is responsible for restoring all context of these devices. The only
requirement for the hardware and BIOS is to ensure that interrupts are not asserted by devices
when the control is passed to OS.

 ACPI registers. SCI_EN bit must be set. All event status/enable bits (PM1x_STS, PM1x_EN,
GPEx_STS and GPEx_EN) must not be changed by BIOS.

Note: The BIOS may reconfigure the CPU, memory controller and cache memory controller to either the
pre-sleeping configuration or the initial boot configuration. OSPM must accommodate both configurations.

When waking from an S4BIOS sleeping state, the BIOS initializes a minimum number of devices such as
CPU, memory, cache, chipset and boot devices. After initializing these devices, the BIOS restores memory
context from non-volatile memory such as hard disk, and jumps to waking vector.

As mentioned previously, waking from an S4 state is treated the same as a cold boot: the BIOS runs POST
and then initializes memory to contain the ACPI system description tables. After it has finished this, it can
call OSPM loader, and control is passed to OSPM.

When waking from S4 (either S4OS or S4BIOS), the BIOS may optionally set SCI_EN bit before passing
control to OSPM. In this case, interrupts must be disabled (for IA-32 processors, disabled CLI instruction)
until the control is passed to OSPM and the chipset must be configured in ACPI mode.

15.3.1 Placing the System in ACPI Mode

When a platform initializes from a cold boot (mechanical off or from an S4 or S5 state), the hardware
platform may be configured in a legacy configuration. From these states, the BIOS software initializes the
computer as it would for a legacy operating system. When control is passed to the operating system, OSPM
will check the SCI_EN bit and if it is not set will then enable ACPI mode by first finding the ACPI tables,
and then by generating a write of the ACPI_ENABLE value to the SMI_CMD port (as described in the
FADT). The hardware platform will set the SCI_EN bit to indicate to OSPM that the hardware platform is
now configured for ACPI.

Note: Before SCI is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur immediately after
ACPI is on. The SCI interrupt can only be signaled after OSPM has enabled one of the GPE/PM1 enable
bits.

When the platform is waking from an S1, S2 or S3 state, OSPM assumes the hardware is already in the
ACPI mode and will not issue an ACPI_ENABLE command to the SMI_CMD port.

Waking and Sleeping 495

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

15.3.2 BIOS Initialization of Memory

During a power-on reset, an exit from an S4 sleeping state, or an exit from an S5 soft-off state, the BIOS
needs to initialize memory. This section explains how the BIOS should configure memory for use by a
number of features including:

 ACPI tables.
 BIOS memory that wants to be saved across S4 sleeping sessions and should be cached.
 BIOS memory that does not require saving and should be cached.

For example, the configuration of the platform’s cache controller requires an area of memory to store the
configuration data. During the wake sequence, the BIOS will re-enable the memory controller and can then
use its configuration data to reconfigure the cache controllers. To support these three items, IA-PC-based
systems contain system address map reporting interfaces that return the following memory range types:

 ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables. This
memory can be any place above 8 MB and contains the ACPI tables. When OSPM is finished
using the ACPI tables, it is free to reclaim this memory for system software use (application
space).

 ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being reserved
by the BIOS for its use. OSPM is required to tag this memory as cacheable, and to save and
restore its image before entering an S4 state. Except as directed by control methods, OSPM is not
allowed to use this physical memory. OSPM will call the _PTS control method some time before
entering a sleeping state, to allow the platform’s AML code to update this memory image before
entering the sleeping state. After the system awakes from an S4 state, OSPM will restore this
memory area and call the _WAK control method to enable the BIOS to reclaim its memory image.

Note: The memory information returned from the system address map reporting interfaces should be the
same before and after an S4 sleep.

When the system is first booting, OSPM will invoke E820 interfaces on IA-PC-based legacy systems or the
GetMemoryMap() interface on UEFI-enabled systems to obtain a system memory map (see section 15,
“System Address Map Interfaces,” for more information). As an example, the following memory map
represents a typical IA-PC-based legacy platform’s physical memory map.

Figure 15-3 Example Physical Memory Map

Above 8 MB
RAM

Compatibility
Memory

0

640 KB

Compatibility
Holes

1 MB

Contiguous
RAM

8 MB

Top of Memory1

No Memory

Boot ROM
4 GB

Boot Base

496 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The names and attributes of the different memory regions are listed below:
 0–640 KB. Compatibility Memory. Application executable memory for an 8086 system.
 640 KB–1 MB. Compatibility Holes. Holes within memory space that allow accesses to be

directed to the PC-compatible frame buffer (A0000h-BFFFFh), to adapter ROM space (C0000h-
DFFFFh), and to system BIOS space (E0000h-FFFFFh).

 1 MB–8 MB. Contiguous RAM. An area of contiguous physical memory addresses. Operating
systems may require this memory to be contiguous in order for its loader to load the OS properly
on boot up. (No memory-mapped I/O devices should be mapped into this area.)

 8 MB–Top of Memory1. This area contains memory to the “top of memory1” boundary. In this
area, memory-mapped I/O blocks are possible.

 Boot Base–4 GB. This area contains the bootstrap ROM.

The BIOS should decide where the different memory structures belong, and then configure the E820
handler to return the appropriate values.

For this example, the BIOS will report the system memory map by E820 as shown in Figure 15-4. Notice
that the memory range from 1 MB to top of memory is marked as system memory, and then a small range
is additionally marked as ACPI reclaim memory. A legacy OS that does not support the E820 extensions
will ignore the extended memory range calls and correctly mark that memory as system memory.

Figure 15-4 Memory as Configured after Boot

Also, from the Top of Memory1 to the Top of Memory2, the BIOS has set aside some memory for its own
use and has marked as reserved both ACPI NVS Memory and Reserved Memory. A legacy OS will throw
out the ACPI NVS Memory and correctly mark this as reserved memory (thus preventing this memory
range from being allocated to any add-in device).

OSPM will call the _PTS control method prior to initiating a sleep (by programming the sleep type,
followed by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML code
interpreter or driver structure is questionable), if OSPM decides to shut the system off, it will not issue a
_PTS, but will immediately issue a SLP_TYP of “soft off” and then set the SLP_EN bit. Hence, the
hardware should not rely solely on the _PTS control method to sequence the system to the “soft off” state.
After waking from an S4 state, OSPM will restore the ACPI NVS memory image and then issue the _WAK
control method that informs BIOS that its memory image is back.

Boot ROM

No Memory

Compatibility
Memory

Compatibility
Holes

Contiguous
RAM

- ACPI NVS Memory (E820)

NVS Memory

Reserved

Above 8 Mbyte
RAM

ACPI Tables
ACPI Reclaim
Memory

ACPI NVS
Memory

Reserved
Memory

System Memory

System Memory

Reserved
Memory

Reserved
Memory

Available
Address space

Available
Address space

0

640 KByte

1 MByte

Top of Memory1

Top of Memory2

8 MBytes - ACPI Reclaim Memory (E820)

- Reserved Memory (E820)

- System Memory (E820)

Waking and Sleeping 497

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

15.3.3 OS Loading

At this point, the BIOS has passed control to OSPM, either by using OSPM boot loader (a result of waking
from an S4/S5 or boot condition) or OSPM waking vector (a result of waking from an S2 or S3 state). For
the Boot OS Loader path, OSPM will get the system address map via one of the mechanisms describe in
section 15, “System Address Map Interfaces.” If OSPM is booting from an S4 state, it will then check the
NVS image file’s hardware signature with the hardware signature within the FACS table (built by BIOS) to
determine whether it has changed since entering the sleeping state (indicating that the platforms
fundamental hardware configuration has changed during the current sleeping state). If the signature has
changed, OSPM will not restore the system context and can boot from scratch (from the S4 state). Next, for
an S4 wake, OSPM will check the NVS file to see whether it is valid. If valid, then OSPM will load the
NVS image into system memory. Next, OSPM will check the SCI_EN bit and if it is not set, will write the
ACPI_ENABLE value to the SMI_CMD register to switch into the system into ACPI mode and will then
reload the memory image from the NVS file.

Boot OS Loader OS
Waking Vector

Get Memory Map
(E820)
* ACPI NVS
* ACPI Reclaim
* Reserved
* System

* Reserved

Memory Copy

NVS File
?

Yes

Load OS Images

Execute _WAK

No

Continue

Sanity Check
Compare memory and

volume SSN

Yes

No

SCI_EN set?

Execute _BFS

Turn on ACPI

No

Yes

Figure 15-5 OS Initialization

498 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

If an NVS image file did not exist, then OSPM loader will load OSPM from scratch. At this point, OSPM
will generate a _WAK call that indicates to the BIOS that its ACPI NVS memory image has been
successfully and completely updated.

15.3.4 Exiting ACPI Mode

For machines that do not boot in ACPI mode, ACPI provides a mechanism that enables the OS to disable
ACPI. The following occurs:

1. OSPM unloads all ACPI drivers (including the ACPI driver).

2. OSPM disables all ACPI events.

3. OSPM finishes using all ACPI registers.

4. OSPM issues an I/O access to the port at the address contained in the SMI_CMD field (in the
FADT) with the value contained in the ACPI_DISABLE field (in the FADT).

5. BIOS then remaps all SCI events to legacy events and resets the SCI_EN bit.

6. Upon seeing the SCI_EN bit cleared, the ACPI OS enters the legacy OS mode.

When and if the legacy OS returns control to the ACPI OS, if the legacy OS has not maintained the ACPI
tables (in reserved memory and ACPI NVS memory), the ACPI OS will reboot the system to allow the
BIOS to re-initialize the tables.

Non-Uniform Memory Access (NUMA) Architecture Platforms 499

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

16 Non-Uniform Memory Access (NUMA) Architecture Platforms

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and I/O buses, that comprise what is commonly known as a
“NUMA node”. Two or more NUMA nodes are linked to each other via a high-speed interconnect.
Processor accesses to memory or I/O resources within the local NUMA node are generally faster than
processor accesses to memory or I/O resources outside of the local NUMA node, accessed via the node
interconnect. ACPI defines interfaces that allow the platform to convey NUMA node topology information
to OSPM both statically at boot time and dynamically at run time as resources are added or removed from
the system.

16.1 NUMA Node

A conceptual model for a node in a NUMA configuration may contain one or more of the following
components:

 Processor

 Memory

 I/O Resources

 Networking, Storage

 Chipset

The components defined as part of the model are intended to represent all possible components of a NUMA
node. A specific node in an implementation of a NUMA platform may not provide all of these components.
At a minimum, each node must have a chipset with an interface to the interconnect between nodes.

The defining characteristic of a NUMA system is a coherent global memory and / or I/O address space that
can be accessed by all of the processors. Hence, at least one node must have memory, at least one node
must have I/O resources and at least one node must have processors. Other than the chipset, which must
have components present on every node, each is implementation dependent. In the ACPI namespace,
NUMA nodes are described as module devices. See Section 9.11,”Module Device”.

16.2 System Locality

A collection of components that are presented to OSPM as a Symmetrical Multi-Processing (SMP) unit
belong to the same System Locality, also known as a Proximity Domain. The granularity of a System
Locality is typically at the NUMA Node level although the granularity can also be at the sub-NUMA node
level or the processor, memory and host bridge level. A System Locality is reported to the OSPM using the
_PXM method. If OSPM only needs to know a near/far distinction among the System Localities, the _PXM
method is sufficient.

OSPM makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance between
the proximity domains (in other words, proximity domain 1 is not assumed to be closer to proximity
domain 0 than proximity domain 6).

16.2.1 System Resource Affinity Table Definition

This optional System Resource Affinity Table (SRAT) provides the boot time description of the processor
and memory ranges belonging to a system locality. OSPM will consume the SRAT only at boot time.
OSPM should use _PXM for any devices that are hot-added into the system after boot up.

The SRAT describes the system locality that all processors and memory present in a system belong to at
system boot. This includes memory that can be hot-added (that is memory that can be added to the system
while it is running, without requiring a reboot). OSPM can use this information to optimize the
performance of NUMA architecture systems. For example, OSPM could utilize this information to
optimize allocation of memory resources and the scheduling of software threads.

500 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

16.3 System Locality Distance Information

Optionally, OSPM may further optimize a NUMA architecture system using information about the relative
memory latency distances among the System Localities. This may be useful if the distance between
multiple system localities is significantly different. In this case, a simple near/far distinction may be
insufficient. This information is contained in the optional System Locality Information Table (SLIT) and is
returned from the evaluation of the _SLI object.

The SLIT is a matrix that describes the relative distances between all System Localities. Support for the
_PXM object is required for SLIT. The System Locality as returned by the _PXM object is used as the row
and column indices of the matrix.

Implementation Note: The size of the SLIT table is determined by the largest _PXM value used in the
system. Hence, to minimize the size of the SLIT table, the _PXM values assigned by the system firmware
should be in the range 0, …, N-1, where N is the number of System Localities. If _PXM values are not
packed into this range, the SLIT will still work, but more memory will have to be allocated to store the
“Entries” portion of the SLIT for the matrix.

The static SLIT table provides the boot time description of the relative distances among all System
Localities. For hot-added devices and dynamic reconfiguration of the system localities, the _SLI object
must be used for runtime update.

The _SLI method is an optional object that provides the runtime update of the relative distances from the
System Locality i to all other System Localities in the system. Since _SLI method is providing additional
relative distance information among System Localities, if implemented, it is provided alongside with the
_PXM method.

16.3.1.1 Online Hot Plug

In the case of online addition, the Bus Check notification (0x0) is performed on a device object to indicate
to OSPM that it needs to perform the Plug and Play re-enumeration operation on the device tree starting
from the point where it has been notified. OSPM needs to evaluate all _PXM objects associated with the
added System Localities, or _SLI objects if the SLIT is present.

In the case of online deletion, OSPM needs to perform the Plug and Play ejection operation when it
receives the Eject Request notification (0x03). OSPM needs to remove the relative distance information
from its internal data structure for the removed System Localities.

16.3.1.2 Impact to Existing Localities

Dynamic reconfiguration of the system may cause the relative distance information (if the optional SLIT is
present) to become stale. If this occurs, the System Locality Information Update notification may be
generated by the platform to a device at a point on the device tree that represents a System Locality. This
indicates to OSPM that it needs to invoke the _SLI objects associated with the System Localities on the
device tree starting from the point where it has been notified.

502 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI Platform Error Interfaces (APEI) 503

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17 ACPI Platform Error Interfaces (APEI)

This section describes the ACPI Platform Error Interfaces (APEI), which provide a means for the platform
to convey error information to OSPM. APEI extends existing hardware error reporting mechanisms and
brings them together as components of a coherent hardware error infrastructure. APEI takes advantage of
the additional hardware error information available in today’s hardware devices and integrates much more
closely with the system firmware.

As a result, APEI provides the following benefits:

 Allows for more extensive error data to be made available in a standard error record format for
determining the root cause of hardware errors.

 Is extensible, so that as hardware vendors add new and better hardware error reporting
mechanisms to their devices, APEI allows the platform and the OSPM to gracefully accommodate
the new mechanisms.

This provides information to help system designers understand basic issues about hardware errors, the
relationship between the firmware and OSPM, and information about error handling and the APEI
architecture components.

APEI consists of four separate tables:

1. Error Record Serialization Table (ERST)

2. BOOT Error Record Table (BERT)

3. Hardware Error Source Table (HEST)

4. Error Injection Table (EINJ)

17.1 Hardware Errors and Error Sources

A hardware error is a recorded event related to a malfunction of a hardware component in a computer
platform. The hardware components contain error detection mechanisms that detect when a hardware error
condition exists. Hardware errors can be classified as either corrected errors or uncorrected errors as
follows:

 A corrected error is a hardware error condition that has been corrected by the hardware or by the
firmware by the time the OSPM is notified about the existence of the error condition.

 An uncorrected error is a hardware error condition that cannot be corrected by the hardware or by
the firmware. Uncorrected errors are either fatal or non-fatal.

o A fatal hardware error is an uncorrected or uncontained error condition that is determined
to be unrecoverable by the hardware. When a fatal uncorrected error occurs, the system is
restarted to prevent propagation of the error.

o A non-fatal hardware error is an uncorrected error condition from which OSPM can
attempt recovery by trying to correct the error. These are also referred to as correctable or
recoverable errors.

Central to APEI is the concept of a hardware error source. A hardware error source is any hardware unit
that alerts OSPM to the presence of an error condition. Examples of hardware error sources include the
following:

 Processor machine check exception (for example, MC#)

 Chipset error message signals (for example, SCI, SMI, SERR#, MCERR#)

 I/O bus error reporting (for example, PCI Express root port error interrupt)

 I/O device errors

504 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A single hardware error source might handle aggregate error reporting for more than one type of hardware
error condition. For example, a processor’s machine check exception typically reports processor errors,
cache and memory errors, and system bus errors.

A hardware error source is typically represented by the following:

 One or more hardware error status registers.

 One or more hardware error configuration or control registers.

 A signaling mechanism to alert OSPM to the existence of an error condition.

In some situations, there is not an explicit signaling mechanism and OSPM must poll the error status
registers to test for an error condition. However, polling can only be used for corrected error conditions
since uncorrected errors require immediate attention by OSPM.

17.2 Relationship between OSPM and System Firmware

Both OSPM and system firmware play important roles in hardware error handling. APEI improves the
methods by which both of these can contribute to the task of hardware error handling in a complementary
fashion. APEI allows the hardware platform vendor to determine whether the firmware or OSPM will own
key hardware error resources. APEI also allows the firmware to pass control of hardware error resources to
OSPM when appropriate.

17.3 Error Source Discovery

Platforms enumerate error sources to OSPM via a set of tables that describe the error sources. OSPM may
also support non-ACPI enumerated error sources such as: Machine Check Exception, Corrected Machine
Check, NMI, PCI Express AER, and on Itanium™ Processor Family (IPF) platforms the INIT error source.
Non-ACPI error sources are not described by this specification.

During initialization, OSPM examines the tables and uses this information to establish the necessary error
handlers that are responsible for processing error notifications from the platform.

17.3.1 Boot Error Source

Under normal circumstances, when a hardware error occurs, the error handler receives control and
processes the error. This gives OSPM a chance to process the error condition, report it, and optionally
attempt recovery. In some cases, the system is unable to process an error. For example, system firmware or
a management controller may choose to reset the system or the system might experience an uncontrolled
crash or reset.

The boot error source is used to report unhandled errors that occurred in a previous boot. This mechanism
is described in the BERT table. The boot error source is reported as a ‘one-time polled’ type error source.
OSPM queries the boot error source during boot for any existing boot error records. The platform will
report the error condition to OSPM via a Common Platform Error Record (CPER) compliant error record.
The CPER format is described in appendix N of the UEFI 2.1 specification.

The Boot Error Record Table (BERT) format is shown in Table 17-1.

Table 17-1 Boot Error Record Table (BERT) Table

Field Byte
length

Byte
offset

Description

Header Signature 4 0 ‘BERT’. Signature for the Boot Error Record Table.

Length 4 4 Length, in bytes, of BERT.

Revision 1 8 1

ACPI Platform Error Interfaces (APEI) 505

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
length

Byte
offset

Description

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

OEM Revision 4 24 OEM revision of the BERT for the supplied OEM table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Boot Error Region Length 4 36 The length in bytes of the boot error region.

Boot Error Region 8 40 64-bit physical address of the Boot Error Region.

The Boot Error Region is a range of addressable memory OSPM can access during initialization to
determine if an unhandled error condition occurred. System firmware must report this memory range as
firmware reserved. The format of the Boot Error Region is shown in Table 17-2.

Table 17-2 Boot Error Region

Field Byte
length

Byte
offset

Description

Block Status 4 0 Indicates the type of error information reported in the error packet:

Bit 0 – Uncorrectable Error Valid: If set to one, indicates that an
uncorrectable error condition exists.

Bit 1 – Correctable Error Valid: If set to one, indicates that a
correctable error condition exists.

Bit 2 – Multiple Uncorrectable Errors: If set to one, indicates that
more than one uncorrectable errors have been detected.

Bit 3 – Multiple Correctable Errors: If set to one, indicates that more
than one correctable errors have been detected.

Bit 4–13 – Error Data Entry Count: This value indicates the number
of Error Data Entries found in the Data section.

Bit 14–31 – Reserved.

Raw Data Offset 4 4 Offset in bytes from the beginning of the Error Status Block to raw
error data. The raw data must follow any Generic Error Data
Entries.

Raw Data Length 4 8 Length in bytes of the raw data.

Data Length 4 12 Length in bytes of the generic error data.

506 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
length

Byte
offset

Description

Error Severity 4 16 Identifies the error severity of the reported error:

0 – Correctable
1 – Fatal
2 – Corrected
3 – None

Note: This is the error severity of the entire event. Each Generic
Error Data Entry also includes its own Error Severity field.

Generic Error
Data

Data
Length

20 The information contained in this field is a collection of zero or more
Generic Error Data Entries.

One or more Generic Error Data Entry structures may be recorded in the Generic Error Data Entries field
of the Generic Error Status Block structure. This allows the platform to accumulate information for
multiple hardware components related to a given error event. For example, if the generic error source
represents an error that occurs on a device on the secondary side of a PCI Express / PCI-X Bridge, it is
useful to record error information from the PCI Express Bridge and from the PCI Express device. Utilizing
two Generic Error Data Entry structures enables this. Table 17-13 defines the layout of a Generic Error
Data Entry.

For details of some of the fields defined in Table 17-13 , see Table 3 in section N2.2 of Appendix N of the
UEFI 2.1 specification.

17.3.2 ACPI Error Source

The hardware error source describes a standardized mechanism platforms may use to describe their error
sources. Use of this interface is the preferred way for platforms to describe their error sources as it is
platform and processor-architecture independent and allows the platform to describe the operational
parameters associated with error sources.

This mechanism allows for the platform to describe error sources in detail; communicating operational
parameters (i.e. severity levels, masking bits, and threshold values) to OSPM as necessary. It also allows
the platform to report error sources for which OSPM would typically not implement support (for example,
chipset-specific error registers).

The Hardware Error Source Table provides the platform firmware a way to describe a system’s hardware
error sources to OSPM. The format of the Hardware Error Source Table is shown in Table 17-3.

Table 17-3 Hardware Error Source Table (HEST)

Field Byte
length

Byte
offset

Description

Header Signature 4 0 “HEST”. Signature for the Hardware Error Source Table.

Length 4 4 Length, in bytes, of entire HEST. Entire table must be
contiguous.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 The manufacturer model ID.

ACPI Platform Error Interfaces (APEI) 507

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
length

Byte
offset

Description

OEM Revision 4 24 OEM revision of the HEST for the supplied OEM table ID.

Creator ID 4 28 Vendor ID of the utility that created the table.

Creator Revision 4 32 Revision of the utility that created the table.

Error Source Count 4 36 The number of error source descriptors.

Error Source Structure[n] - 40 A series of Error Source Descriptor Entries.

The following sections detail each of the specific error source descriptors.

NOTE: Error source types 3, 4, and 5 are reserved for legacy reasons and must not be used.

17.3.2.1 IA-32 Architecture Machine Check Exception

Processors implementing the IA-32 Instruction Set Architecture employ a machine check exception
mechanism to alert OSPM to the presence of an uncorrected hardware error condition. The information in
this table is used by OSPM to configure the machine check exception mechanism for each processor in the
system.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this entry
to all processors.

Table 17-4 IA-32 Architecture Machine Check Exception Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 0 – IA-32 Architecture Machine Check Exception
Structure.

Source Id 2 2 This value serves to uniquely identify this error source
against other error sources reported by the platform.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, this bit indicates to the
OSPM that system firmware will handle errors from this
source first.

All other bits are reserved.

Enabled 1 7 Specifies whether MCE is to be enabled. If set to 1, this
field indicates this error source is to be enabled. If set to 0,
this field indicates that the error source is not to be enabled.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included
in an error record created as a result of an error reported by
this error source.

Global Capability Init
Data

8 16 Indicates the value to be written to the machine check
global capability register.

Global Control Init 8 24 Indicates the value to be written to the machine check

508 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Data global control register.

Number Of Hardware
Banks

1 32 Indicates the number of hardware error reporting banks.

Reserved 7 33 Reserved.

Machine Check Bank
Structure[n]

- 40 A list of Machine Check Bank structures defined in section
17.3.2.1.1

17.3.2.1.1 IA-32 Architecture Machine Check Bank Structure

This table describes the attributes of a specific IA-32 architecture machine check hardware error bank.

Table 17-5 IA-32 Architecture Machine Check Error Bank Structure

Field Byte
Length

Byte
Offset

Description

Bank Number 1 0 Zero-based index identifies the machine check error bank.

Clear Status On
Initialization

1 1 If set, indicates the status information in this machine check
bank is to be cleared during system initialization as follows:

0 – Clear

1 – Don’t clear

Status Data Format 1 2 Identifies the format of the data in the status register:

0 – IA-32 MCA
1 – Intel® 64 MCA
2 – AMD64MCA

All other values are reserved

Reserved 1 3 Reserved.

Control Register
MSR Address

4 4 Address of the hardware bank’s control MSR. Ignored if
zero.

Control Init Data 8 8 This is the value the OSPM will program into the machine
check bank’s control register.

Status Register
MSR Address

4 16 Address of the hardware bank’s MCi_STAT MSR. Ignored if
zero.

Address Register

MSR Address

4 20 Address of the hardware bank’s MCi_ADDR MSR. Ignored
if zero.

Misc Register

MSR Address

4 24 Address of the hardware bank’s MCi_MISC MSR. Ignored if
zero.

17.3.2.2 IA-32 Architecture Corrected Machine Check

Processors implementing the IA-32 Instruction Set Architecture may report corrected processor errors to
OSPM. The information in this table allows platform firmware to communicate key parameters of the
corrected processor error reporting mechanism to OSPM, including whether CMC processing should be
enabled.

Only one entry of this type is permitted in the HEST. OSPM applies the information specified in this entry
to all processors.

ACPI Platform Error Interfaces (APEI) 509

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 17-6 IA-32 Architecture Corrected Machine Check Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 1 – IA-32 Architecture Corrected Machine Check Structure.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, this bit indicates that
system firmware will handle errors from this source first.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be
enabled. If the field value is 0, indicates that the error source
is not to be enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled
field is ignored by OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in
an error record created as a result of an error reported by this
error source. Must be >= 1.

Notification
Structure

28 16 Hardware Error Notification Structure as defined in Table 17-
14.

Number Of
Hardware Banks

1 44 The number of hardware error reporting banks.

Reserved 3 45 Reserved.

Machine Check
Bank Structure[n]

- 48 A list of Machine Check Bank structures defined in section
17.3.2.1.1.

17.3.2.2.1 IA-32 Architecture Non-Maskable Interrupt

Uncorrected platform errors are typically reported using the Non-Maskable Interrupt (NMI) vector (for
example, INT 2). This table allows platform firmware to communicate parameters regarding the
configuration and handling of NMI error conditions.

Only one entry of this type is permitted in the HEST.

Table 17-7 IA-32 Architecture NMI Error Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 2 – IA-32 Architecture NMI Structure.

Source Id 2 2 Uniquely identifies this error source.

Reserved 4 4 Must be zero.

Number of Records
To Pre-allocate

4 8 Indicates number of error records to pre-allocate for this error
source. Must be >= 1.

510 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Max Sections Per
Record

4 12 Indicates maximum number of error sections included in an
error record created as a result of an error reported by this
error source. Must be >= 1.

Max Raw Data
Length

4 16 The size in bytes of the NMI error data.

17.3.2.3 PCI Express Root Port AER Structure

PCI Express (PCIe) root ports may implement PCIe Advanced Error Reporting (AER) support. This table
contains information platform firmware supplies to OSPM for configuring AER support on a given root
port.

The HEST may contain one entry of this type for each PCI Express root port if none of the entries has the
GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and the information
contained in that entry is applied to all PCIe root ports.

Table 17-8 PCI Express Root Port AER Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 6 – AER Root Port.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, this bit indicates to the
OSPM that system firmware will handle errors from this source
first.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field
is ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number error records to pre-allocate for this error
source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus of the root port.

If the GLOBAL flag is specified, this field is ignored.

Device 2 20 Identifies the PCI Device Number of the root port.

If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI Function number of the root port.

If the GLOBAL flag is specified, this field is ignored.

ACPI Platform Error Interfaces (APEI) 511

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 Must be zero.

Uncorrectable
Error Mask

4 28 Value to write to the root port’s Uncorrectable Error Mask
register.

Uncorrectable
Error Severity

4 32 Value to write to the root port’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the root port’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the root port’s Advanced Error Capabilities
and Control Register.

Root Error
Command

4 44 Value to write to the root port’s Root Error Command Register.

17.3.2.4 PCI Express Device AER Structure

PCI Express devices may implement AER support. This table contains information platform firmware
supplies to OSPM for configuring AER support on a given PCI Express device.

The HEST may contain one entry of this type for each PCI Express endpoint device if none of the entries
has the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and the
information contained in that entry will be applied to all PCI Express endpoint devices.

Table 17-9 PCI Express Device AER Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 7 – AER Endpoint.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, indicates that system
firmware will handle errors from this source first.

Bit 1 – GLOBAL: If set, indicates that the settings contained in
this structure apply globally to all PCI Express Devices.

All other bits must be set to zero.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field
is ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

512 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus of the device.

If the GLOBAL flag is specified, this field is ignored.

Device 2 20 Identifies the PCI Device Number of the device.

If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI Function Number of the device.

If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 Must be zero.

Uncorrectable
Error Mask

4 28 Value to write to the root port’s Uncorrectable Error Mask
register.

Uncorrectable
Error Severity

4 32 Value to write to the root port’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the root port’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the root port’s Advanced Error Capabilities
and Control Register.

17.3.2.5 PCI Express/PCI-X Bridge AER Structure

PCI Express/PCI-X bridges that implement AER support implement fields that control the behavior how
errors are reported across the bridge.

The HEST may contain one entry of this type for each PCI Express/PCI-X bridges if none of the entries has
the GLOBAL flag set. If the GLOBAL flag is set, there may only be one entry of this type and the
information contained in that entry will be applied to all PCI Express/ PCI-X bridges.

Table 17-10 PCI Express Bridge AER Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 8 – AER Bridge.

Source Id 2 2 Uniquely identifies the error source.

Reserved 2 4 Reserved.

Flags 1 6 Bit 0 - FIRMWARE_FIRST: If set, indicates that system
firmware will handle errors from this source first.

Bit 1 – GLOBAL: If set, indicates that the settings contained in
this structure apply globally to all PCI Express Bridges.

All other bits must be set to zero.

ACPI Platform Error Interfaces (APEI) 513

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.

If FIRMWARE_FIRST is set in the flags field, the Enabled field
is ignored by the OSPM.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Bus 4 16 Identifies the PCI Bus of the root port.

If the GLOBAL flag is specified, this field is ignored.

Device 2 20 Identifies the PCI device number of the bridge.

If the GLOBAL flag is specified, this field is ignored.

Function 2 22 Identifies the PCI function number of the bridge.

If the GLOBAL flag is specified, this field is ignored.

Device Control 2 24 Device control bits with which to initialize the device.

Reserved 2 26 This value must be zero.

Uncorrectable
Error Mask

4 28 Value to write to the bridge’s Uncorrectable Error Mask
register.

Uncorrectable
Error Severity

4 32 Value to write to the bridge’s Uncorrectable Error Severity
register.

Correctable Error
Mask

4 36 Value to write to the bridge’s Correctable Error Mask register.

Advanced Error
Capabilities and
Control

4 40 Value to write to the bridge’s Advanced Error Capabilities and
Control Register.

Secondary
Uncorrectable
Error Mask

4 44 Value to write to the bridge’s secondary uncorrectable error
mask register.

Secondary
Uncorrectable
Error Severity

4 48 Value to write to the bridge’s secondary uncorrectable error
severity register.

Secondary
Advanced
Capabilities and
Control

4 52 Value to write to the bridge’s secondary advanced capabilities
and control register.

514 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.3.2.6 Generic Hardware Error Source

The platform may describe a generic hardware error source to OSPM using the Generic Hardware Error
Source structure. A generic hardware error source is an error source that either notifies OSPM of the
presence of an error using a non-standard notification mechanism or reports error information that is
encoded in a non-standard format.

Using the information in a Generic Hardware Error Source structure, OSPM configures an error handler to
read the error data from an error status block – a range of memory set aside by the platform for recording
error status information.

As the generic hardware error source is non-standard, OSPM does not implement built-in support for
configuration and control operations. The error source must be configured by system firmware during boot.

Table 17-11 Generic Hardware Error Source Structure

Field Byte
Length

Byte
Offset

Description

Type 2 0 9 – Generic Hardware Error Source Structure.

Source Id 2 2 Uniquely identify the error source.

Related Source Id 2 4 If this generic error source represents an alternate source to a
separate source that the platform has specified that it requires
firmware-first handling (See section 17.4,”Firmware First Error
Handling”), this field identifies the error source for which this
error source is the alternate.

If this generic error source does not represent an alternate
source, this field must be set to 0xFFFF.

Flags 1 6 Reserved.

Enabled 1 7 If the field value is 1, indicates this error source is to be enabled.
If the field value is 0, indicates that the error source is not to be
enabled.

Number of Records
To Pre-allocate

4 8 Indicates the number of error records to pre-allocate for this
error source. Must be >= 1.

Max Sections Per
Record

4 12 Indicates the maximum number of error sections included in an
error record created as a result of an error reported by this error
source. Must be >= 1.

Max Raw Data
Length

4 16 Indicates the size in bytes of the error data recorded by this error
source.

Error Status
Address

12 20 Generic Address Structure as defined in section 5.2.3.1 of the
ACPI Specification.

This field specifies the location of a register that contains the
physical address of a block of memory that holds the error status
data for this error source. This range of memory must reside in
firmware reserved memory. OSPM maps this range into system
address space and reads the error status information from the
mapped address.

Notification
Structure

28 32 Hardware Error Notification Structure as defined in Table 17-
14. This structure specifies how this error source notifies
OSPM that an error has occurred.

ACPI Platform Error Interfaces (APEI) 515

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Error Status Block
Length

4 60 Identifies the length in bytes of the error status data block.

The Error Status Address field specifies the location of an 8-byte memory-mapped register that holds the
physical address of the error status block. This error status block must reside in a range of memory
reported to OSPM as firmware reserved. OSPM maps the error status buffer into system address space in
order to read the error data.

17.3.2.6.1 Generic Error Data

The Error Status Block contains the error status information for a given generic error source. OSPM
provides an error handler that formats one or more of these blocks as necessary for the specific operating
system.

The generic error status block includes two levels of information. The top level is a Generic Error Status
Block structure and is defined in Table 17-12. Following the Generic Error Status Block structure are one
or more Generic Error Data Entry structures, defined in Table 17-13.

Table 17-12 Generic Error Status Block

Field Byte
Length

Byte
Offset

Description

Block Status 4 0 Indicates the type of error information reported in the error
packet.

Bit 0 - Uncorrectable Error Valid: If set to one, indicates that an
uncorrectable error condition exists.

Bit 1 - Correctable Error Valid: If set to one, indicates that a
correctable error condition exists.

Bit 2 - Multiple Uncorrectable Errors: If set to one, indicates
that more than one uncorrectable errors have been detected.

Bit 3 - Multiple Correctable Errors: If set to one, indicates that
more than one correctable errors have been detected.

Bit 4-13 - Error Data Entry Count: This value indicates the
number of Error Data Entries found in the Data section.

Bit 14-31 - Reserved

Raw Data Offset 4 4 Offset in bytes from the beginning of the Error Status Block to
raw error data. The raw data must follow any Generic Error
Data Entries.

Raw Data Length 4 8 Length in bytes of the raw data.

Data Length 4 12 Length in bytes of the generic error data.

516 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Error Severity 4 16 Identifies the error severity of the reported error:

0 – Recoverable
1 – Fatal
2 – Corrected
3 – None

Note: This is the error severity of the entire event. Each Generic
Error Data Entry also includes its own Error Severity field.

Generic Error Data
Entries

Data
Length

20 The information contained in this field is a collection of zero or
more Generic Error Data Entries (see table 17-13).

One or more Generic Error Data Entry structures may be recorded in the Generic Error Data Entries field
of the Generic Error Status Block structure. This allows the platform to accumulate information for
multiple hardware components related to a given error event. For example, if the generic error source
represents an error that occurs on a device on the secondary side of a PCI Express / PCI-X Bridge, it is
useful to record error information from the PCI Express Bridge and from the PCI-X device. Utilizing two
Generic Error Data Entry structures enables this. Table 17-13 defines the layout of a Generic Error Data
Entry.

For details of some of the fields defined in Table 17-13, see Table 3 in section N2.2 of Appendix N of the
UEFI 2.1 specification.

Table 17-13 Generic Error Data Entry

Field Byte
Length

Byte
Offset

Description

Section Type 16 0 Identifies the type of error data in this entry.

See the Section Type field of the Section Descriptor in the UEFI
2.1 specification.

Error Severity 4 16 Identifies the severity of the reported error.

0 – Recoverable
1 – Fatal
2 – Corrected
3 – None

Revision 2 20 The revision number of the error data. The revision number is
0x0201.

See the Revision field of the Section Descriptor in the UEFI 2.1
specification.

Validation Bits 1 22 Identifies whether certain fields are populated with valid data.

See the Validation Bits field of the Section Descriptor in the
UEFI 2.1 specification.

Flags 1 23 Flags describing the error data.

See the Flags field of the Section Descriptor in the UEFI 2.1
specification.

ACPI Platform Error Interfaces (APEI) 517

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Field Byte
Length

Byte
Offset

Description

Error Data Length 4 24 Length in bytes of the generic error data. It is valid to have a
Data Length of zero. This would be used for instance in
firmware-first error handling where the platform reports errors
to the OSPM using NMI.

FRU Id 16 28 Identifies the Field Replaceable Unit.

See the FRU Id field of the Section Descriptor in the UEFI 2.1
specification.

FRU Text 20 44 Text field describing the Field Replaceable Unit.

See the FRU Text field of the Section Descriptor in the UEFI 2.1
specification.

Data Error
Data
Length

64 Generic error data.

The information contained in this field must match one of the
error record section types defined in Appendix N of the UEFI
2.1 specification.

17.3.2.6.2 SCI Notification For Generic Error Sources

SCI notification is recommended for corrected errors where latency in processing error reports is not
critical to proper system operation. The implementation of SCI notification requires the platform to define a
device with PNP ID PNP0C33 in the ACPI namespace, referred to as the error device. This device is used
to notify the OSPM that a generic error source is reporting an error. Since multiple generic error sources
can use SCI notification, it is the responsibility of the OSPM to scan the list of these generic error sources
and check the block status field (Table 17-12) to identify the source that reported the error.

The SCI signaling follows the model describedin section 5.6.4.1.1. The platform implements a general
purpose event (GPE) for the error notification, and the GPE has an associated control method. This control
method is required to execute a Notify on the error device (PNP0C33); the notification code used is 0x80.

An example of a control method for error notification is the following:

Method (_GPE._L08) { // GPE 8 level error notification

Notify (error_device, 0x80)

}

The overall flow when the platform uses the SCI notification is:

The platform enumerates the error source with SCI as the notification method using the format in table 17-
11 and table 17-14

The platform surfaces an error device, PNP ID PNP0C33, to the OSPM

When the platform is ready to report an error, the platform populates the error status block including the
block status field (table 17-12)

The platform signals the error using an SCI, on the appropriate GPE

The OSPM evaluates the GPE control method associated with this event as indicated on section 5.6.4.1.1;
the platform is responsible for providing a control method that issues a NOTIFY(error_device, 0x80) on the
error device

OSPM responds to this notification by checking the error status block of all generic error sources with the
SCI Generic notification type to identify the source reporting the error

518 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.3.2.7 Hardware Error Notification

This table describes the notification mechanism associated with a hardware error source.

Table 17-14 Hardware Error Notification Structure

Field Byte
Length

Byte
Offset

Description

Type 1 0 Identifies the notification type:

0 – Polled

1 – External Interrupt

2 – Local Interrupt

3 – SCI

4 – NMI

All other values are reserved

Length 1 1 Total length of the structure in bytes.

Configuration
Write Enable

2 2 This field indicates whether configuration parameters may be
modified by OSPM. If the bit for the associated parameter is set,
the parameter is writeable by OSPM:

Bit 0: Type

Bit 1: Poll Interval

Bit 2: Switch To Polling Threshold Value

Bit 3: Switch To Polling Threshold Window

Bit 4: Error Threshold Value

Bit 5: Error Threshold Window

All other bits are reserved.

Poll Interval 4 4 Indicates the poll interval in milliseconds OSPM should use to
periodically check the error source for the presence of an error
condition.

Vector 4 8 Interrupt vector.

Switch To Polling
Threshold Value

4 12 The number of error interrupts that must occur within Switch To
Polling Threshold Interval before OSPM switches the error
source to polled mode.

Switch To Polling
Threshold Window

4 16 Indicates the time interval in milliseconds that Switch To Polling
Threshold Value interrupts must occur within before OSPM
switches the error source to polled mode.

Error Threshold
Value

4 20 Indicates the number of error events that must occur within
Error Threshold Interval before OSPM processes the event as
an error condition.

Error Threshold
Window

4 24 Indicates the time interval in milliseconds that Error Threshold
Value errors must occur within before OSPM processes the
event as an error condition.

ACPI Platform Error Interfaces (APEI) 519

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.4 Firmware First Error Handling

It may be necessary for the platform to process certain classes of errors in firmware before relinquishing
control to OSPM for further error handling. Errata management and error containment are two examples
where firmware-first error handling is beneficial. Generic hardware error sources support this model
through the related source ID.

The platform reports the original error source to OSPM via the hardware error source table (HEST) and sets
the FIRMWAREFIRST flag for this error source. In addition, the platform must report a generic error
source with a related source ID set to the original source ID. This generic error source is used to notify
OSPM of the errors on the original source and their status after the firmware first handling.

There are different notification strategies that can be used in firmware first handling; the following options
are available to the platform:

1. The platform may use NMI to notify the OSPM of both corrected and uncorrected errors for a
given error source

2. The platform may use NMI to report uncorrected errors and the SCI to report corrected errors

3. The platform may use NMI to report uncorrected errors and polling to notify the OSPM of
corrected errors

17.4.1 Example: Firmware First Handling Using NMI Notification

If the platform chooses to use NMI to report errors, which is the recommended method for uncorrected
errors, the platform follows these steps:

1. System firmware configures the platform to trigger a firmware handler when the error occurs

2. System firmware identifies the error source for which it will handle errors via the error source
enumeration interface by setting the FIRMWARE_FIRST flag

3. System firmware describes the generic error source, and the associated error status block, as
described in section 17.3.2.6. System firmware identifies the relation between the generic error
source and the original error source by using the original source ID in the related source ID of
table 17-11.

4. When a hardware error reported by the error source occurs, system firmware gains control and
handles the error condition as required. Upon completion system firmware should do the
following:

a. Extract the error information from the error source and fill in the error information in the
data block of the generic error source it identified as an alternate in step 3. The error
information format follows the specification in section 17.3.2.6.1

b. Set the appropriate bit in the block status field (table 17-12) to indicate to the OSPM that
a valid error condition is present.

c. Clears error state from the hardware.

d. Generates an NMI.

At this point, the OSPM NMI handler scans the list of generic error sources to find the error source that
reported the error and processes the error report

17.5 Error Serialization

The error record serialization feature is used to save and retrieve hardware error information to and from a
persistent store. OSPM interacts with the platform through a platform interface. On UEFI-based platforms,
the UEFI runtime variable services can be used to carry out error record persistence operations. On non-
UEFI based platforms, the ACPI solution described below is used.

520 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

For error persistence across boots, the platform must implement some form of non-volatile store to save
error records. The amount of space required depends on the platform’s processor architecture. Typically,
this store will be flash memory or some other form of non-volatile RAM.

Serialized errors are encoded according to the Common Platform Error Record (CPER) format, which is
described in appendix N of the UEFI 2.1 specification. These entries are referred to as error records.

The Error Record Serialization Interface is designed to be sufficiently abstract to allow hardware vendors
flexibility in how they implement their error record serialization hardware. The platform provides details
necessary to communicate with its serialization hardware by populating the ERST with a set of
Serialization Instruction Entries. One or more serialization instruction entries comprise a Serialization
Action. OSPM carries out serialization operations by executing a series of Serialization Actions.
Serialization Actions and Serialization Instructions are described in detail in the following sections.

Table 17-15 details the layout of the ERST which system firmware is responsible for building.

Table 17-15 Error Record Serialization Table (ERST)

Field Byte
length

Byte
offset

Description

ACPI Standard Header

Header Signature 4 0x0 “ERST”. Signature for the Error Record
Serialization Table.

Length 4 0x4 Length, in bytes, of entire ERST. Entire table
must be contiguous.

Revision 1 0x8 1

Checksum 1 0x9 Entire table must sum to zero.

OEMID 6 0xA OEM ID.

OEM Table ID 8 0x10 The manufacturer model ID.

OEM Revision 4 0x18 OEM revision of the ERST for the supplied
OEM table ID.

Creator ID 4 0x1C Vendor ID of the utility that created the table.

Creator Revision 4 0x20 Revision of the utility that created the table.

Serialization Header

Serialization Header Size 4 0x24 Length in bytes of the serialization header.

Reserved 4 0x28 Must be zero.

Instruction Entry Count 4 0x2c The number of Serialization Instruction Entries
in the Serialization Action Table.

Serialization Action Table

Serialization Instruction Entries 0x30 A series of error logging instruction entries.

17.5.1 Serialization Action Table

A Serialization Action is defined as a series of Serialization Instructions on registers that result in a well
known action. A Serialization Instruction is a Serialization Action primitive and consists of either reading
or writing an abstracted hardware register. The Serialization Action Table contains Serialization Instruction
Entries for all the Serialization Actions the platform supports.

ACPI Platform Error Interfaces (APEI) 521

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

In most cases, a Serialization Action comprises only one Serialization Instruction, but it is conceivable that
a more complex device will require more than one Serialization Instruction. When an action does comprise
more than one instruction, the instructions must be listed consecutively and they will consequently be
performed sequentially, according to their placement in the Serialization Action Table.

17.5.1.1 Serialization Actions

This section identifies the Serialization Actions that comprise the Error Record Serialization interface.
Table 17-16 identifies the supported error record Serialization Actions.

Table 17-16 Error Record Serialization Actions

Value Name Description

0x0 BEGIN_WRITE_OPERATION Indicates to the platform that an error record write operation is
beginning. This allows the platform to set its operational
context.

0x1 BEGIN_READ_OPERATION Indicates to the platform that an error record read operation is
beginning. This allows the platform to set its operational
context.

0x2 BEGIN_CLEAR_OPERATION Indicates to the platform that an error record clear operation is
beginning. This allows the platform to set its operation context.

0x3 END_OPERATION Indicates to the platform that the current error record operation
has ended. This allows the platform to clear its operational
context.

0x4 SET_RECORD_OFFSET Sets the offset from the base of the Error Log Address Range
to or from which the platform is to transfer an error record.

0x5 EXECUTE_OPERATION Instructs the platform to carry out the current operation based
on the current operational context.

0x6 CHECK_BUSY_STATUS Returns the state of the current operation. Once an operation
has been executed through the EXECUTE_OPERATION
action, the platform is required to return an indication that the
operation is in progress until the operation completes. This
allows the OS to poll for completion by repeatedly executing
the CHECK_BUSY_STATUS action until the platform
indicates that the operation not busy.

0x7 GET_COMMAND_STATUS Returns the status of the current operation. The platform is
expected to maintain a status code for each operation. See
Table 17-17 for a list of valid command status codes.

0x8 GET_RECORD_IDENTIFIER Returns the record identifier of an existing error record on the
persistent store. The error record identifier is a 64-bit unsigned
value as defined in Appendix N of version 2.1 of the UEFI
specification. If the record store is empty, this action must
return 0xFFFFFFFFFFFFFFFF.

0x9 SET_RECORD_IDENTIFIER Sets the record identifier. The error record identifier is a 64-bit
unsigned value as defined in Appendix N of version 2.1 of the
UEFI specification.

0xA GET_RECORD_COUNT Retrieves the number of error records currently stored on the
platforms persistent store. The platform is expected to
maintain a count of the number of error records resident in its
persistent store.

522 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Name Description

0xB BEGIN_DUMMY_WRITE_OPE
RATION

Indicates to the platform that a dummy error record write
operation is beginning. This allows the platform to set its
operational context. A dummy error record write operation
performs no actual transfer of information from the Error Log
Address Range to the persistent store.

0xC RESERVED Reserved.

0xD GET_ERROR_LOG_ADDRESS
_RANGE

Returns the 64-bit physical address OSPM uses as the buffer
for reading/writing error records.

0xE GET_ERROR_LOG_ADDRESS
_RANGE_LENGTH

Returns the length in bytes of the Error Log Address Range

0xF GET_ERROR_LOG_ADDRESS
_RANGE_ATTRIBUTES

Returns attributes that describe the behavior of the error log
address range.

Bit 0 (0x1) – Reserved.

Bit 1 (0x2) – Non-Volatile: Indicates that the error log address
range is in non-volatile RAM.

Bit 2 (0x4) – Slow: Indicates that the memory in which the
error log address range is locates has slow access times.

All other bits reserved.

Table 17-17 below defines the serialization action status codes returned from
GET_COMMAND_STATUS.

Table 17-17 Command Status Definition

Value Description

0x00 Success

0x01 Not Enough Space

0x02 Hardware Not Available

0x03 Failed

0x04 Record Store Empty

0x05 Record Not Found

17.5.1.2 Serialization Instruction Entries

Each Serialization Action consists of a series of one or more Serialization Instructions. A Serialization
Instruction represents a primitive operation on an abstracted hardware register represented by the register
region as defined in a Serialization Instruction Entry.

A Serialization Instruction Entry describes a region in a serialization hardware register and the serialization
instruction to be performed on that region. Table 17-18 details the layout of a Serialization Instruction
Entry.

ACPI Platform Error Interfaces (APEI) 523

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 17-18 Serialization Instruction Entry

Field Byte
Length

Byte
Offset

Description

Serialization
Action

1 N The serialization action that this serialization instruction is a part of.

Instruction 1 N+0x1 Identifies the instruction to execute. See Table 17-19 for a list of
valid instructions.

Flags 1 N+0x2 Flags that qualify the instruction.

Reserved 1 N+0x3

Register
Region

12 N+0x4 Generic address structure as defined in section 5.2.3.1 specification
to describe the address and bit.

Value 8 N+0x10 Value used with READ_REGISTER_VALUE and
WRITE_REGISTER_VALUE instructions.

Mask 8 N+0x18 The bit mask required to obtain the bits corresponding to the
serialization instruction in a given bit range defined by the register
region.

Register region is described as a generic address structure. This structure describes the physical address of
a register as well as the bit range that corresponds to a desired region of the register. The bit range is
defined as the smallest set of consecutive bits that contains every bit in the register that is associated with
the Serialization Instruction. If bits [6:5] and bits [3:2] all correspond to a Serialization Instruction, the bit
range for that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a particular Serialization Instruction (i.e. bit 4
in the example above), a bit mask is required to distinguish all the bits in the region that correspond to the
instruction. The Mask field is defined to be this bit mask with a bit set to ‘1’ for each bit in the bit range
(defined by the register region) corresponding to the Serialization Instruction. Note that bit 0 of the bit
mask corresponds to the lowest bit in the bit range. In the example used above, the mask would be 11011b
or 0x1B.

The Instruction field identifies the operation to be performed on the register region by the instruction entry.
Table 17-19 identifies the instructions that are supported.

Table 17-19 Serialization Instructions

Value Name Description

0x00 READ_REGISTER A READ_REGISTER instruction reads the designated
information from the specified Register Region.

0x01 READ_REGISTER_VALUE A READ_REGISTER_VALUE instruction reads the designated
information from the specified Register Region and compares the
results with the contents of the Value field. If the information
read matches the contents of the Value field, TRUE is returned,
else FALSE is returned.

0x02 WRITE_REGISTER A WRITE_REGISTER instruction writes a value to the specified
Register Region. The Value field is ignored.

0x03 WRITE_REGISTER_VALUE A WRITE_REGISTER_VALUE instruction writes the contents
of the Value field to the specified Register Region.

0x04 NOOP This instruction is a NOOP.

524 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Name Description

0x05 LOAD_VAR1 Loads the VAR1 variable from the register region.

0x06 LOAD_VAR2 Loads the VAR2 variable from the register region.

0x07 STORE_VAR1 Stores the value in VAR1 to the indicate register region.

0x08 ADD Adds VAR1 and VAR2 and stores the result in VAR1.

0x09 SUBTRACT Subtracts VAR1 from VAR2 and stores the result in VAR1.

0x0A ADD_VALUE Adds the contents of the specified register region to Value and
stores the result in the register region.

0x0B SUBTRACT_VALUE Subtracts Value from the contents of the specified register region
and stores the result in the register region.

0x0C STALL Stall for the number of microseconds specified in Value.

0x0D STALL_WHILE_TRUE OSPM continually compares the contents of the specified register
region to Value until the values are not equal. OSPM stalls
between each successive comparison. The amount of time to stall
is specified by VAR1 and is expressed in microseconds.

0x0E SKIP_NEXT_INSTRUCTIO
N_IF_TRUE

This is a control instruction which compares the contents of the
register region with Value. If the values match, OSPM skips the
next instruction in the sequence for the current action.

0x0F GOTO OSPM will go to the instruction specified by Value. The
instruction is specified as the zero-based index. Each instruction
for a given action has an index based on its relative position in
the array of instructions for the action.

0x10 SET_SRC_ADDRESS_BASE Sets the SRC_BASE variable used by the MOVE_DATA
instruction to the contents of the register region.

0x11 SET_DST_ADDRESS_BASE Sets the DST_BASE variable used by the MOVE_DATA
instruction to the contents of the register region.

0x12 MOVE_DATA Moves VAR2 bytes of data from SRC_BASE + Offset to
DST_BASE + Offset, where Offset is the contents of the register
region.

The Flags field allows qualifying flags to be associated with the instruction. Table 17-20 identifies the
flags that can be associated with Serialization Instructions.

Table 17-20 Instruction Flags

Value Name Description

0x01 PRESERVE_REGISTER For WRITE_REGISTER and WRITE_REGISTER_VALUE
instructions, this flag indicates that bits within the register that
are not being written must be preserved rather than destroyed.

For READ_REGISTER instructions, this flag is ignored.

ACPI Platform Error Interfaces (APEI) 525

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

READ_REGISTER_VALUE: A read register value instruction reads the register region and compares the
result with the specified value. If the values are not equal, the instruction failed. This can be described in
pseudo code as follows:

X = Read(register)
X = X >> Bit Offset described in Register Region
X = X & Mask
If (X != Value) FAIL
SUCCEED

READ_REGISTER: A read register instruction reads the register region. The result is a generic value and
should not be compared with Value. Value will be ignored. This can be described in pseudo code as
follows:

X = Read(register)
X = X >> Bit Offset described in Register Region
X = X & Mask
Return X

WRITE_REGISTER_VALUE: A write register value instruction writes the specified value to the register
region. If PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write
value instruction are preserved. If the register is preserved, the write value instruction requires a read of the
register. This can be described in pseudo code as follows:

X = Value & Mask
X = X << Bit Offset described in Register Region
If (Preserve Register)

Y = Read(register)
Y = Y & ~(Mask << Bit Offset)
X = X | Y

Write(X, Register)

WRITE_REGISTER: A write register instruction writes a value to the register region. Value will be
ignored. If PRESERVE_REGISTER is set in Instruction Flags, then the bits not corresponding to the write
instruction are preserved. If the register is preserved, the write value instruction requires a read of the
register. This can be described in pseudo code as follows:

X = supplied value
X = X & Mask
X = X << Bit Offset described in Register Region
If (Preserve Register)

Y = Read(register)
Y = Y & ~(Mask << Bit Offset)
X = X | Y

Write(X, Register)

17.5.1.3 Error Record Serialization Information

The APEI error record includes an 8 byte field called OSPM Reserved. Table 17-21 defines the layout of
this field. The error record serialization information is a small buffer the platform can use for serialization
bookkeeping. The platform is free to use the 48 bits starting at bit offset 16 for its own purposes. It may
use these bits to indicate the busy/free status of an error record, to record an internal identifier, etc.

526 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 17-21 Error Record Serialization Info

Field Bit
Length

Bit
Offset

Description

Signature 16 0 16-bit signature (‘ER’) identifying the start of the error
record serialization data.

Platform Serialization Data 48 16 Platform private error record serialization information.

17.5.2 Operations

The error record serialization interface comprises three operations: Write, Read, and Clear. OSPM uses the
Write operation to write a single error record to the persistent store. The Read operation is used to retrieve
a single error record previously recorded to the persistent store using the write operation. The Clear
operation allows OSPM to notify the platform that a given error record has been fully processed and is no
longer needed, allowing the platform to recover the storage associated with a cleared error record.

Where the Error Log Address Range is NVRAM, significant optimizations are possible since transfer from
the Error Log Address Range to a separate storage device is unnecessary. The platform may still, however,
copy the record from NVRAM to another device, should it choose to. This allows, for example, the
platform to copy error records to private log files. In order to give the platform the opportunity to do this,
OSPM must use the Write operation to persist error records even when the Error Log Address Range is
NVRAM. The Read and Clear operations, however, are unnecessary in this case as OSPM is capable of
reading and clearing error records without assistance from the platform.

17.5.2.1 Writing

To write a single HW error record, OSPM executes the following steps:

1. Initializes the error record’s serialization info. OSPM must fill in the Signature.

2. Writes the error record to be persisted into the Error Log Address Range.

3. Executes the BEGIN_WRITE_OPERATION action to notify the platform that a record write
operation is beginning.

4. Executes the SET_RECORD_OFFSET action to inform the platform where in the Error Log
Address Range the error record resides.

5. Executes the EXECUTE_OPERATION action to instruct the platform to begin the write
operation.

6. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

7. Executes a GET_COMMAND_STATUS action to determine the status of the write operation. If
an error is indicated, the OSPM may retry the operation.

8. Executes an END_OPERATION action to notify the platform that the record write operation is
complete.

When OSPM performs the EXECUTE_OPERATION action in the context of a record write operation, the
platform attempts to transfer the error record from the designated offset in the Error Log Address Range to
a persistent store of its choice. If the Error Log Address Range is non-volatile RAM, no transfer is
required.

Where the platform is required to transfer the error record from the Error Log Address Range to a
persistent store, it performs the following steps in response to receiving a write command:

1. Sets some internal state to indicate that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

ACPI Platform Error Interfaces (APEI) 527

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2. Reads the error record’s Record ID field to determine where on the storage medium the supplied
error record is to be written. The platform attempts to locate the specified error record on the
persistent store.

a. If the specified error record does not exist, the platform attempts to write a new record to
the persistent store.

b. If the specified error record does exists, then if the existing error record is large enough to
be overwritten by the supplied error record, the platform can do an in-place replacement.
If the existing record is not large enough to be overwritten, the platform must attempt to
locate space in which to write the new record. It may mark the existing record as Free and
coalesce adjacent free records in order to create the necessary space.

3. Transfers the error record to the selected location on the persistent store.

4. Updates an internal Record Count if a new record was written.

5. Records the status of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

6. Modifies internal busy state as necessary so when OSPM executes CHECK_BUSY_STATUS, the
result indicates that the operation is complete.

If the Error Log Address Range resides in NVRAM, the minimum steps required of the platform are:

1. Sets some internal state to indication that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Records the status of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

3. Clear internal busy state so when OSPM executes CHECK_BUSY_STATUS, the result indicates
that the operation is complete.

17.5.2.2 Reading

During boot, OSPM attempts to retrieve all serialized error records from the persistent store. If the Error
Log Address Range does not reside in NVRAM, the following steps are executed by OSPM to retrieve all
error records:

1. Executes the BEGIN_ READ_OPERATION action to notify the platform that a record read
operation is beginning.

2. Executes the SET_ RECORD_OFFSET action to inform the platform at what offset in the Error
Log Address Range the error record is to be transferred.

3. Executes the SET_RECORD_IDENTIFER action to inform the platform which error record is to
be read from its persistent store.

4. Executes the EXECUTE_OPERATION action to instruct the platform to begin the read operation.

5. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

6. Executes a GET_COMMAND_STATUS action to determine the status of the read operation.

a. If the status is Record Store Empty (0x04), continue to step 7.

b. If an error occurred reading a valid error record, the status will be Failed (0x03), continue
to step 7.

c. If the status is Record Not Found (0x05), indicating that the specified error record does
not exist, OSPM retrieves a valid identifier by executing a
GET_RECORD_IDENTIFIER action. The platform will return a valid record identifier.

528 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

d. If the status is Success, OSPM transfers the retrieved record from the Error Log Address
Range to a private buffer and then executes the GET_RECORD_IDENTIFIER action to
determine the identifier of the next record in the persistent store.

7. Execute an END_OPERATION to notify the platform that the record read operation is complete.

The steps performed by the platform to carry out a read request are as follows:

1. Sets some internal state to indicate that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Using the record identifier supplied by OSPM through the SET_RECORD_IDENTIFIER
operation, determine which error record to read:

a. If the identifier is 0x0 (unspecified), the platform reads the ‘first’ error record from its
persistent store. First, in this is implementation specific.

b. If the identifier is non-zero, the platform attempts to locate the specified error record on
the persistent store.

c. If the specified error record does not exist, set the status register’s Status to Record Not
Found (0x05), and update the status register’s Identifier field with the identifier of the
‘first’ error record.

3. Transfer the record from the persistent store to the offset specified by OSPM from the base of the
Error Log Address Range.

4. Record the Identifier of the ‘next’ valid error record that resides on the persistent store. This
allows OSPM to retrieve a valid record identifier by executing a GET_RECORD_IDENTIFIER
operation.

5. Record the status of the operation so OSPM can retrieve the status by executing a
GET_COMMAND_STATUS action.

6. Clear internal busy state so when OSPM executes CHECK_BUSY_STATUS, the result indicates
that the operation is complete.

Where the Error Log Address Range does reside in NVRAM, OSPM requires no platform support to read
persisted error records. OSPM can scan the Error Log Address Range on its own and retrieve the error
records it previously persisted.

17.5.2.3 Clearing

After OSPM has finished processing an error record, it will notify the platform by clearing the record. This
allows the platform to delete the record from the persistent store or mark it such that the space is free and
can be reused. The following steps are executed by OSPM to clear an error record:

1. Executes a BEGIN_ CLEAR_OPERATION action to notify the platform that a record clear
operation is beginning.

2. Executes a SET_RECORD_IDENTIFER action to inform the platform which error record is to be
cleared. This value must not be set to 0x0 (unspecified).

3. Executes an EXECUTE_OPERATION action to instruct the platform to begin the clear operation.

4. Busy waits by continually executing CHECK_BUSY_STATUS action until FALSE is returned.

5. Executes a GET_COMMAND_STATUS action to determine the status of the clear operation.

6. Execute an END_OPERATION to notify the platform that the record read operation is complete.

ACPI Platform Error Interfaces (APEI) 529

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The platform carries out a clear request by performing the following steps:

1. Sets some internal state to indication that it is busy. OSPM polls by executing a
CHECK_BUSY_STATUS action until the operation is completed.

2. Using the record identifier supplied by OSPM through the SET_RECORD_IDENTIFIER
operation, determine which error record to clear. This value may not be 0x0 (unspecified).

3. Locate the specified error record on the persistent store.

4. Mark the record as free by updating the Attributes in its serialization header.

5. Update internal record count.

6. Clear internal busy state so when OSPM executes CHECK_BUSY_STATUS, the result indicates
that the operation is complete.

When the Error Log Address Range resides in NVRAM, the OS requires no platform support to Clear error
records.

17.5.2.4 Usage

This section describes several possible ways the error record serialization mechanism might be
implemented.

17.5.2.4.1 Error Log Address Range Resides in NVRAM

If the Error Log Address Range resides in NVRAM, then when OSPM writes a record into the logging
range, the record is automatically persistent and the busy bit can be cleared immediately. On a subsequent
boot, OSPM can read any persisted error records directly from the persistent store range. The size of the
persistent store, in this case, is expected to be enough for several error records.

17.5.2.4.2 Error Log Address Range Resides in (volatile) RAM

In this implementation, the Error Log Address Range describes an intermediate location for error records.
To persist a record, OSPM copies the record into the Error Log Address Range and sets the Execute, at
which time the platform runs necessary code (SMM code on non-UEFI based systems and UEFI runtime
code on UEFI-enabled systems) to transfer the error record from main memory to some persistent store. To
read a record, OSPM asks the platform to copy a record from the persistent store to a specified offset within
the Error Log Address Range. The size of the Error Log Address Range is at least large enough for one
error record.

17.5.2.4.3 Error Log Address Range Resides on Service Processor

In this type of implementation, the Error Log Address Range is really MMIO. When OSPM writes an error
record to the Error Log Address Range, it is really writing to memory on a service processor. When the
OSPM sets the Execute control bit, the platform knows that the OSPM is done writing the record and can
do something with it, like move it into a permanent location (i.e. hard disk) on the service processor. The
size of the persistent store in this type of implementation is typically large enough for one error record.

17.5.2.4.4 Error Log Address Range is Copied Across Network

In this type of implementation, the Error Log Address Range is an intermediate cache for error records. To
persist an error record, OSPM copies the record into the Error Log Address Range and set the Execute
control bit, and the platform runs code to transmit this error record over the wire. The size of the Error Log
Address Range in this type of implementation is typically large enough for one error record.

530 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.6 Error Injection

This section outlines an ACPI table mechanism, called EINJ, which allows for a generic interface
mechanism through which OSPM can inject hardware errors to the platform without requiring platform
specific OSPM level software. The primary goal of this mechanism is to support testing of OSPM error
handling stack by enabling the injection of hardware errors. Through this capability OSPM is able to
implement a simple interface for diagnostic and validation of errors handling on the system.

17.6.1 Error Injection Table (EINJ)

The Error Injection Table provides a generic interface mechanism through which OSPM can inject
hardware errors to the platform without requiring platform specific OSPM software. System firmware is
responsible for building this table, which is made up of Injection Instruction entries. Table 17-22 details the
layout of the table.

Table 17-22 Error Injection Table (EINJ)

Field Byte
length

Byte
offset

Description

ACPI Standard Header

Header Signature 4 0x0 EINJ. Signature for the Error Record Injection Table.

Length 4 0x4 Length, in bytes, of entire EINJ. Entire table must be
contiguous.

Revision 1 0x8 1

Checksum 1 0x9 Entire table must sum to zero.

OEMID 6 0xA OEM ID.

OEM Table ID 8 0x10 The manufacturer model ID.

OEM Revision 4 0x18 OEM revision of EINJ.

Creator ID 4 0x1C Vendor ID of the utility that created the table.

Creator Revision 4 0x20 Revision of the utility that created the table.

Injection Header

Injection Header Size 4 0x24 Length in bytes of the Injection Interface header.

Injection Flags 1 0x28 Reserved.

Reserved 3 0x29 Reserved.

Injection Entry Count 4 0x2c The number of Instruction Entries in the Injection
Action Table

Injection Action Table

Injection Instruction Entries 0x30 A series of error injection instruction entries

Table 17-23 identifies the supported error injection actions.

ACPI Platform Error Interfaces (APEI) 531

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 17-23 Error Injection Actions

Value Name Description

0x0 BEGIN_INJECTION_OPERATION Indicates to the platform that an error injection is
beginning. This allows the platform to set its operational
context.

0x1 GET_TRIGGER_ERROR_ACTION
_TABLE

Returns a 64-bit physical memory pointer to the
TRIGGER_ERROR action table.

The TRIGGER_ERROR action instructions when executed
by software trigger the error that was injected by the
immediately prior SET_ERROR_TYPE action.

0x2 SET_ERROR_TYPE Type of error to Inject. Only one ERROR_TYPE can be
injected at any given time. If there is request for multiple
injections at the same time, then the platform will return an
error condition.

0x3 GET_ERROR_TYPE Returns the error injection capabilities of the platform.

0x4 END_OPERATION Indicates to the platform that the current injection operation
has ended. This allows the platform to clear its operational
context.

0x5 EXECUTE_OPERATION Instructs the platform to carry out the current operation
based on the current operational context.

0x6 CHECK_BUSY_STATUS Returns the state of the current operation.

Once an operation has been executed through the
EXECUTE_OPERATION action, the platform is required
to return an indication that the operation is busy until the
operation is completed. This allows software to poll for
completion by repeatedly executing the
CHECK_BUSY_STATUS action until the platform
indicates that the operation is complete by setting not busy.

The lower most bit (bit0) of the returned value indicates the
busy status by setting it to 1 and not busy status by setting
it to 0.

0x7 GET_COMMAND_STATUS Returns the status of the current operation.

The platform is expected to maintain a status code for each
operation. Bits 1:8 of the returned value indicate the
command status. See Table 17-27 for a list of valid
command status codes.

0xFF TRIGGER_ERROR This is not a true error injection action. In response to error
injection, the platform returns a trigger error action table.

This table consists of a series of injection instruction entries
where the injection action is set to TRIGGER_ERROR to
distinguish such entries.

532 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.6.2 Injection Instruction Entries

An Injection action consists of a series of one or more Injection Instructions. An Injection Instruction
represents a primitive operation on an abstracted hardware register, represented by the register region as
defined in an Injection Instruction Entry.

An Injection Instruction Entry describes a region in an injection hardware register and the injection
instruction to be performed on that region.

Table 17-24 details the layout of an Injection Instruction Entry.

Table 17-24 Injection Instruction Entry

Field Byte
length

Byte
offset

Description

Injection
Action

1 N The injection action that this instruction is a part of. See Table 17-23
for supported injection actions.

Instruction 1 N+0x1 Identifies the instruction to execute.
See Table 17-26 for a list of valid instructions.

Flags 1 N+0x2 Flags that qualify the instruction.

Reserved 1 N+0x3

Register
Region

12 N+0x4 Generic address structure as defined in section 5.2.3.1 to describe the
address and bit.

Address_Space_ID must be 0 (System Memory) or 1 (System IO). This
constraint is an attempt to ensure that the registers are accessible in the
presence of hardware error conditions.

Value 8 N+0x10 This is the value field that is used by the instruction READ or
WRITE_REGISTER_VALUE.

Mask 8 N+0x18 The bit mask required to obtain the bits corresponding to the injection
instruction in a given bit range defined by the register region.

Register region is described as a generic address structure. This structure describes the physical address of a
register as well as the bit range that corresponds to a desired region of the register. The bit range is defined
as the smallest set of consecutive bits that contains every bit in the register that is associated with the
injection Instruction. If bits [6:5] and bits [3:2] all correspond to an Injection Instruction, the bit range for
that instruction would be [6:2].

Because a bit range could contain bits that do not pertain to a particular injection Instruction (i.e. bit 4 in
the example above), a bit mask is required to distinguish all the bits in the region that correspond to the
instruction. The Mask field is defined to be this bit mask with a bit set to a ‘1’ for each bit in the bit range
(defined by the register region) corresponding to the Injection Instruction. Note that bit 0 of the bit mask
corresponds to the lowest bit in the bit range. In the example used above, the mask would be 11011b or
0x1B.

Table 17-25 Instruction Flags

Value Name Description

0x01 PRESERVE_REGISTER For WRITE_REGISTER and WRITE_REGISTER_VALUE
instructions, this flag indicates that bits within the register that
are not being written must be preserved rather than destroyed.

For READ_REGISTER instructions, this flag is ignored.

ACPI Platform Error Interfaces (APEI) 533

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

17.6.3 Injection Instructions

Table 17-26 lists the supported Injection Instructions for Injection Instruction Entries.

Table 17-26 Injection Instructions

Opcode Instruction name Description

0x00 READ_REGISTER A READ_REGISTER instruction reads the value from the
specified register region.

0x01 READ_REGISTER_VALUE A READ_REGISTER_VALUE instruction reads the designated
information from the specified Register Region and compares
the results with the contents of the Value field.

If the information read matches the contents of the Value field,
TRUE is returned, else FALSE is returned.

0x02 WRITE_REGISTER A WRITE_REGISTER instruction writes a value to the
specified Register Region. The Value field is ignored.

0x03 WRITE_REGISTER_VALUE A WRITE_REGISTER_VALUE instruction writes the contents
of the Value field to the specified Register Region.

0x04 NOOP No operation.

Table 17-27 below defines the error injection status codes returned from GET_COMMAND_STATUS.

Table 17-27 Command Status Definition

Value Description

0x0 Success

0x1 Unknown Failure

0x2 Invalid Access

Table 17-28 below defines the error type codes returned from GET_ERROR_TYPE.

Table 17-28 Error Type Definition

Bit Description

0 Processor Correctable

1 Processor Uncorrectable non-fatal

2 Processor Uncorrectable fatal

3 Memory Correctable

4 Memory Uncorrectable non-fatal

5 Memory Uncorrectable fatal

6 PCI Express Correctable

7 PCI Express Uncorrectable non-fatal

8 PCI Express Uncorrectable fatal

534 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Bit Description

9 Platform Correctable

10 Platform Uncorrectable non-fatal

11 Platform Uncorrectable fatal

12:31 RESERVED

17.6.4 Trigger Action Table

Error injection operation is a two step process where the error is injected into the platform and subsequently
triggered. After software injects an error into the platform using SET_ERROR_TYPE action, it needs to
trigger the error. In order to trigger the error, the software invokes
GET_TRIGGER_ERROR_ACTION_TABLE action which returns a pointer to a Trigger Error Action
table. The format of the table is as shown in Table 17-29. Software executes the instruction entries
specified in the Trigger Error Action Table in order to trigger the injected error.

Table 17-29 Trigger Error Action

TRIGGER_ERROR
Header

Byte
Length

Byte
Offset

Description

Header Size 4 0x0 Length in bytes of this header.

Revision 4 0x4

Table Size 4 0x8 Size in Bytes of the entire table.

Entry Count 4 0xC The number of Instruction Entries in the
TRIGGER_ERROR Action Sequence (See Note 1)

Action Table

TRIGGER_ERROR
Instruction Entries
(See Note 2)

0x10 A series of error injection instruction entries as defined in
Table 17-26.

Note 1: If the “Entry Count” field above is ZERO, then there are no action structures in the
TRIGGER_ERROR action table. The platform may make this field ZERO in situations where there is no
need for a TRIGGER_ERROR action (for example, in cases where the error injection action seeds as well
as consumes the error).

Note 2: The format of TRIGGER_ERROR Instructions Entries is the same as Injection Instruction entries
as described in Table 17-24.

17.6.5 Error Injection Operation

Before OSPM can use this mechanism to inject errors, it must discover the error injection capabilities of the
platform by executing a GET_ERROR_TYPE. See Table 17-28 for definition of error types.

After discovering the error injection capabilities, OSPM can inject and trigger an error according to the
sequence described below.

Note that injecting an error into the platform does not automatically consume the error. In response to an
error injection, the platform returns a trigger error action table. The software that injected the error must
execute the actions in the trigger error action table in order to consume the error. If a specific error type is
such that it is automatically consumed on injection, the platform will return a trigger error action table
consisting of NO_OP.

ACPI Source Language (ASL) Reference 535

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

1. Executes a BEGIN_ INJECTION_OPERATION action to notify the platform that an error
injection operation is beginning.

2. Executes a SET_ ERROR_TYPE action to inform the platform what kind of error to inject. Only
one ERROR_TYPE can be injected at a given time. If there is a request for multiple injections at
the same time, then the platform will return an error condition

3. Executes an EXECUTE_OPERATION action to instruct the platform to begin the injection
operation.

4. Busy waits by continually executing CHECK_BUSY_STATUS action until the platform indicates
that the operation is complete by clearing the abstracted Busy bit.

5. Executes a GET_COMMAND_STATUS action to determine the status of the read operation.

6. If the status indicates that the platform cannot inject errors, stop.

7. Executes a GET_TRIGGER_ERROR_ACTION_TABLE operation to get the physical pointer to
the TRIGGER_ERROR action table. This provides the flexibility in systems where injecting an
error is a two (or more) step process.

8. Executes the actions specified in the TRIGGER_ERROR action table.

9. Execute an END_OPERATION to notify the platform that the error injection operation is
complete.

18 ACPI Source Language (ASL) Reference

This section formally defines the ACPI Source Language (ASL). ASL is a source language for defining
ACPI objects including writing ACPI control methods. OEMs and BIOS developers define objects and
write control methods in ASL and then use a translator tool (compiler) to generate ACPI Machine
Language (AML) versions of the control methods. For a formal definition of AML, see the ACPI Machine
Language (AML) Specification, section 19, “ACPI Machine Language Specification.”

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OS must support AML. A given user can define some arbitrary source language
(to replace ASL) and write a tool to translate it to AML.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging. (Debuggers
and similar tools are expected to be AML-level tools, not source-level tools.) An ASL translator
implementer must understand how to read ASL and generate AML. An AML interpreter author must
understand how to execute AML.

This section has two parts:
 The ASL grammar, which is the formal ASL specification and also serves as a quick reference.
 A full ASL reference, which includes for each ASL operator: the operator invocation syntax, the

type of each argument, and a description of the action and use of the operator.

18.1 ASL Language Grammar

The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an
ASL compiler.

ASL statements declare objects. Each object has three parts, two of which might not be present.

536 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Object := ObjectType FixedList VariableList

FixedList refers to a list, of known length, that supplies data that all instances of a given ObjectType must
have. A fixed list is written as (a , b , c , …) where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a
FixedList can have default values, in which case they can be skipped. Thus, (a,,c) will cause the default
value for the second argument to be used. Some ObjectTypes can have a null FixedList, which is simply
omitted. Trailing arguments of some object types can be left out of a fixed list, in which case the default
value is used.

VariableList refers to a list, not of predetermined length, of child objects that help define the parent. It is
written as { x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariableList. Some ObjectTypes may have a null variable list, which is
simply omitted.

Other rules for writing ASL statements are the following:
 Multiple blanks are the same as one. Blank, (,), ‘,’ and newline are all token separators.
 // marks the beginning of a comment, which continues from the // to the end of the line.
 /* marks the beginning of a comment, which continues from the /* to the next */.
 “” (quotes) surround an ASCII string.
 Numeric constants can be written in three ways: ordinary decimal, octal (using 0ddd) or

hexadecimal, using the notation 0xdd.
 Nothing indicates an empty item. For example, { Nothing } is equivalent to {}.

18.1.1 ASL Grammar Notation

The notation used to express the ASL grammar is specified in the following table.

Table 18- 1 ASL Grammar Notation

Notation Convention Description Example

Term := Term Term … The term to the left of := can be
expanded into the sequence of
terms on the right.

aterm := bterm cterm means that aterm can be
expanded into the two-term sequence of bterm
followed by cterm.

Angle brackets (< >) Used to group items. <a b> | <c d> means either

a b or c d.

Arrow (=>) Indicates required run-time
reduction of an ASL argument to
an AML data type. Means “reduces
to” or “evaluates to” at run-time.

“TermArg => Integer” means that the
argument must be an ASL TermArg that
must resolve to an Integer data type when it is
evaluated by an AML interpreter.

Bar symbol (|) Separates alternatives. aterm := bterm | <cterm dterm> means the
following constructs are possible:

bterm

cterm dterm

aterm := <bterm | cterm> dterm means the
following constructs are possible:

bterm dterm

cterm dterm

Term Term Term Terms separated from each other
by spaces form an ordered list.

N/A

ACPI Source Language (ASL) Reference 537

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Notation Convention Description Example

Word in bold Denotes the name of a term in the
ASL grammar, representing any
instance of such a term. ASL terms
are not case-sensitive.

In the following ASL term definition:

ThermalZone (ZoneName) {ObjectList}

the item in bold is the name of the term.

Word in italics Names of arguments to objects that
are replaced for a given instance.

In the following ASL term definition:

ThermalZone (ZoneName) {ObjectList}

the italicized item is an argument. The item
that is not bolded or italicized is defined
elsewhere in the ASL grammar.

Single quotes (‘ ’) Indicate constant characters. ‘A’

0xdd Refers to a byte value expressed as
two hexadecimal digits.

0x21 means a value of hexadecimal 21, or
decimal 37. Notice that a value expressed in
hexadecimal must start with a leading zero
(0).

Dash character (-) Indicates a range. 1-9 means a single digit in the range 1 to 9
inclusive.

538 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.1.2 ASL Name and Pathname Terms

// Name and path characters supported

LeadNameChar :=
‘A’-‘Z’ | ‘a’-‘z’ | ‘_’

DigitChar :=
‘0’-‘9’

NameChar :=
DigitChar | LeadNameChar

RootChar :=
‘\’

ParentPrefixChar :=
‘^’

PathSeparatorChar :=
‘.’

CommaChar :=
‘,’

SemicolonDelimiter :=
Nothing | ‘;’

// Names and paths

NameSeg :=
<LeadNameChar> |
<LeadNameChar NameChar> |
<LeadNameChar NameChar NameChar> |
<LeadNameChar NameChar NameChar NameChar>

NameString :=
<RootChar NamePath> | <ParentPrefixChar PrefixPath NamePath> | NonEmptyNamePath

NamePath :=
Nothing | <NameSeg NamePathTail>

NamePathTail :=
Nothing | <PathSeparatorChar NameSeg NamePathTail>

NonEmptyNamePath :=
NameSeg | <NameSeg NamePathTail>

PrefixPath :=
Nothing | <ParentPrefixChar PrefixPath>

18.1.3 ASL Root and Secondary Terms

// Root Term

ASLCode :=
DefinitionBlockTerm

// Major Terms

SuperName :=
NameString | ArgTerm | LocalTerm | DebugTerm | Type6Opcode | UserTerm

Target :=
Nothing | SuperName

TermArg :=
Type2Opcode | DataObject | ArgTerm | LocalTerm | NameString

UserTerm :=
NameString(// NameString => Method

ArgList
) => Nothing | DataRefObject

// List Terms

ArgList :=
Nothing | <TermArg ArgListTail>

ArgListTail :=
Nothing | <CommaChar TermArg ArgListTail>

ByteList :=
Nothing | <ByteConstExpr ByteListTail>

ACPI Source Language (ASL) Reference 539

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ByteListTail :=
Nothing | <CommaChar ByteConstExpr ByteListTail>

DWordList :=
Nothing | <DWordConstExpr DWordListTail>

DWordListTail :=
Nothing | <CommaChar DWordConstExpr DWordListTail>

FieldUnitList :=
Nothing | <FieldUnit FieldUnitListTail>

FieldUnitListTail :=
Nothing | <CommaChar FieldUnit FieldUnitListTail>

FieldUnit :=
FieldUnitEntry | OffsetTerm | AccessAsTerm

FieldUnitEntry :=
<Nothing | NameSeg> CommaChar Integer

ObjectList :=
Nothing | <Object ObjectList>

Object :=
CompilerDirective | NamedObject | NameSpaceModifier

PackageList :=
Nothing | <PackageElement PackageListTail>

PackageListTail :=
Nothing | <CommaChar PackageElement PackageListTail>

PackageElement :=
DataObject | NameString

ParameterTypePackage :=
ObjectTypeKeyword | {Nothing | ParameterTypePackageList}

ParameterTypePackageList :=
ObjectTypeKeyword | <ObjectTypeKeyword CommaChar ParameterTypePackageList>

ParameterTypesPackage :=
ObjectTypeKeyword | {Nothing | ParameterTypesPackageList}

ParameterTypesPackageList :=
ParameterTypePackage | <ParameterTypePackage CommaChar ParameterTypesPackageList>

TermList :=
Nothing | <Term SemicolonDelimiter TermList>

Term :=
Object | Type1Opcode | Type2Opcode

// Conditional Execution List Terms

CaseTermList :=
Nothing | CaseTerm | DefaultTerm DefaultTermList | CaseTerm CaseTermList

DefaultTermList :=
Nothing | CaseTerm | CaseTerm DefaultTermList

IfElseTerm :=
IfTerm ElseTerm

18.1.4 ASL Data and Constant Terms

// Numeric Value Terms

LeadDigitChar :=
‘1’-‘9’

HexDigitChar :=
DigitChar | ‘A’-‘F’ | ‘a’-‘f’

OctalDigitChar :=
‘0’-‘7’

NullChar :=
0x00

// Data Terms

DataObject :=
BufferData | PackageData | IntegerData | StringData

540 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DataRefObject :=
DataObject | ObjectReference | DDBHandle

ComputationalData :=
BufferData | IntegerData | StringData

BufferData :=
Type5Opcode | BufferTerm

IntegerData :=
Type3Opcode | Integer | ConstTerm

PackageData :=
PackageTerm

StringData :=
Type4Opcode | String

// Integer Terms

Integer :=
DecimalConst | OctalConst | HexConst

DecimalConst :=
LeadDigitChar | <DecimalConst DigitChar>

OctalConst :=
‘0’ | <OctalConst OctalDigitChar>

HexConst :=
<0x HexDigitChar> | <0X HexDigitChar> | <HexConst HexDigitChar>

ByteConst :=
Integer => 0x00-0xFF

WordConst :=
Integer => 0x0000-0xFFFF

DWordConst :=
Integer => 0x00000000-0xFFFFFFFF

QWordConst :=
Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

ByteConstExpr :=
<Type3Opcode | ConstExprTerm | Integer> => ByteConst

WordConstExpr :=
<Type3Opcode | ConstExprTerm | Integer> => WordConst

DWordConstExpr :=
<Type3Opcode | ConstExprTerm | Integer> => DWordConst

QWordConstExpr :=
<Type3Opcode | ConstExprTerm | Integer> => QWordConst

ConstTerm :=
ConstExprTerm | Revision

ConstExprTerm :=
Zero | One | Ones

// String Terms

String :=
‘”’ Utf8CharList ‘”’

Utf8CharList :=
Nothing | <EscapeSequence Utf8CharList> | <Utf8Char Utf8CharList>

Utf8Char :=
0x01-0x21 |
0x23-0x5B |
0x5D-0x7F |
0xC2-0xDF 0x80-0xBF |
0xE0 0xA0-0xBF 0x80-0xBF |
0xE1-0xEC 0x80-0xBF 0x80-0xBF |
0xED 0x80-0x9F 0x80-0xBF |
0xEE-0xEF 0x80-0xBF 0x80-0xBF |
0xF0 0x90-0xBF 0x80-0xBF 0x80-0xBF |
0xF1-0xF3 0x80-0xBF 0x80-0xBF 0x80-0xBF

// Escape sequences

EscapeSequence :=
SimpleEscapeSequence | OctalEscapeSequence | HexEscapeSequence

ACPI Source Language (ASL) Reference 541

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

HexEscapeSequence :=
\x HexDigitChar |
\x HexDigitChar HexDigitChar

SimpleEscapeSequence :=
\' | \" | \a | \b | \f | \n | \r | \t | \v | \\

OctalEscapeSequence :=
\ OctalDigitChar |
\ OctalDigitChar OctalDigitChar |
\ OctalDigitChar OctalDigitChar OctalDigitChar

// Miscellaneous Data Type Terms

DDBHandle :=
Integer

ObjectReference :=
Integer

Boolean :=
True | False

True :=
Ones

False :=
Zero

18.1.5 ASL Opcode Terms

CompilerDirective :=
IncludeTerm | ExternalTerm

NamedObject :=
BankFieldTerm | CreateBitFieldTerm | CreateByteFieldTerm | CreateDWordFieldTerm |
CreateFieldTerm | CreateQWordFieldTerm | CreateWordFieldTerm | DataRegionTerm |
DeviceTerm | EventTerm | FieldTerm | FunctionTerm | IndexFieldTerm | MethodTerm |
MutexTerm | OpRegionTerm | PowerResTerm | ProcessorTerm | ThermalZoneTerm

NameSpaceModifier :=
AliasTerm | NameTerm | ScopeTerm

Type1Opcode :=
BreakTerm | BreakPointTerm | ContinueTerm | FatalTerm | IfElseTerm | LoadTerm |
NoOpTerm | NotifyTerm | ReleaseTerm | ResetTerm | ReturnTerm | SignalTerm | SleepTerm
| StallTerm | SwitchTerm | UnloadTerm | WhileTerm

A Type 1 opcode term does not return a value and can only be used standalone on a line
of ASL code. Since these opcodes do not return a value they cannot be used as a term in
an expression.

Type2Opcode :=
AcquireTerm | AddTerm | AndTerm | ConcatTerm | ConcatResTerm | CondRefOfTerm |
CopyObjectTerm | DecTerm | DerefOfTerm | DivideTerm |FindSetLeftBitTerm |
FindSetRightBitTerm | FromBCDTerm | IncTerm | IndexTerm | LAndTerm | LEqualTerm |
LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm | LNotTerm |
LNotEqualTerm | LoadTableTerm | LOrTerm | MatchTerm | MidTerm |ModTerm | MultiplyTerm
| NAndTerm | NOrTerm | NotTerm | ObjectTypeTerm | OrTerm | RefOfTerm | ShiftLeftTerm |
ShiftRightTerm | SizeOfTerm | StoreTerm | SubtractTerm | TimerTerm | ToBCDTerm |
ToBufferTerm | ToDecimalStringTerm | ToHexStringTerm | ToIntegerTerm | ToStringTerm |
WaitTerm | XorTerm | UserTerm

A Type 2 opcode returns a value and can be used in an expression.

Type3Opcode :=
AddTerm | AndTerm | DecTerm | DerefOfTerm | DivideTerm | EISAIDTerm |
FindSetLeftBitTerm | FindSetRightBitTerm | FromBCDTerm | IncTerm | LAndTerm |
LEqualTerm | LGreaterTerm | LGreaterEqualTerm | LLessTerm | LLessEqualTerm | LNotTerm
| LNotEqualTerm | LOrTerm | MatchTerm | ModTerm | MultiplyTerm | NAndTerm | NOrTerm |
NotTerm | OrTerm | ShiftLeftTerm | ShiftRightTerm | SubtractTerm | ToBCDTerm |
ToIntegerTerm | XorTerm

542 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The Type 3 opcodes are a subset of Type 2 opcodes that return an Integer value and can
be used in an expression that evaluates to a constant. These opcodes may be evaluated at
ASL compile-time. To ensure that these opcodes will evaluate to a constant, the
following rules apply: The term cannot have a destination (target) operand, and must
have either a Type3Opcode, Type4Opcode, Type5Opcode, ConstExprTerm, Integer, BufferTerm,
Package, or String for all arguments.

Type4Opcode :=
ConcatTerm | DerefOfTerm | MidTerm | ToDecimalStringTerm | ToHexStringTerm |
ToStringTerm

The Type 4 opcodes are a subset of Type 2 opcodes that return a String value and can be
used in an expression that evaluates to a constant. These opcodes may be evaluated at
ASL compile-time. To ensure that these opcodes will evaluate to a constant, the
following rules apply: The term cannot have a destination (target) operand, and must
have either a Type3Opcode, Type4Opcode, Type5Opcode, ConstExprTerm, Integer, BufferTerm,
Package, or String for all arguments.

Type5Opcode :=
ConcatTerm | ConcatResTerm | DerefOfTerm | MidTerm | ResourceTemplateTerm |
ToBufferTerm | ToUUIDTerm | UnicodeTerm

The Type 5 opcodes are a subset of Type 2 opcodes that return a Buffer value and can be
used in an expression that evaluates to a constant. These opcodes may be evaluated at
ASL compile-time. To ensure that these opcodes will evaluate to a constant, the
following rules apply: The term cannot have a destination (target) operand, and must
have either a Type3Opcode, Type4Opcode, Type5Opcode, ConstExprTerm, Integer, BufferTerm,
Package, or String for all arguments.

Type6Opcode :=
RefOfTerm | DerefOfTerm | IndexTerm | UserTerm

18.1.6 ASL Primary (Terminal) Terms

AccessAsTerm :=
AccessAs (

AccessType, // AccessTypeKeyword
AccessAttribute // Nothing | ByteConstExpr | AccessAttribKeyword

)
AcquireTerm :=

Acquire (
SyncObject, // SuperName => Mutex
TimeoutValue // WordConstExpr

) => Boolean // True means timed-out

AddTerm :=
Add (

Addend1, // TermArg => Integer
Addend2, // TermArg => Integer
Result // Target

) => Integer

AliasTerm :=
Alias (

SourceObject, // NameString
AliasObject // NameString

)

AndTerm :=
And (

Source1, // TermArg => Integer
Source2, // TermArg => Integer
Result // Target

) => Integer

ArgTerm :=
Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

ACPI Source Language (ASL) Reference 543

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

BankFieldTerm :=
BankField (

RegionName, // NameString => OperationRegion
BankName, // NameString => FieldUnit
BankValue, // TermArg => Integer
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword

) {FieldUnitList}

BreakPointTerm :=
BreakPoint

BreakTerm :=
Break

BufferTerm :=
Buffer (

BuffSize // Nothing | TermArg => Integer
) {StringData | ByteList} => Buffer

CaseTerm :=
Case (

Value // DataObject
) {TermList}

ConcatResTerm :=
ConcatenateResTemplate (

Source1, // TermArg => Buffer
Source2, // TermArg => Buffer
Result // Target

) => Buffer

ConcatTerm :=
Concatenate (

Source1, // TermArg => ComputationalData
Source2, // TermArg => ComputationalData
Result // Target

) => ComputationalData

CondRefOfTerm :=
CondRefOf (

Source, // SuperName
Destination // Target

) => Boolean

ContinueTerm :=
Continue

CopyObjectTerm :=
CopyObject (

Source, // TermArg => DataRefObject
Result, // NameString | LocalTerm | ArgTerm

) => DataRefObject

CreateBitFieldTerm :=
CreateBitField (

SourceBuffer, // TermArg => Buffer
BitIndex, // TermArg => Integer
BitFieldName // NameString

)

CreateByteFieldTerm :=
CreateByteField (

SourceBuffer, // TermArg => Buffer
ByteIndex, // TermArg => Integer
ByteFieldName // NameString

)

544 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

CreateDWordFieldTerm :=
CreateDWordField (

SourceBuffer, // TermArg => Buffer
ByteIndex, // TermArg => Integer
DWordFieldName // NameString

)

CreateFieldTerm :=
CreateField (

SourceBuffer, // TermArg => Buffer
BitIndex, // TermArg => Integer
NumBits, // TermArg => Integer
FieldName // NameString

)

CreateQWordFieldTerm :=
CreateQWordField (

SourceBuffer, // TermArg => Buffer
ByteIndex, // TermArg => Integer
QWordFieldName // NameString

)

CreateWordFieldTerm :=
CreateWordField (

SourceBuffer, // TermArg => Buffer
ByteIndex, // TermArg => Integer
WordFieldName // NameString

)

DataRegionTerm :=
DataTableRegion (

RegionName, // NameString
SignatureString, // TermArg => String
OemIDString, // TermArg => String
OemTableIDString // TermArg => String

)

DebugTerm :=
Debug

DecTerm :=
Decrement (

Minuend // SuperName
) => Integer

DefaultTerm :=
Default {TermList}

DefinitionBlockTerm :=
DefinitionBlock (

AMLFileName, // StringData
TableSignature, // StringData
ComplianceRevision, // ByteConst
OEMID, // StringData
TableID, // StringData
OEMRevision // DWordConst

) {ObjectList}

DerefOfTerm :=
DerefOf (

Source // TermArg => ObjectReference
// ObjectReference is an object produced by terms such
// as Index, RefOf or CondRefOf.

) => DataRefObject

DeviceTerm :=
Device (

DeviceName // NameString
) {ObjectList}

ACPI Source Language (ASL) Reference 545

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DivideTerm :=
Divide (

Dividend, // TermArg => Integer
Divisor, // TermArg => Integer
Remainder, // Target
Result // Target

) => Integer // Returns Result

EISAIDTerm :=
EISAID (

EisaIdString // StringData
) => DWordConst

ElseIfTerm :=
ElseIf (

Predicate // TermArg => Integer
) {TermList} ElseTerm

ElseTerm :=
Else {TermList} | ElseIfTerm | Nothing

EventTerm :=
Event (

EventName // NameString
)

ExternalTerm :=
External (

ObjName, // NameString
ObjType, // Nothing | ObjectTypeKeyword
ResultType, // Nothing | ParameterTypePackage
ParameterTypes // Nothing | ParameterTypesPackage

)

FatalTerm :=
Fatal (

Type, // ByteConstExpr
Code, // DWordConstExpr
Arg // TermArg => Integer

)

FieldTerm :=
Field (

RegionName, // NameString => OperationRegion
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword

) {FieldUnitList}

FindSetLeftBitTerm :=
FindSetLeftBit (

Source, // TermArg => Integer
Result // Target

) => Integer

FindSetRightBitTerm :=
FindSetRightBit (

Source, // TermArg => Integer
Result // Target

) => Integer

FromBCDTerm :=
FromBCD (

BCDValue, // TermArg => Integer
Result // Target

) => Integer

546 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FunctionTerm :=
Function (

FunctionName, // NameString
ReturnType, // Nothing | ParameterTypePackage
ParameterTypes // Nothing | ParameterTypesPackage

) {TermList}

IfTerm :=
If (

Predicate // TermArg => Integer
) {TermList}

IncludeTerm :=
Include (

FilePathName // StringData
)

IncTerm :=
Increment (

Addend // SuperName
) => Integer

IndexFieldTerm :=
IndexField (

IndexName, // NameString => FieldUnit
DataName, // NameString => FieldUnit
AccessType, // AccessTypeKeyword
LockRule, // LockRuleKeyword
UpdateRule // UpdateRuleKeyword

) {FieldUnitList}

IndexTerm :=
Index (

Source, // TermArg => <String | Buffer | PackageTerm>
Index, // TermArg => Integer
Destination // Target

) => ObjectReference

LAndTerm :=
LAnd (

Source1, // TermArg => Integer
Source2 // TermArg => Integer

) => Boolean

LEqualTerm :=
LEqual (

Source1, // TermArg => ComputationalData
Source2 // TermArg => ComputationalData

) => Boolean

LGreaterEqualTerm :=
LGreaterEqual (

Source1, // TermArg => ComputationalData
Source2 // TermArg => ComputationalData

) => Boolean

LGreaterTerm :=
LGreater (

Source1, // TermArg => ComputationalData
Source2 // TermArg => ComputationalData

) => Boolean

LLessEqualTerm :=
LLessEqual (

Source1, // TermArg => ComputationalData
Source2 // TermArg => ComputationalData

) => Boolean

ACPI Source Language (ASL) Reference 547

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

LLessTerm :=
LLess (

Source1, // TermArg => ComputationalData
Source2 // TermArg => ComputationalData

) => Boolean

LNotEqualTerm :=
LNotEqual (

Source1, // TermArg => ComputationalData
Source2 // TermArg => ComputationalData

) => Boolean

LNotTerm :=
LNot (

Source, // TermArg => Integer
) => Boolean

LoadTableTerm :=
LoadTable (

SignatureString, // TermArg => String
OemIDString, // TermArg => String
OemTableIDString, // TermArg => String
RootPathString, // Nothing | TermArg => String
ParameterPathString, // Nothing | TermArg => String
ParameterData // Nothing | TermArg => DataRefObject

) => DDBHandle

LoadTerm :=
Load (

Object, // NameString
DDBHandle // SuperName

)

LocalTerm :=
Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

LOrTerm :=
LOr (

Source1, // TermArg => Integer
Source2 // TermArg => Integer

) => Boolean

MatchTerm :=
Match (

SearchPackage, // TermArg => Package
Op1, // MatchOpKeyword
MatchObject1, // TermArg => ComputationalData
Op2, // MatchOpKeyword
MatchObject2, // TermArg => ComputationalData
StartIndex // TermArg => Integer

) => <Ones | Integer>

MethodTerm :=
Method (

MethodName, // NameString
NumArgs, // Nothing | ByteConstExpr
SerializeRule, // Nothing | SerializeRuleKeyword
SyncLevel, // Nothing | ByteConstExpr
ReturnType, // Nothing | ParameterTypePackage
ParameterTypes // Nothing | ParameterTypesPackage

) {TermList}

MidTerm :=
Mid (

Source, // TermArg => <Buffer | String>
Index, // TermArg => Integer
Length, // TermArg => Integer
Result // Target

) => <Buffer | String>

548 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ModTerm :=
Mod (

Dividend, // TermArg => Integer
Divisor, // TermArg => Integer
Result // Target

) => Integer // Returns Result

MultiplyTerm :=
Multiply (

Multiplicand, // TermArg => Integer
Multiplier, // TermArg => Integer
Result // Target

) => Integer

MutexTerm :=
Mutex (

MutexName, // NameString
SyncLevel // ByteConstExpr

)

NameTerm :=
Name (

ObjectName, // NameString
Object // DataObject

)

NAndTerm :=
NAnd (

Source1, // TermArg => Integer
Source2, // TermArg => Integer
Result // Target

) => Integer

NoOpTerm :=
NoOp

NOrTerm :=
NOr (

Source1, // TermArg => Integer
Source2, // TermArg => Integer
Result // Target

) => Integer

NotifyTerm :=
Notify (

Object, // SuperName => <ThermalZone | Processor | Device>
NotificationValue // TermArg => Integer

)

NotTerm :=
Not (

Source, // TermArg => Integer
Result // Target

) => Integer

ObjectTypeTerm :=
ObjectType (

Object // SuperName
) => Integer

OffsetTerm :=
Offset (

ByteOffset // IntegerData
)

ACPI Source Language (ASL) Reference 549

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

OpRegionTerm :=
OperationRegion (

RegionName, // NameString
RegionSpace, // RegionSpaceKeyword
Offset, // TermArg => Integer
Length // TermArg => Integer

)

OrTerm :=
Or (

Source1, // TermArg => Integer
Source2, // TermArg => Integer
Result // Target

) => Integer

PackageTerm :=
Package (

NumElements // Nothing | ByteConstExpr | TermArg => Integer
) {PackageList} => Package

PowerResTerm :=
PowerResource (

ResourceName, // NameString
SystemLevel, // ByteConstExpr
ResourceOrder // WordConstExpr

) {ObjectList}

ProcessorTerm :=
Processor (

ProcessorName, // NameString
ProcessorID, // ByteConstExpr
PBlockAddress, // DWordConstExpr | Nothing (=0)
PblockLength // ByteConstExpr | Nothing (=0)

) {ObjectList}

RefOfTerm :=
RefOf (

Object // SuperName
) => ObjectReference

ReleaseTerm :=
Release (

SyncObject // SuperName
)

ResetTerm :=
Reset (

SyncObject // SuperName
)

ReturnTerm :=
Return (

Arg // Nothing | TermArg => DataRefObject
)

ScopeTerm :=
Scope (

Location // NameString
) {ObjectList}

ShiftLeftTerm :=
ShiftLeft (

Source, // TermArg => Integer
ShiftCount, // TermArg => Integer
Result // Target

) => Integer

550 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ShiftRightTerm :=
ShiftRight (

Source, // TermArg => Integer
ShiftCount, // TermArg => Integer
Result // Target

) => Integer

SignalTerm :=
Signal (

SyncObject // SuperName
)

SizeOfTerm :=
SizeOf (

DataObject // SuperName => <String | Buffer | Package>
) => Integer

SleepTerm :=
Sleep (

MilliSeconds // TermArg => Integer
)

StallTerm :=
Stall (

MicroSeconds // TermArg => Integer
)

StoreTerm :=
Store (

Source, // TermArg => DataRefObject
Destination // SuperName

) => DataRefObject

SubtractTerm :=
Subtract (

Minuend, // TermArg => Integer
Subtrahend, // TermArg => Integer
Result // Target

) => Integer

SwitchTerm :=
Switch (

Predicate // TermArg => ComputationalData
) {CaseTermList}

ThermalZoneTerm :=
ThermalZone (

ThermalZoneName // NameString
) {ObjectList}

TimerTerm :=
Timer => Integer

ToBCDTerm :=
ToBCD (

Value, // TermArg => Integer
Result // Target

) => Integer

ToBufferTerm :=
ToBuffer (

Data, // TermArg => ComputationalData
Result // Target

) => ComputationalData

ToDecimalStringTerm :=
ToDecimalString (

Data, // TermArg => ComputationalData
Result // Target

) => String

ACPI Source Language (ASL) Reference 551

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ToHexStringTerm :=
ToHexString (

Data, // TermArg => ComputationalData
Result // Target

) => String

ToIntegerTerm :=
ToInteger (

Data, // TermArg => ComputationalData
Result // Target

) => Integer

ToStringTerm :=
ToString (

Source, // TermArg => Buffer
Length, // Nothing | TermArg => Integer
Result // Target

) => String

ToUUIDTerm :=
ToUUID (

String // StringData
) => Buffer

UnicodeTerm :=
Unicode (

String // StringData
) => Buffer

UnloadTerm :=
Unload (

DDBHandle // SuperName
)

WaitTerm :=
Wait (

SyncObject, // SuperName => Event
TimeoutValue // TermArg => Integer

) => Boolean // True means timed-out

WhileTerm :=
While (

Predicate // TermArg => Integer
) {TermList}

XOrTerm :=
XOr (

Source1, // TermArg => Integer
Source2, // TermArg => Integer
Result // Target

) => Integer

18.1.7 ASL Parameter Keyword Terms

AccessAttribKeyword :=
SMBQuick | SMBSendReceive | SMBByte | SMBWord | SMBBlock | SMBProcessCall |
SMBBlockProcessCall // Note: Used for SMBus BufferAcc only.

AccessTypeKeyword :=
AnyAcc | ByteAcc | WordAcc | DWordAcc | QWordAcc | BufferAcc

AddressKeyword :=
AddressRangeMemory | AddressRangeReserved | AddressRangeNVS | AddressRangeACPI

AddressSpaceKeyword :=
RegionSpaceKeyword | FFixedHW

BusMasterKeyword :=
BusMaster | NotBusMaster

DecodeKeyword :=
SubDecode | PosDecode

DMATypeKeyword :=
Compatibility | TypeA | TypeB | TypeF

552 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

InterruptTypeKeyword :=
Edge | Level

InterruptLevel :=
ActiveHigh | ActiveLow

IODecodeKeyword :=
Decode16 | Decode10

LockRuleKeyword :=
Lock | NoLock

MatchOpKeyword :=
MTR | MEQ | MLE | MLT | MGE | MGT

MaxKeyword :=
MaxFixed | MaxNotFixed

MemTypeKeyword :=
Cacheable | WriteCombining | Prefetchable | NonCacheable

MinKeyword :=
MinFixed | MinNotFixed

ObjectTypeKeyword :=
UnknownObj | IntObj | StrObj | BuffObj | PkgObj | FieldUnitObj | DeviceObj | EventObj
| MethodObj | MutexObj | OpRegionObj | PowerResObj | ProcessorObj | ThermalZoneObj |
BuffFieldObj | DDBHandleObj

RangeTypeKeyword :=
ISAOnlyRanges | NonISAOnlyRanges | EntireRange

ReadWriteKeyword :=
ReadWrite | ReadOnly

RegionSpaceKeyword :=
UserDefRegionSpace | SystemIO | SystemMemory | PCI_Config | EmbeddedControl | SMBus |
SystemCMOS | PciBarTarget | IPMI

ResourceTypeKeyword :=
ResourceConsumer | ResourceProducer

SerializeRuleKeyword :=
Serialized | NotSerialized

ShareTypeKeyword :=
Shared | Exclusive

TranslationKeyword :=
SparseTranslation | DenseTranslation

TypeKeyword :=
TypeTranslation | TypeStatic

UpdateRuleKeyword :=
Preserve | WriteAsOnes | WriteAsZeros

UserDefRegionSpace :=
IntegerData => 0x80 - 0xFF

XferTypeKeyword :=
Transfer8 | Transfer16 | Transfer8_16

18.1.8 ASL Resource Template Terms

ResourceTemplateTerm :=
ResourceTemplate () {ResourceMacroList} => Buffer

ResourceMacroList :=
Nothing | <ResourceMacroTerm ResourceMacroList>

ResourceMacroTerm :=
DMATerm | DWordIOTerm | DWordMemoryTerm | DWordSpaceTerm | EndDependentFnTerm |
ExtendedIOTerm | ExtendedMemoryTerm | ExtendedSpaceTerm | FixedIOTerm | InterruptTerm
| IOTerm | IRQNoFlagsTerm | IRQTerm | Memory24Term | Memory32FixedTerm | Memory32Term
| QWordIOTerm | QWordMemoryTerm | QWordSpaceTerm | RegisterTerm | StartDependentFnTerm
| StartDependentFnNoPriTerm | VendorLongTerm | VendorShortTerm | WordBusNumberTerm |
WordIOTerm | WordSpaceTerm

DMATerm :=
DMA (

DMAType, // DMATypeKeyword (_TYP)
BusMaster, // BusMasterKeyword (_BM)
XferType, // XferTypeKeyword (_SIZ)
DescriptorName // Nothing | NameString

) {ByteList} // List of channels (0-7 bytes)

ACPI Source Language (ASL) Reference 553

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DWordIOTerm :=
DWordIO (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
AddressGranularity, // DWordConstExpr (_GRA)
MinAddress, // DWordConstExpr (_MIN)
MaxAddress, // DWordConstExpr (_MAX)
AddressTranslation, // DWordConstExpr (_TRA)
AddressLength, // DWordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName, // Nothing | NameString
TranslationType, // Nothing | TypeKeyword (_TTP)
TranslationDensity // Nothing | TranslationKeyword (_TRS)

)

DWordMemoryTerm :=
DWordMemory (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
MemType, // Nothing (NonCacheable) | MemTypeKeyword (_MEM)
ReadWriteType, // ReadWriteKeyword (_RW)
AddressGranularity, // DWordConstExpr (_GRA)
MinAddress, // DWordConstExpr (_MIN)
MaxAddress, // DWordConstExpr (_MAX)
AddressTranslation, // DWordConstExpr (_TRA)
AddressLength, // DWordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName, // Nothing | NameString
AddressRange, // Nothing | AddressKeyword (_MTP)
MemoryType // Nothing | TypeKeyword (_TTP)

)

DWordSpaceTerm :=
DWordSpace (

ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
TypeSpecificFlags, // ByteConstExpr (_TSF)
AddressGranularity, // DWordConstExpr (_GRA)
MinAddress, // DWordConstExpr (_MIN)
MaxAddress, // DWordConstExpr (_MAX)
AddressTranslation, // DWordConstExpr (_TRA)
AddressLength, // DWordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName // Nothing | NameString

)

EndDependentFnTerm :=
EndDependentFn ()

554 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ExtendedIOTerm :=
ExtendedIO (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
AddressGranularity, // QWordConstExpr (_GRA)
MinAddress, // QWordConstExpr (_MIN)
MaxAddress, // QWordConstExpr (_MAX)
AddressTranslation, // QWordConstExpr (_TRA)
AddressLength, // QWordConstExpr (_LEN)
TypeSpecificAttributes, // Nothing | QWordConstExpr
DescriptorName, // Nothing | NameString
TranslationType, // Nothing | TypeKeyword (_TTP)
TranslationDensity // Nothing | TranslationKeyword (_TRS)

)

ExtendedMemoryTerm :=
ExtendedMemory (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
MemType, // Nothing (NonCacheable) | MemTypeKeyword (_MEM)
ReadWriteType, // ReadWriteKeyword (_RW)
AddressGranularity, // QWordConstExpr (_GRA)
MinAddress, // QWordConstExpr (_MIN)
MaxAddress, // QWordConstExpr (_MAX)
AddressTranslation, // QWordConstExpr (_TRA)
AddressLength, // QWordConstExpr (_LEN)
TypeSpecificAttributes, // Nothing | QWordConstExpr
DescriptorName, // Nothing | NameString
MemoryType, // Nothing | AddressKeyword (_MTP)
TranslationType // Nothing | TypeKeyword (_TTP)

)

ExtendedSpaceTerm :=
ExtendedSpace (

ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
TypeSpecificFlags, // ByteConstExpr (_TSF)
AddressGranularity, // QWordConstExpr (_GRA)
MinAddress, // QWordConstExpr (_MIN)
MaxAddress, // QWordConstExpr (_MAX)
AddressTranslation, // QWordConstExpr (_TRA)
AddressLength, // QWordConstExpr (_LEN)
TypeSpecificAttributes, // Nothing | QWordConstExpr (_ATT)
DescriptorName // Nothing | NameString

)

FixedIOTerm :=
FixedIO (

AddressBase, // WordConstExpr (_BAS)
RangeLength, // ByteConstExpr (_LEN)
DescriptorName // Nothing | NameString

)

InterruptTerm :=
Interrupt (

ResourceType, // Nothing (ResourceConsumer)| ResourceTypeKeyword
InterruptType, // InterruptTypeKeyword (_LL, _HE)
InterruptLevel, // InterruptLevelKeyword (_LL, _HE)
ShareType, // Nothing (Exclusive) ShareTypeKeyword (_SHR)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName // Nothing | NameString

) {DWordList} // list of interrupts (_INT)

ACPI Source Language (ASL) Reference 555

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

IOTerm :=
IO (

IODecode, // IODecodeKeyword (_DEC)
MinAddress, // WordConstExpr (_MIN)
MaxAddress, // WordConstExpr (_MAX)
Alignment, // ByteConstExpr (_ALN)
RangeLength, // ByteConstExpr (_LEN)
DescriptorName // Nothing | NameString

)

IRQNoFlagsTerm :=
IRQNoFlags (

DescriptorName // Nothing | NameString
) {ByteList} // list of interrupts (0-15 bytes)

IRQTerm :=
IRQ (

InterruptType, // InterruptTypeKeyword (_LL, _HE)
InterruptLevel, // InterruptLevelKeyword (_LL, _HE)
ShareType, // Nothing (Exclusive) | ShareTypeKeyword (_SHR)
DescriptorName // Nothing | NameString

) {ByteList} // list of interrupts (0-15 bytes)

Memory24Term :=
Memory24 (

ReadWriteType, // ReadWriteKeyword (_RW)
MinAddress[23:8], // WordConstExpr (_MIN)
MaxAddress[23:8], // WordConstExpr (_MAX)
Alignment, // WordConstExpr (_ALN)
RangeLength, // WordConstExpr (_LEN)
DescriptorName // Nothing | NameString

)

Memory32FixedTerm :=
Memory32Fixed (

ReadWriteType, // ReadWriteKeyword (_RW)
AddressBase, // DWordConstExpr (_BAS)
RangeLength, // DWordConstExpr (_LEN)
DescriptorName // Nothing | NameString

)

Memory32Term :=
Memory32 (

ReadWriteType, // ReadWriteKeyword (_RW)
MinAddress, // DWordConstExpr (_MIN)
MaxAddress, // DWordConstExpr (_MAX)
Alignment, // DWordConstExpr (_ALN)
RangeLength, // DWordConstExpr (_LEN)
DescriptorName // Nothing | NameString

)

QWordIOTerm :=
QWordIO (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
AddressGranularity, // QWordConstExpr (_GRA)
MinAddress, // QWordConstExpr (_MIN)
MaxAddress, // QWordConstExpr (_MAX)
AddressTranslation, // QWordConstExpr (_TRA)
AddressLength, // QWordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName, // Nothing | NameString
TranslationType, // Nothing | TypeKeyword (_TTP)
TranslationDensity // Nothing | TranslationKeyword (_TRS)

)

556 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

QWordMemoryTerm :=
QWordMemory (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
MemType, // Nothing (NonCacheable) | MemTypeKeyword (_MEM)
ReadWriteType, // ReadWriteKeyword (_RW)
AddressGranularity, // QWordConstExpr (_GRA)
MinAddress, // QWordConstExpr (_MIN)
MaxAddress, // QWordConstExpr (_MAX)
AddressTranslation, // QWordConstExpr (_TRA)
AddressLength, // QWordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName, // Nothing | NameString
AddressRange, // Nothing | AddressKeyword (_MTP)
MemoryType // Nothing | TypeKeyword (_TTP)

)

QWordSpaceTerm :=
QWordSpace (

ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
TypeSpecificFlags, // ByteConstExpr (_TSF)
AddressGranularity, // QWordConstExpr (_GRA)
MinAddress, // QWordConstExpr (_MIN)
MaxAddress, // QWordConstExpr (_MAX)
AddressTranslation, // QWordConstExpr (_TRA)
AddressLength, // QWordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName // Nothing | NameString

)

RegisterTerm :=
Register (

AddressSpaceID, // AddressSpaceKeyword (_ASI)
RegisterBitWidth, // ByteConstExpr (_RBW)
RegisterOffset, // ByteConstExpr (_RBO)
RegisterAddress, // QWordConstExpr (_ADR)
AccessSize, // ByteConstExpr (_ASZ)
DescriptorName // Nothing | NameString

)

StartDependentFnNoPriTerm :=
StartDependentFnNoPri () {ResourceMacroList}

StartDependentFnTerm :=
StartDependentFn (

CompatPriority, // ByteConstExpr (0-2)
PerfRobustPriority // ByteConstExpr (0-2)

) {ResourceMacroList}

VendorLongTerm :=
VendorLong (

DescriptorName // Nothing | NameString
) {ByteList}

VendorShortTerm :=
VendorShort (

DescriptorName // Nothing | NameString
) {ByteList} // Up to 7 bytes

ACPI Source Language (ASL) Reference 557

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

WordBusNumberTerm :=
WordBusNumber (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
AddressGranularity, // WordConstExpr (_GRA)
MinAddress, // WordConstExpr (_MIN)
MaxAddress, // WordConstExpr (_MAX)
AddressTranslation, // WordConstExpr (_TRA)
AddressLength, // WordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName // Nothing | NameString

)

WordIOTerm :=
WordIO (

ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
RangeType, // Nothing (EntireRange) | RangeTypeKeyword (_RNG)
AddressGranularity, // WordConstExpr (_GRA)
MinAddress, // WordConstExpr (_MIN)
MaxAddress, // WordConstExpr (_MAX)
AddressTranslation, // WordConstExpr (_TRA)
AddressLength, // WordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName, // Nothing | NameString
TranslationType, // Nothing | TypeKeyword (_TTP)
TranslationDensity // Nothing | TranslationKeyword (_TRS)

)

WordSpaceTerm :=
WordSpace (

ResourceType, // ByteConstExpr (_RT), 0xC0 – 0xFF
ResourceUsage, // Nothing (ResourceConsumer)| ResourceTypeKeyword
Decode, // Nothing (PosDecode) | DecodeKeyword (_DEC)
MinType, // Nothing (MinNotFixed) | MinKeyword (_MIF)
MaxType, // Nothing (MaxNotFixed) | MaxKeyword (_MAF)
TypeSpecificFlags, // ByteConstExpr (_TSF)
AddressGranularity, // WordConstExpr (_GRA)
MinAddress, // WordConstExpr (_MIN)
MaxAddress, // WordConstExpr (_MAX)
AddressTranslation, // WordConstExpr (_TRA)
AddressLength, // WordConstExpr (_LEN)
ResourceSourceIndex, // Nothing | ByteConstExpr
ResourceSource, // Nothing | StringData
DescriptorName // Nothing | NameString

)

558 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2 ASL Concepts

This reference section is for developers who are writing ASL code while developing definition blocks for
platforms.

18.2.1 ASL Names

This section describes how to encode object names using ASL.

The following table lists the characters legal in any position in an ASL object name. ASL names are not
case-sensitive and will be converted to upper case.

Table 18-2 Named Object Reference Encodings

Value Description Title

0x41-0x5A, 0x5F, 0x61-0x7A Lead character of name

(‘A’–‘Z’, ‘_’ , ‘a’–‘z’)

LeadNameChar

0x30-0x39, 0x41-0x5A, 0x5F,
0x61-0x7A

Non-lead (trailing) character of name
(‘A’–‘Z’, ‘_’, ‘a’–‘z’, ‘0’–‘9’)

NameChar

The following table lists the name modifiers that can be prefixed to an ASL name.

Table 18-3 Definition Block Name Modifier Encodings

Value Description NamePrefix := Followed by …

0x5C Namespace root (‘\’) RootPrefix Name

0x5E Parent namespace (‘^’) ParentPrefix ParentPrefix or Name

18.2.1.1 _T_x Reserved Object Names

The ACPI specification reserves object names with the prefix _T_ for internal use by the ASL compiler.
The ASL compiler may, for example, use these objects to store temporary values when implementing
translation of complicated control structures into AML. The ASL compiler must declare _T_x objects
normally (using Name) and must not define them more than once within the same scope.

18.2.2 ASL Literal Constants

This section describes how to encode integer and string constants using ASL.

18.2.2.1 Integers

DigitChar := ‘0’-‘9’
LeadDigitChar := ‘1’-‘9’
OctalDigitChar := ‘0’-‘7’
HexDigitChar := DigitChar | ‘A’-‘F’ | ‘a’-‘f’

Integer := DecimalConst | OctalConst | HexConst
DecimalConst := LeadDigitChar | <DecimalConst DigitChar>
OctalConst := ‘0’ | <OctalConst OctalDigitChar>
HexConst := <0x HexDigitChar> | <0X HexDigitChar> | <HexConst HexDigitChar>
ByteConst := Integer => 0x00-0xFF
WordConst := Integer => 0x0000-0xFFFF
DWordConst := Integer => 0x00000000-0xFFFFFFFF
QWordConst := Integer => 0x0000000000000000-0xFFFFFFFFFFFFFFFF

ACPI Source Language (ASL) Reference 559

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Numeric constants can be specified in decimal, octal, or hexadecimal. Octal constants are preceded by a
leading zero (0), and hexadecimal constants are preceded by a leading zero and either a lower or upper case
‘x’. In some cases, the grammar specifies that the number must evaluate to an integer within a limited
range, such as 0x00–0xFF, and so on.

18.2.2.2 Strings

String := ‘”’ Utf8CharList ‘”’
Utf8CharList := Nothing | <EscapeSequence Utf8CharList> | <Utf8Char Utf8CharList>
Utf8Char := 0x01-0x21 |

0x23-0x5B |
0x5D-0x7F |
0xC2-0xDF 0x80-0xBF |
0xE0 0xA0-0xBF 0x80-0xBF |
0xE1-0xEC 0x80-0xBF 0x80-0xBF |
0xED 0x80-0x9F 0x80-0xBF |
0xEE-0xEF 0x80-0xBF 0x80-0xBF |
0xF0 0x90-0xBF 0x80-0xBF 0x80-0xBF |
0xF1-0xF3 0x80-0xBF 0x80-0xBF 0x80-0xBF |
0xF4 0x80-0x8F 0x80-0xBF 0x80-0xBF

EscapeSeq := SimpleEscapeSeq | OctalEscapeSeq | HexEscapeSeq
SimpleEscapeSeq := \' | \" | \a | \b | \f | \n | \r | \t | \v | \\
OctalEscapeSeq := \ OctalDigitChar |

\ OctalDigitChar OctalDigitChar |
\ OctalDigitChar OctalDigitChar OctalDigitChar

HexEscapeSeq := \x HexDigitChar |
\x HexDigitChar HexDigitChar

NullChar := 0x00

String literals consist of zero or more ASCII characters surrounded by double quotation marks ("). A string
literal represents a sequence of characters that, taken together, form a null-terminated string. After all
adjacent strings in the constant have been concatenated, a null character is appended.

Strings in the source file may be encoded using the UTF-8 encoding scheme as defined in the Unicode 4.0
specification. UTF-8 is a byte-oriented encoding scheme, where some characters take a single byte and
others take multiple bytes. The ASCII character values 0x01-0x7F take up exactly one byte.

However, only one operator currently supports UTF-8 strings: Unicode. Since string literals are defined to
contain only non-null character values, both Hex and Octal escape sequence values must be non-null values
in the ASCII range 0x01 through 0xFF. For arbitrary byte data (outside the range of ASCII values), the
Buffer object should be used instead.

Since the backslash is used as the escape character and also the namespace root prefix, any string literals
that are to contain a fully qualified namepath from the root of the namespace must use the double backslash
to indicate this:

Name (_EJD, ”_SB.PCI0.DOCK1”)

The double backslash is only required within quoted string literals.

Since double quotation marks are used close a string, a special escape sequence (\") is used to allow
quotation marks within strings. Other escape sequences are listed in the table below:

560 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 18-4 ASL Escape Sequences

Escape Sequence ASCII Character

\a 0x07 (BEL)

\b 0x08 (BS)

\f 0x0C (FF)

\n 0x0A (LF)

\r 0x0D (CR)

\t 0x09 (TAB)

\v 0x0B (VT)

\" 0x22 (")

\' 0x27 (')

\\ 0x5C (\)

Since literal strings are read-only constants, the following ASL statement (for example) is not supported:

Store (“ABC”, ”DEF”)

However, the following sequence of statements is supported:

Name (STR, ”DEF”)
...

Store (“ABC”, STR)

18.2.3 ASL Resource Templates

ASL includes some macros for creating resource descriptors. The ResourceTemplate macro creates a
Buffer in which resource descriptor macros can be listed. The ResourceTemplate macro automatically
generates an End descriptor and calculates the checksum for the resource template. The format for the
ResourceTemplate macro is as follows:

ResourceTemplate ()
{

// List of resource macros
}

The following is an example of how these macros can be used to create a resource template that can be
returned from a _PRS control method:

ACPI Source Language (ASL) Reference 561

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Name (PRS0, ResourceTemplate ()
{

StartDependentFn (1, 1)
{

IRQ (Level, ActiveLow, Shared) {10, 11}
DMA (TypeF, NotBusMaster, Transfer16) {4}
IO (Decode16, 0x1000, 0x2000, 0, 0x100)
IO (Decode16, 0x5000, 0x6000, 0, 0x100, IO1)

}
StartDependentFn (1, 1)
{

IRQ (Level, ActiveLow, Shared) {}
DMA (TypeF, NotBusMaster, Transfer16){5}
IO (Decode16, 0x3000, 0x4000, 0, 0x100)
IO (Decode16, 0x5000, 0x6000, 0, 0x100, IO2)

}
EndDependentFn ()

})

Occasionally, it is necessary to change a parameter of a descriptor in an existing resource template at run-
time (i.e., during a method execution.) To facilitate this, the descriptor macros optionally include a name
declaration that can be used later to refer to the descriptor. When a name is declared with a descriptor, the
ASL compiler will automatically create field names under the given name to refer to individual fields in the
descriptor.

The offset returned by a reference to a resource descriptor field name is either in units of bytes (for 8-, 16-,
32-, and 64-bit field widths) or in bits (for all other field widths). In all cases, the returned offset is the
integer offset (in either bytes or bits) of the name from the first byte (offset 0) of the parent resource
template.

For example, given the above resource template, the following code changes the minimum and maximum
addresses for the I/O descriptor named IO2:

CreateWordField (PRS0, IO2._MIN, IMIN)
Store (0xA000, IMIN)

CreateWordField (PRS0, IO2._MAX, IMAX)
Store (0xB000, IMAX)

The resource template macros for each of the resource descriptors are listed below, after the table that
defines the resource descriptor. The resource template macros are formally defined in section 15,
“Memory.”

The reserved names (such as _MIN and _MAX) for the fields of each resource descriptor are defined in the
appropriate table entry of the table that defines that resource descriptor.

562 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2.4 ASL Macros

The ASL compiler supports some built in macros to assist in various ASL coding operations. The following
table lists some of the supported directives and an explanation of their function.

Table 18-5 Example ASL Built-in Macros

ASL Statement Description

AccessAs (AccessType,

AccessAttribute)

Used in a Fieldlist parameter to supply the Access Type and Access Attributes
of the remaining FieldUnits within the list (or until another AccessType macro
is encountered.)

Offset (ByteOffset) Used in a FieldList parameter to supply the byteOffset of the next defined field
within its parent region. This can be used instead of defining the bit lengths
that need to be skipped. All offsets are defined from beginning to end of a
region.

EISAID (TextID) Converts the 7-character text argument into its corresponding 4-byte numeric
EISA ID encoding. This can be used when declaring IDs for devices that are
EISA IDs.

ResourceTemplate () Used to supply Plug and Play resource descriptor information in human
readable form, which is then translated into the appropriate binary Plug and
Play resource descriptor encodings. For more information about resource
descriptor encodings, see section 6.4, “Resource Data Types for ACPI.”

ToUUID (AsciiString) Converts an ASCII string to a 128-bit buffer.

Unicode (StringData) Converts an ASCII string to a Unicode string contained in a buffer.

ACPI Source Language (ASL) Reference 563

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2.5 ASL Data Types

ASL provides a wide variety of data types and operators that manipulate data. It also provides mechanisms
for both explicit and implicit conversion between the data types when used with ASL operators.

The table below describes each of the available data types.

Table 18-6 Summary of ASL Data Types

ASL Data Type Description

[Uninitialized] No assigned type or value. This is the type of all control method LocalX
variables and unused ArgX variables at the beginning of method execution, as
well as all uninitialized Package elements. Uninitialized objects must be
initialized (via Store or CopyObject) before they may be used as source operands
in ASL expressions.

Buffer An array of bytes. Uninitialized elements are zero by default.

Buffer Field Portion of a buffer created using CreateBitField, CreateByteField,
CreateWordField, CreateQWordField, CreateField, or returned by the Index
operator.

DDB Handle Definition block handle returned by the Load operator

Debug Object Debug output object. Formats an object and prints it to the system debug port.
Has no effect if debugging is not active.

Device Device or bus object

Event Event synchronization object

Field Unit (within an
Operation Region)

Portion of an address space, bit-aligned and of one-bit granularity. Created using
Field, BankField, or IndexField.

Integer An n-bit little-endian unsigned integer. In ACPI 1.0 this was 32 bits. In ACPI 2.0
and later, this is 64 bits. The Integer (DWORD) designation indicates that only
the lower 32 bits have meaning and the upper 32 bits of 64-bit integers must be
zero (masking of upper bits is not required).

Integer Constant Created by the ASL terms “Zero”, “One”, “Ones”, and “Revision”.

Method Control Method (Executable AML function)

Mutex Mutex synchronization object

Object Reference Reference to an object created using the RefOf, Index, or CondRefOf operators

Operation Region Operation Region (A region within an Address Space)

Package Collection of ASL objects with a fixed number of elements (up to 255).

Power Resource Power Resource description object

Processor Processor description object

String Null-terminated ASCII string.

Thermal Zone Thermal Zone description object

564 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Compatibility Note: The ability to store and manipulate object references was first introduced in ACPI
2.0. In ACPI 1.0 references could not be stored in variables, passed as parameters or returned from
functions.

18.2.5.1 Data Type Conversion Overview

ASL provides two mechanisms to convert objects from one data type to another data type at run-time
(during execution of the AML interpreter). The first mechanism, Explicit Data Type Conversion, allows
the use of explicit ASL operators to convert an object to a different data type. The second mechanism,
Implicit Data Type Conversion, is invoked by the AML interpreter when it is necessary to convert a data
object to an expected data type before it is used or stored.

The following general rules apply to data type conversions:

 Input parameters are always subject to implicit data type conversion (also known as implicit source
operand conversion) whenever the operand type does not match the expected input type.

 Output (target) parameters for all operators except the explicit data conversion operators are subject to
implicit data type conversion (also known as implicit result object conversion) whenever the target is
an existing named object or named field that is of a different type than the object to be stored.

 Output parameters for the explicit data conversion operators, as well as output parameters that refer to
a method local or argument (LocalX or ArgX) are not subject to implicit type conversion.

Both of these mechanisms (explicit and implicit conversion) are described in detail in the sections that
follow.

18.2.5.2 Explicit Data Type Conversions

The following ASL operators are provided to explicitly convert an object from one data type to another:

 EISAID Converts a 7-character text argument into its corresponding 4-byte numeric EISA
ID encoding.

 FromBCD Convert an Integer to a BCD Integer

 ToBCD Convert a BCD Integer to a standard binary Integer.

 ToBuffer Convert an Integer, String, or Buffer to an object of type Buffer

 ToDecimalString Convert an Integer, String, or Buffer to an object of type String. The string
contains the ASCII representation of the decimal value of the source operand.

 ToHexString Convert an Integer, String, or Buffer to an object of type String. The string
contains the ASCII representation of the hexadecimal value of the source operand.

 ToInteger Convert an Integer, String, or Buffer to an object of type Integer.

 ToString Copy directly and convert a Buffer to an object of type String.

 ToUUID Convert an ASCII string to a UUID Buffer.

The following ASL operators are provided to copy and transfer objects:

 CopyObject Explicitly store a copy of the operand object to the target name. No implicit type
conversion is performed. (This operator is used to avoid the implicit conversion
inherent in the ASL Store operator.)

 Store Store a copy of the operand object to the target name. Implicit conversion is
performed if the target name is of a fixed data type (see below). However, Stores
to method locals and arguments do not perform implicit conversion and are
therefore the same as using CopyObject.

ACPI Source Language (ASL) Reference 565

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2.5.3 Implicit Data Type Conversions

Automatic or Implicit type conversions can take place at two different times during the execution of an
ASL operator. First, it may be necessary to convert one or more of the source operands to the data type(s)
expected by the ASL operator. Second, the result of the operation may require conversion before it is stored
into the destination. (Many of the ASL operators can store their result optionally into an object specified by
the last parameter. In these operators, if the destination is specified, the action is exactly as if a Store
operator had been used to place the result in the destination.)

Such data conversions are performed by an AML interpreter during execution of AML code and are known
collectively as Implicit Operand Conversions. As described briefly above, there are two different types of
implicit operand conversion:

1. Conversion of a source operand from a mismatched data type to the correct data type required by an
ASL operator, called Implicit Source Conversion. This conversion occurs when a source operand must
be converted to the operand type expected by the operator. Any or all of the source operands may be
converted in this manner before the execution of the ASL operator can proceed.

2. Conversion of the result of an operation to the existing type of a target operand before it is stored into
the target operand, called Implicit Result Conversion. This conversion occurs when the target is a
fixed type such as a named object or a field. When storing to a method Local or Arg, no conversion is
required because these data types are of variable type (the store simply overwrites any existing object
and the existing type).

18.2.5.4 Implicit Source Operand Conversion

During the execution of an ASL operator, each source operand is processed by the AML interpreter as
follows:

 If the operand is of the type expected by the operator, no conversion is necessary.

 If the operand type is incorrect, attempt to convert it to the proper type.

 For the Concatenate operator and logical operators (LEqual, LGreater, LGreaterEqual, LLess,
LLessEqual, and LNotEqual), the data type of the first operand dictates the required type of the second
operand, and for Concatenate only, the type of the result object. (The second operator is implicitly
converted, if necessary, to match the type of the first operand.)

 If conversion is impossible, abort the running control method and issue a fatal error.

An implicit source conversion will be attempted anytime a source operand contains a data type that is
different that the type expected by the operator. For example:

Store (“5678”, Local1)
Add (0x1234, Local1, BUF1)

In the Add statement above, Local1 contains a String object and must undergo conversion to an Integer
object before the Add operation can proceed.

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. The table below
describes the source operand conversions available. For example:

Store (Buffer (1) {}, Local0)
Name (ABCD, Buffer (10) {1, 2, 3, 4, 5, 6, 7, 8, 9, 0})
CreateDWordField (ABCD, 2, XYZ)
Name (MNOP, ”1234”)
Concatenate (XYZ, MNOP, Local0)

The Concatenate operator can take an Integer, Buffer or String for its first two parameters and the type of
the first parameter determines how the second parameter will be converted. In this example, the first
parameter is of type Buffer Field (from the CreateDWordField operator). What should it be converted to:
Integer, Buffer or String? According to Table 18-7, the highest priority conversion is to Integer. Therefore,
both of the following objects will be converted to Integers:

566 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

XYZ (0x05040302)
MNOP (0x31, 0x32, 0x33, 0x34)

And will then be joined together and the resulting type and value will be:
Buffer (0x02, 0x03, 0x04, 0x05, 0x31, 0x32, 0x33, 0x34)

18.2.5.5 Implicit Result Object Conversion

For all ASL operators that generate and store a result value (including the Store operator), the result object
is processed and stored by the AML interpreter as follows:

 If the ASL operator is one of the explicit conversion operators (ToString, ToInteger, etc., and the
CopyObject operator), no conversion is performed. (In other words, the result object is stored directly
to the target and completely overwrites any existing object already stored at the target.)

 If the target is a method local or argument (LocalX or ArgX), no conversion is performed and the
result is stored directly to the target.

 If the target is a fixed type such as a named object or field object, an attempt is made to convert the
source to the existing target type before storing.

 If conversion is impossible, abort the running control method and issue a fatal error.

An implicit result conversion can occur anytime the result of an operator is stored into an object that is of a
fixed type. For example:

Name (BUF1, Buffer (10))
Add (0x1234, 0x789A, BUF1)

Since BUF1 is a named object of fixed type Buffer, the Integer result of the Add operation must be
converted to a Buffer before it is stored into BUF1.

ACPI Source Language (ASL) Reference 567

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2.5.6 Data Types and Type Conversions

The following table lists the available ASL data types and the available data type conversions (if any) for
each. The entry for each data type is fully cross-referenced, showing both the types to which the object may
be converted as well as all other types that may be converted to the data type.

The allowable conversions apply to both explicit and implicit conversions.

Table 18-7 Data Types and Type Conversions

ASL Data Type Can be implicitly or explicitly
converted to these Data Types: (In
priority order)

Can be implicitly or explicitly
converted from these Data Types:

[Uninitialized] None. Causes a fatal error when used as
a source operand in any ASL statement.

Integer, String, Buffer, Package,
DDB Handle, Object Reference

Buffer Integer, String, Debug Object Integer, String

Buffer Field Integer, Buffer, String, Debug Object Integer, Buffer, String

DDB Handle Integer, Debug Object Integer

Debug Object None. Causes a fatal error when used as
a source operand in any ASL statement.

Integer, String, Buffer, Package,
Field Unit, Buffer Field, DDB
Handle

Device None None

Event None None

Field Unit (within an
Operation Region)

Integer, Buffer, String, Debug Object Integer, Buffer, String

Integer Buffer, Buffer Field, DDB Handle, Field
Unit, String, Debug Object

Buffer, String

Integer Constant Integer, Debug Object None. Also, storing any object to a
constant is a no-op, not an error.

Method None None

Mutex None None

Object Reference None None

Operation Region None None

Package Debug Object None

String Integer, Buffer, Debug Object Integer, Buffer

Power Resource None None

Processor None None

Thermal Zone None None

568 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2.5.7 Data Type Conversion Rules

The following table presents the detailed data conversion rules for each of the allowable data type
conversions. These conversion rules are implemented by the AML Interpreter and apply to all conversion
types — explicit conversions, implicit source conversions, and implicit result conversions.

Table 18-8 Object Conversion Rules

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Buffer Field The contents of the buffer are copied to the Buffer Field. If the buffer is
smaller than the size of the buffer field, it is zero extended. If the buffer is
larger than the size of the buffer field, the upper bits are truncated.

Compatibility Note: This conversion was first introduced in ACPI 2.0.
The behavior in ACPI 1.0 was undefined.

Debug Object Each buffer byte is displayed as a hexadecimal integer, delimited by
spaces and/or commas.

Field Unit The entire contents of the buffer are copied to the Field Unit. If the buffer
is larger (in bits) than the size of the Field Unit, it is broken into pieces
and completely written to the Field Unit, lower chunks first. If the buffer
(or the last piece of the buffer, if broken up) is smaller than the size of the
Field Unit, it is zero extended before being written.

Integer If no integer object exists, a new integer is created. The contents of the
buffer are copied to the Integer, starting with the least-significant bit and
continuing until the buffer has been completely copied — up to the
maximum number of bits in an Integer. The size of an Integer is indicated
by the Definition Block table header’s Revision field. A Revision field
value less than 2 indicates that the size of an Integer is 32-bits. A value
greater than or equal to 2 signifies that the size of an Integer is 64-bits. If
the buffer is smaller than the size of an integer, it is zero extended. If the
buffer is larger than the size of an integer, it is truncated. Conversion of a
zero-length buffer to an integer is not allowed.

Buffer

String If no string object exists, a new string is created. If the string already
exists, it is completely overwritten and truncated or extended to
accommodate the converted buffer exactly.The entire contents of the
buffer are converted to a string of two-character hexadecimal numbers,
each separated by a space. A zero-length buffer will be converted to a
null (zero-length) string.

Buffer Field [See the
Integer and
Buffer Rules]

If the Buffer Field is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. Otherwise, it will be treated as a
Buffer. The size of an Integer is indicated by the Definition Block table
header’s Revision field. A Revision field value less than 2 indicates that
the size of an Integer is 32-bits. A value greater than or equal to 2
signifies that the size of an Integer is 64-bits. (See the conversion rules
for the Integer and Buffer data types.)

DDB Handle [See the
Integer Rule]

The object is treated as an Integer (See conversion rules for the Integer
data type.)

Field Unit [See the If the Field Unit is smaller than or equal to the size of an Integer (in bits),

ACPI Source Language (ASL) Reference 569

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 18-8 Object Conversion Rules

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

Integer and
Buffer Rules]

it will be treated as an Integer. If the Field Unit is larger than the size of
an Integer, it will be treated as a Buffer. The size of an Integer is
indicated by the Definition Block table header’s Revision field. A
Revision field value less than 2 indicates that the size of an Integer is 32-
bits. A value greater than or equal to 2 signifies that the size of an Integer
is 64-bits. (See the conversion rules for the Integer and Buffer data types.)

Buffer If no buffer object exists, a new buffer object is created based on the size
of the integer (4 bytes for 32-bit integers and 8 bytes for 64-bit integers).
If a buffer object already exists, the Integer overwrites the entire Buffer
object. If the integer requires more bits than the size of the Buffer, then
the integer is truncated before being copied to the Buffer. If the integer
contains fewer bits than the size of the buffer, the Integer is zero-extended
to fill the entire buffer.

Buffer Field The Integer overwrites the entire Buffer Field. If the integer is smaller
than the size of the buffer field, it is zero-extended. If the integer is larger
than the size of the buffer field, the upper bits are truncated.

Compatibility Note: This conversion was first introduced in ACPI 2.0.
The behavior in ACPI 1.0 was undefined.

Debug Object The integer is displayed as a hexadecimal value.

Field Unit The Integer overwrites the entire Field Unit. If the integer is smaller than
the size of the buffer field, it is zero-extended. If the integer is larger than
the size of the buffer field, the upper bits are truncated.

Integer

String If no string object exists, a new string object is created based on the size
of the integer (8 characters for 32-bit integers and 16 characters for 64-bit
integers). If the string already exists, it is completely overwritten and
truncated or extended to accommodate the converted integer exactly. In
either case, the entire integer is converted to a string of hexadecimal
ASCII characters.

Package If no package object exists, a new package object is created. If the
package already exists, it is completely overwritten and truncated or
extended to accommodate the source package exactly. Any and all
existing valid (non-null) package elements of the target package are
deleted, and the entire contents of the source package are copied into the
target package.

Package

Debug Object Each element of the package is displayed based on its type.

Buffer If no buffer object exists, a new buffer object is created. If a buffer object
already exists, it is completely overwritten. If the string is longer than the
buffer, the string is truncated before copying. If the string is shorter than
the buffer, the remaining buffer bytes are set to zero. In either case, the
string is treated as a buffer, with each ASCII string character copied to
one buffer byte, including the null terminator. A null (zero-length) string
will be converted to a zero-length buffer.

String

Buffer Field The string is treated as a buffer. If this buffer is smaller than the size of

570 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 18-8 Object Conversion Rules

To convert
from an
object of this
Data Type

To an object
of this Data
Type

This action is performed by the AML Interpreter:

the buffer field, it is zero extended. If the buffer is larger than the size of
the buffer field, the upper bits are truncated.

Compatibility Note: This conversion was first introduced in ACPI 2.0.
The behavior in ACPI 1.0 was undefined.

Debug Object Each string character is displayed as an ASCII character.

Field Unit Each character of the string is written, starting with the first, to the Field
Unit. If the Field Unit is less than eight bits, then the upper bits of each
character are lost. If the Field Unit is greater than eight bits, then the
additional bits are zeroed.

Integer If no integer object exists, a new integer is created. The integer is
initialized to the value zero and the ASCII string is interpreted as a
hexadecimal constant. Each string character is interpreted as a
hexadecimal value (‘0’-‘9’, ‘A’-‘F’, ‘a’-‘f’), starting with the first
character as the most significant digit, and ending with the first non-
hexadecimal character, end-of-string, or when the size of an integer is
reached (8 characters for 32-bit integers and 16 characters for 64-bit
integers). Note: the first non-hex character terminates the conversion
without error, and a “0x” prefix is not allowed. Conversion of a null
(zero-length) string to an integer is not allowed.

18.2.5.8 Rules for Storing and Copying Objects

The table below lists the actions performed when storing objects to different types of named targets. ASL
provides the following types of “store” operations:

 The Store operator is used to explicitly store an object to a location, with implicit conversion support
of the source object.

 Many of the ASL operators can store their result optionally into an object specified by the last
parameter. In these operators, if the destination is specified, the action is exactly as if a Store operator
had been used to place the result in the destination.

 The CopyObject operator is used to explicitly store a copy of an object to a location, with no implicit
conversion support.

Table 18-9 Object Storing and Copying Rules

When Storing an
object of any data
type to this type of
Target location

This action is performed by the
Store operator or any ASL operator
with a Target operand:

This action is performed by the
CopyObject operator:

Method ArgX
variable

The object is copied to the destination with no conversion applied, with one
exception. If the ArgX contains an Object Reference, an automatic de-reference
occurs and the object is copied to the target of the Object Reference instead of
overwriting the contents of ArgX

Method LocalX
variable

The object is copied to the destination with no conversion applied. Even if LocalX
contains an Object Reference, it is overwritten.

ACPI Source Language (ASL) Reference 571

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

When Storing an
object of any data
type to this type of
Target location

This action is performed by the
Store operator or any ASL operator
with a Target operand:

This action is performed by the
CopyObject operator:

Field Unit or Buffer
Field

The object is copied to the destination
after implicit result conversion is
applied

Fields permanently retain their type and
cannot be changed. Therefore,
CopyObject can only be used to copy an
object of type Integer or Buffer to fields.

Named data object The object is copied to the destination
after implicit result conversion is
applied to match the existing type of
the named location

The object and type are copied to the
named location.

18.2.5.9 Rules for Reading and Writing Objects

In the descriptions below, read operations always return the actual object, not a copy of the object in order
that constructs of the form:

Add (Local1, Local2, Local3)

do not create unnecessary copies of Local1 or Local2. Also, this behavior enables the call-by-reference
semantics of control method invocation.

18.2.5.9.1 ArgX Objects

1) Read from ArgX parameters
 ObjectReference - Automatic dereference, return the target of the reference. Use of DeRefOf

returns the same.
 Buffer – Return the Buffer. Can create an Index, Field, or Reference to the buffer.
 Package – Return the Package. Can create an Index or Reference to the package.
 All other object types – Return the object.

Example method invocation for the table below:

MTHD (RefOf (Obj), Buf, Pkg, Obj)

Table 18-10 Reading from ArgX Objects

Parameter MTHD ArgX Type Read operation on ArgX Result of read

RefOf (Obj), Reference to object Obj Store (Arg0, …)

CopyObject (Arg0, …)

DeRefOf (Arg0)

Obj

Obj

Obj

Buf, Buffer Store (Arg1, …)

CopyObject (Arg1, …)

Index (Arg1, …)

Field (Arg1, …)

Buf

Buf

Index (Buf)

Field (Buf)

Pkg Package Store (Arg2, …)

CopyObject (Arg2, …)

Index (Arg2, …)

Pkg

Pkg

Index (Pkg)

Obj All other object types Store (Arg3, …)

CopyObject (Arg3, …)

Obj

Obj

572 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

2) Store to ArgX parameters
 ObjectReference objects - Automatic dereference, copy the object and overwrite the final target.
 All other object types- Copy the object and overwrite the ArgX variable. (Direct writes to buffer

or package ArgX parameters will also simply overwrite ArgX)

Table 18-11 Writing to ArgX Objects

Current type of ArgX Object to be
written

Write operation on
ArgX

Result of write (in ArgX)

RefOf (OldObj) Obj

(Any type)

Store (…, ArgX)

CopyObject (…, ArgX)

RefOf (copy of Obj)

RefOf (copy of Obj)

All other object types Obj

(Any type)

Store (…, ArgX)

CopyObject (…, ArgX)

Copy of Obj

Copy of Obj

Note: RefOf (ArgX) returns a reference to ArgX.

18.2.5.9.2 LocalX Objects

1) Read from LocalX variables
 ObjectReference - If performing a DeRefOf return the target of the reference. Otherwise, return

the reference.
 All other object types - Return a the object

Table 18-12 Reading from LocalX Objects

Current LocalX Type Read operation on LocalX Result of read

RefOf (Obj) Store (LocalX, …)

CopyObject (LocalX, …)

DeRefOf (LocalX)

RefOf (Obj)

RefOf (Obj)

Obj

Obj (All other types) Store (LocalX, …)

CopyObject (LocalX, …)

Obj

Obj

2) Store to LocalX variables
 All object types - Delete any existing object in LocalX first, then store a copy of the object.

Table 18-13 Writing to LocalX Objects

Current LocalX Type Object to be
written

Write operation on LocalX Result of write (in
LocalX)

All object types Obj

(Any type)

Store (…, LocalX)

CopyObject (…, LocalX)

Copy of Obj

Copy of Obj

ACPI Source Language (ASL) Reference 573

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.2.5.9.3 Named Objects

1) Read from Named object
 ObjectReference - If performing a DeRefOf return the target of the reference. Otherwise, return

the reference.
 All other object types - Return the object

Table 18-14 Reading from Named Objects

Current NAME Type Read operation on NAME Result of read

RefOf (Obj) Store (NAME, …)

CopyObject (NAME, …)

DeRefOf (NAME)

RefOf (Obj)

RefOf (Obj)

Obj

Obj (All other types) Store (NAME, …)

CopyObject (NAME, …)

Obj

Obj

2) Store to Named object

 All object types - Delete any existing object in NAME first, then store a copy of the object. The
Store operator will perform an implicit conversion to the existing type in NAME. CopyObject
does not perform an implicit store.

Table 18-15 Writing to Named Objects

Current
NAME Type

Object to be
written

Write operation on NAME Result of write (in NAME)

Any

(Any Type)

Obj

(Any type)

Store (…, NAME)

CopyObject (…, NAME)

Copy of Obj (converted to type A)

Copy of Obj (No conversion)

574 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.3 ASL Operator Summary

Operator Name Page Description

1. Acquire 579 Acquire a mutex
2. Add 579 Integer Add
3. Alias 580 Define a name alias
4. And 580 Integer Bitwise And
5. ArgX 580 Method argument data objects
6. BankField 580 Declare fields in a banked configuration object
7. Break 581 Continue following the innermost enclosing While
8. BreakPoint 582 Used for debugging, stops execution in the debugger
9. Buffer 582 Declare Buffer object
10. Case 582 Expression for conditional execution
11. Concatenate 583 Concatenate two strings, integers or buffers
12. ConcatenateResTemplate 583 Concatenate two resource templates
13. CondRefOf 583 Conditional reference to an object
14. Continue 584 Continue innermost enclosing While loop
15. CopyObject 584 Copy and existing object
16. CreateBitField 584 Declare a bit field object of a buffer object
17. CreateByteField 585 Declare a byte field object of a buffer object
18. CreateDWordField 585 Declare a DWord field object of a buffer object
19. CreateField 585 Declare an arbitrary length bit field of a buffer object
20. CreateQWordField 585 Declare a QWord field object of a buffer object
21. CreateWordField 586 Declare a Word field object of a buffer object
22. DataTableRegion 586 Declare a Data Table Region
23. Debug 587 Debugger output
24. Decrement 587 Decrement an Integer
25. Default 587 Default execution path in Switch()
26. DefinitionBlock 588 Declare a Definition Block
27. DerefOf 588 Dereference an object reference
28. Device 588 Declare a bus/device object
29. Divide 590 Integer Divide
30. DMA 590 DMA Resource Descriptor macro
31. DWordIO 591 DWord IO Resource Descriptor macro
32. DWordMemory 592 DWord Memory Resource Descriptor macro
33. DWordSpace 594 DWord Space Resource Descriptor macro
34. EisaId 595 EISA ID String to Integer conversion macro
35. Else 595 Alternate conditional execution
36. ElseIf 596 Conditional execution
37. EndDependentFn 597 End Dependent Function Resource Descriptor macro
38. Event 597 Declare an event synchronization object
39. ExtendedIO 597 Extended IO Resource Descriptor macro
40. ExtendedMemory 599 Extended Memory Resource Descriptor macro
41. ExtendedSpace 600 Extended Space Resource Descriptor macro
42. External 601 Declare external objects
43. Fatal 602 Fatal error check
44. Field 602 Declare fields of an operation region object
45. FindSetLeftBit 605 Index of first least significant bit set
46. FindSetRightBit 605 Index of first most significant bit set
47. FixedIO 605 Fixed I/O Resource Descriptor macro
48. FromBCD 606 Convert from BCD to numeric
49. Function 606 Declare control method
50. If 607 Conditional execution
51. Include 607 Include another ASL file
52. Increment 608 Increment a Integer
53. Index 608 Indexed Reference to member object
54. IndexField 610 Declare Index/Data Fields
55. Interrupt 611 Interrupt Resource Descriptor macro
56. IO 612 IO Resource Descriptor macro
57. IRQ 613 Interrupt Resource Descriptor macro
58. IRQNoFlags 613 Short Interrupt Resource Descriptor macro
59. LAnd 614 Logical And
60. LEqual 614 Logical Equal
61. LGreater 614 Logical Greater
62. LGreaterEqual 615 Logical Not less
63. LLess 615 Logical Less
64. LLessEqual 615 Logical Not greater
65. LNot 616 Logical Not

ACPI Source Language (ASL) Reference 575

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

66. LNotEqual 616 Logical Not equal
67. Load 616 Load differentiating definition block
68. LoadTable 617 Load Table from RSDT/XSDT
69. LocalX 618 Method local data objects
70. LOr 618 Logical Or
71. Match 618 Search for match in package array
72. Memory24 619 Memory Resource Descriptor macro
73. Memory32 620 Memory Resource Descriptor macro
74. Memory32Fixed 621 Memory Resource Descriptor macro
75. Method 621 Declare a control method
76. Mid 623 Return a portion of buffer or string
77. Mod 623 Integer Modulo
78. Multiply 623 Integer Multiply
79. Mutex 624 Declare a mutex synchronization object
80. Name 624 Declare a Named object
81. NAnd 625 Integer Bitwise Nand
82. NoOp 625 No operation
83. NOr 625 Integer Bitwise Nor
84. Not 625 Integer Bitwise Not
85. Notify 626 Notify Object of event
86. ObjectType 626 Type of object
87. One 627 Constant One Object (1)
88. Ones 627 Constant Ones Object (-1)
89. OperationRegion 627 Declare an operational region
90. Or 629 Integer Bitwise Or
91. Package 629 Declare a package object
92. PowerResource 630 Declare a power resource object
93. Processor 630 Declare a processor package
94. QWordIO 631 QWord IO Resource Descriptor macro
95. QWordMemory 632 QWord Memory Resource Descriptor macro
96. QWordSpace 634 Qword Space Resource Descriptor macro
97. RefOf 635 Create Reference to an object
98. Register 635 Generic register Resource Descriptor macro
99. Release 636 Release a synchronization object
100. Reset 636 Reset a synchronization object
101. ResourceTemplate 637 Resource to buffer conversion macro
102. Return 637 Return from method execution
103. Revision 637 Constant revision object
104. Scope 637 Open named scope
105. ShiftLeft 638 Integer shift value left
106. ShiftRight 639 Integer shift value right
107. Signal 639 Signal a synchronization object
108. SizeOf 639 Get the size of a buffer, string, or package
109. Sleep 639 Sleep n milliseconds (yields the processor)
110. Stall 640 Delay n microseconds (does not yield the processor)
111. StartDependentFn 640 Start Dependent Function Resource Descriptor macro
112. StartDependentFnNoPri 641 Start Dependent Function Resource Descriptor macro
113. Store 641 Store object
114. Subtract 641 Integer Subtract
115. Switch 642 Select code to execute based on expression value
116. ThermalZone 644 Declare a thermal zone package.
117. Timer 644 Get 64-bit timer value
118. ToBCD 645 Convert Integer to BCD
119. ToBuffer 645 Convert data type to buffer
120. ToDecimalString 645 Convert data type to decimal string
121. ToHexString 646 Convert data type to hexadecimal string
122. ToInteger 646 Convert data type to integer
123. ToString 646 Copy ASCII string from buffer
124. ToUUID 647 Convert Ascii string to UUID
125. Unicode 648 String to Unicode conversion macro
126. Unload 648 Unload definition block
127. VendorLong 648 Vendor Resource Descriptor
128. VendorShort 649 Vendor Resource Descriptor
129. Wait 649 Wait on an Event
130. While 649 Conditional loop
131. WordBusNumber 650 Word Bus number Resource Descriptor macro
132. WordIO 651 Word IO Resource Descriptor macro
133. WordSpace 652 Word Space Resource Descriptor macro
134. Xor 654 Integer Bitwise Xor
135. Zero 654 Constant Zero object (0)

576 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.4 ASL Operator Summary By Type

Operator Name Page Description

// ASL compiler controls

External 601 Declare external objects
Include 607 Include another ASL file

// ACPI table management

DefinitionBlock 588 Declare a Definition Block
Load 616 Load definition block
LoadTable 617 Load Table from RSDT/XSDT
Unload 648 Unload definition block

// Miscellaneous named object creation

Alias 580 Define a name alias
Buffer 582 Declare Buffer object
Device 588 Declare a bus/device object
Function 606 Declare a control method
Method 621 Declare a control method
Name 624 Declare a Named object
Package 629 Declare a package object
PowerResource 630 Declare a power resource object
Processor 630 Declare a processor package
Scope 637 Open named scope
ThermalZone 644 Declare a thermal zone package.

// Operation Regions

BankField 580 Declare fields in a banked configuration object
DataTableRegion 586 Declare a Data Table Region
Field 602 Declare fields of an operation region object
IndexField 610 Declare Index/Data Fields
OperationRegion 627 Declare an operational region

// Buffer Fields

CreateBitField 584 Declare a bit field object of a buffer object
CreateByteField 585 Declare a byte field object of a buffer object
CreateDWordField 585 Declare a DWord field object of a buffer object
CreateField 585 Declare an arbitrary length bit field of a buffer object
CreateQWordField 585 Declare a QWord field object of a buffer object
CreateWordField 586 Declare a Word field object of a buffer object

// Synchronization

Acquire 579 Acquire a mutex
Event 597 Declare an event synchronization object
Mutex 624 Declare a mutex synchronization object
Notify 626 Notify Object of event
Release 636 Release a synchronization object
Reset 636 Reset a synchronization object
Signal 639 Signal a synchronization object
Wait 649 Wait on an Event

// Object references

CondRefOf 583 Conditional reference to an object
DerefOf 588 Dereference an object reference
RefOf 635 Create Reference to an object

ACPI Source Language (ASL) Reference 577

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

// Integer arithmetic

Add 579 Integer Add
And 580 Integer Bitwise And
Decrement 587 Decrement an Integer
Divide 590 Integer Divide
FindSetLeftBit 605 Index of first least significant bit set
FindSetRightBit 605 Index of first most significant bit set
Increment 608 Increment a Integer
Mod 623 Integer Modulo
Multiply 623 Integer Multiply
NAnd 625 Integer Bitwise Nand
NOr 625 Integer Bitwise Nor
Not 625 Integer Bitwise Not
Or 629 Integer Bitwise Or
ShiftLeft 638 Integer shift value left
ShiftRight 639 Integer shift value right
Subtract 641 Integer Subtract
Xor 654 Integer Bitwise Xor

// Logical operators

LAnd 614 Logical And
LEqual 614 Logical Equal
LGreater 614 Logical Greater
LGreaterEqual 615 Logical Not less
LLess 615 Logical Less
LLessEqual 615 Logical Not greater
LNot 616 Logical Not
LNotEqual 616 Logical Not equal
LOr 618 Logical Or

// Method execution control

Break 581 Continue following the innermost enclosing While
BreakPoint 582 Used for debugging, stops execution in the debugger
Case 582 Expression for conditional execution
Continue 584 Continue innermost enclosing While loop
Default 587 Default execution path in Switch()
Else 595 Alternate conditional execution
ElseIf 596 Conditional execution
Fatal 602 Fatal error check
If 607 Conditional execution
NoOp 625 No operation
Return 637 Return from method execution
Sleep 639 Sleep n milliseconds (yields the processor)
Stall 640 Delay n microseconds (does not yield the processor)
Switch 642 Select code to execute based on expression value
While 649 Conditional loop

// Data type conversion and manipulation

Concatenate 583 Concatenate two strings, integers or buffers
CopyObject 584 Copy and existing object
Debug 587 Debugger output
EisaId 595 EISA ID String to Integer conversion macro
FromBCD 606 Convert from BCD to numeric
Index 608 Indexed Reference to member object
Match 618 Search for match in package array
Mid 623 Return a portion of buffer or string
ObjectType 626 Type of object
SizeOf 639 Get the size of a buffer, string, or package
Store 641 Store object
Timer 644 Get 64-bit timer value
ToBCD 645 Convert Integer to BCD
ToBuffer 645 Convert data type to buffer
ToDecimalString 645 Convert data type to decimal string
ToHexString 646 Convert data type to hexadecimal string
ToInteger 646 Convert data type to integer
ToString 646 Copy ASCII string from buffer
ToUUID 647 Convert Ascii string to UUID

578 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Unicode 648 String to Unicode conversion macro

// Resource Descriptor macros

ConcatenateResTemplate 583 Concatenate two resource templates
DMA 590 DMA Resource Descriptor macro
DWordIO 591 DWord IO Resource Descriptor macro
DWordMemory 592 DWord Memory Resource Descriptor macro
DWordSpace 594 DWord Space Resource Descriptor macro
EndDependentFn 597 End Dependent Function Resource Descriptor macro
ExtendedIO 597 Extended I/O Resource Descriptor macro
ExtendedMemory 599 Extended Memory Resource Descriptor macro
ExtendedSpace 600 Extended Space Resource Descriptor macro
FixedIO 605 Fixed I/O Resource Descriptor macro
Interrupt 611 Interrupt Resource Descriptor macro
IO 612 IO Resource Descriptor macro
IRQ 613 Interrupt Resource Descriptor macro
IRQNoFlags 613 Short Interrupt Resource Descriptor macro
Memory24 619 Memory Resource Descriptor macro
Memory32 620 Memory Resource Descriptor macro
Memory32Fixed 621 Memory Resource Descriptor macro
QWordIO 631 QWord IO Resource Descriptor macro
QWordMemory 632 QWord Memory Resource Descriptor macro
QWordSpace 634 Qword Space Resource Descriptor macro
Register 635 Generic register Resource Descriptor macro
ResourceTemplate 637 Resource to buffer conversion macro
StartDependentFn 640 Start Dependent Function Resource Descriptor macro
StartDependentFnNoPri 641 Start Dependent Function Resource Descriptor macro
VendorLong 648 Vendor Resource Descriptor
VendorShort 649 Vendor Resource Descriptor
WordBusNumber 650 Word Bus number Resource Descriptor macro
WordIO 651 Word IO Resource Descriptor macro
WordSpace 652 Word Space Resource Descriptor macro

// Constants

One 627 Constant One Object (1)
Ones 627 Constant Ones Object (-1)
Revision 637 Constant revision object
Zero 654 Constant Zero object (0)

// Control method objects

ArgX 580 Method argument data objects
LocalX 618 Method local data objects

ACPI Source Language (ASL) Reference 579

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5 ASL Operator Reference

This section describes each of the ASL operators. The syntax for each operator is given, with a description
of each argument and an overall description of the operator behavior. Example ASL code is provided for
the more complex operators.

ASL operators can be categorized as follows:

 Named Object creation

 Method execution control (If, Else, While, etc.)

 Integer math

 Logical operators

 Resource Descriptor macros

 Object conversion

 Utility/Miscellaneous

18.5.1 Acquire (Acquire a Mutex)

Syntax

Acquire (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be a mutex synchronization object. TimeoutValue is evaluated as an Integer.

Description

Ownership of the Mutex is obtained. If the Mutex is already owned by a different invocation, the current
execution thread is suspended until the owner of the Mutex releases it or until at least TimeoutValue
milliseconds have elapsed. A Mutex can be acquired more than once by the same invocation.

This operation returns True if a timeout occurred and the mutex ownership was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no timeout and the operation will wait
indefinitely.

18.5.2 Add (Integer Add)

Syntax

Add (Addend1, Addend2, Result) => Integer

Arguments

Addend1 and Addend2 are evaluated as Integers.

Description

The operands are added and the result is optionally stored into Result. Overflow conditions are ignored and
the result of overflows simply loses the most significant bits.

580 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.3 Alias (Declare Name Alias)

Syntax

Alias (SourceObject, AliasObject)

Arguments

SourceObject is any named object. AliasObject is a NameString.

Description

Creates a new object named AliasObject that refers to and acts exactly the same as SourceObject.

AliasObject is created as an alias of SourceObject in the namespace. The SourceObject name must already
exist in the namespace. If the alias is to a name within the same definition block, the SourceObject name
must be logically ahead of this definition in the block.

Example

The following example shows the use of an Alias term:

Alias (\SUS.SET.EVEN, SSE)

18.5.4 And (Integer Bitwise And)

Syntax

And (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise AND is performed and the result is optionally stored into Result.

18.5.5 Argx (Method Argument Data Objects)

Syntax

Arg0 | Arg1 | Arg2 | Arg3 | Arg4 | Arg5 | Arg6

Description

Up to 7 argument-object references can be passed to a control method. On entry to a control method, only
the argument objects that are passed are usable.

18.5.6 BankField (Declare Bank/Data Field)

Syntax

BankField (RegionName, BankName, BankValue, AccessType, LockRule,
UpdateRule) {FieldUnitList}

Arguments

RegionName is the name of the host Operation Region. BankName is the name of the bank selection
register.

ACPI Source Language (ASL) Reference 581

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Accessing the contents of a banked field data object will occur automatically through the proper bank
setting, with synchronization occurring on the operation region that contains the BankName data variable,
and on the Global Lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

Description

This operator creates data field objects. The contents of the created objects are obtained by a reference to a
bank selection register.

This encoding is used to define named data field objects whose data values are fields within a larger object
selected by a bank-selected register.

Example

The following is a block of ASL sample code using BankField:
 Creates a 4-bit bank-selected register in system I/O space.
 Creates overlapping fields in the same system I/O space that are selected via the bank register.

//
// Define a 256-byte operational region in SystemIO space
// and name it GIO0

OperationRegion (GIO0, SystemIO, 0x125, 0x100)

// Create some fields in GIO including a 4-bit bank select register

Field (GIO0, ByteAcc, NoLock, Preserve) {
GLB1, 1,
GLB2, 1,
Offset (1), // Move to offset for byte 1
BNK1, 4

}

// Create FET0 & FET1 in bank 0 at byte offset 0x30

BankField (GIO0, BNK1, 0, ByteAcc, NoLock, Preserve) {
Offset (0x30),
FET0, 1,
FET1, 1

}

// Create BLVL & BAC in bank 1 at the same offset

BankField (GIO0, BNK1, 1, ByteAcc, NoLock, Preserve) {
Offset (0x30),
BLVL, 7,
BAC, 1

}

18.5.7 Break (Break from While)

Syntax

Break

Description

Break causes execution to continue immediately following the innermost enclosing While or Switch
scope, in the current Method. If there is no enclosing While or Switch within the current Method, a fatal
error is generated.

582 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Compatibility Note: In ACPI 1.0, the Break operator continued immediately following the innermost
“code package.” Starting in ACPI 2.0, the Break operator was changed to exit the innermost “While” or
“Switch” package. This should have no impact on existing code, since the ACPI 1.0 definition was, in
practice, useless.

18.5.8 BreakPoint (Execution Break Point)

Syntax

BreakPoint

Description

Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In the non-
debug version of the AML interpreter, BreakPoint is equivalent to Noop.

18.5.9 Buffer (Declare Buffer Object)

Syntax

Buffer (BufferSize) {String or ByteList} => Buffer

Arguments

Declares a Buffer of size BufferSize and optional initial value of String or ByteList.

Description

The optional BufferSize parameter specifies the size of the buffer and the initial value is specified in
Initializer ByteList. If BufferSize is not specified, it defaults to the size of initializer. If the count is too
small to hold the value specified by initializer, the initializer size is used. For example, all four of the
following examples generate the same data in namespace, although they have different ASL encodings:

Buffer (10) {“P00.00A”}
Buffer (Arg0) {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41}
Buffer (10) {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41, 0x00, 0x00, 0x00}
Buffer () {0x50, 0x30, 0x30, 0x2e, 0x30, 0x30, 0x41, 0x00, 0x00, 0x00}

18.5.10 Case (Expression for Conditional Execution)

Syntax

Case (Value) {TermList}

Arguments

Value specifies an Integer, Buffer, String or Package object. TermList is a sequence of executable ASL
expressions.

Description

Execute code based upon the value of a Switch statement.

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the value
of the enclosing Switch (Value). If the Case value is a Package, then control passes if any member of the
package matches the Switch (Value). The Switch CaseTermList can include any number of Case instances,
but no two Case Values (or members of a Value, if Value is a Package) within the same Switch statement
can contain the same value.

ACPI Source Language (ASL) Reference 583

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Execution of the statement body begins at the start of the TermList and proceeds until the end of the
TermList body or until a Break or Continue operator transfers control out of the body.

18.5.11 Concatenate (Concatenate Data)

Syntax

Concatenate (Source1, Source2, Result) => ComputationalData

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2 and the type of the result object. Source2 is implicitly converted if
necessary to match the type of Source1.

Description

Source2 is concatenated to Source1 and the result data is optionally stored into Result.

Table 18-16 Concatenate Data Types

Source1 Data Type Source2 Data Type ( Converted Type) Result Data Type

Integer Integer/String/Buffer Integer Buffer

String Integer/String/Buffer String String

Buffer Integer/String/Buffer Buffer Buffer

18.5.12 ConcatenateResTemplate (Concatenate Resource Templates)

Syntax

ConcatenateResTemplate (Source1, Source2, Result) => Buffer

Arguments

Source1 and Source2 are evaluated as Resource Template buffers.

Description

The resource descriptors from Source2 are appended to the resource descriptors from Source1. Then a new
end tag and checksum are appended and the result is stored in Result, if specified. If either Source1 or
Source2 is exactly 1 byte in length, a run-time error occurs. An empty buffer is treated as a resource
template with only an end tag.

18.5.13 CondRefOf (Create Object Reference Conditionally)

Syntax

CondRefOf (Source, Result) => Boolean

Arguments

Attempts to create a reference to the Source object. The Source of this operation can be any object type (for
example, data package, device object, and so on), and the result data is optionally stored into Result.

584 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

On success, the Destination object is set to refer to Source and the execution result of this operation is the
value True. On failure, Destination is unchanged and the execution result of this operation is the value
False. This can be used to reference items in the namespace that may appear dynamically (for example,
from a dynamically loaded definition block).

CondRefOf is equivalent to RefOf except that if the Source object does not exist, it is fatal for RefOf but
not for CondRefOf.

18.5.14 Continue (Continue Innermost Enclosing While)

Syntax

Continue

Description

Continue causes execution to continue at the start of the innermost enclosing While scope, in the currently
executing Control Method, at the point where the condition is evaluated. If there is no enclosing While
within the current Method, a fatal error is generated.

18.5.15 CopyObject (Copy and Store Object)

Syntax

CopyObject (Source, Destination) => DataRefObject

Arguments

Converts the contents of the Source to a DataRefObject using the conversion rules in 18.2.5 and then copies
the results without conversion to the object referred to by Destination.

Description

If Destination is already an initialized object of type DataRefObject, the original contents of Destination
are discarded and replaced with Source. Otherwise, a fatal error is generated.

Compatibility Note: The CopyObject operator was first introduced new in ACPI 2.0.

18.5.16 CreateBitField (Create 1-Bit Buffer Field)

Syntax

CreateBitField (SourceBuffer, BitIndex, BitFieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex is evaluated as an integer. BitFieldName is a NameString.

Description

A new buffer field object named BitFieldName is created for the bit of SourceBuffer at the bit index of
BitIndex. The bit-defined field within SourceBuffer must exist.BitFieldName is created for the bit of
SourceBuffer at the bit index of BitIndex. The bit-defined field within SourceBuffer must exist.

ACPI Source Language (ASL) Reference 585

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.17 CreateByteField (Create 8-Bit Buffer Field)

Syntax

CreateByteField (SourceBuffer, ByteIndex, ByteFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. ByteFieldName is a
NameString.

Description

A new buffer field object named ByteFieldName is created for the byte of SourceBuffer at the byte index of
ByteIndex. The byte-defined field within SourceBuffer must exist.

18.5.18 CreateDWordField (Create 32-Bit Buffer Field)

Syntax

CreateDWordField (SourceBuffer, ByteIndex, DWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. DWordFieldName is a
NameString.

Description

A new buffer field object named DWordFieldName is created for the DWord of SourceBuffer at the byte
index of ByteIndex. The DWord-defined field within SourceBuffer must exist.

18.5.19 CreateField (Create Arbitrary Length Buffer Field)

Syntax

CreateField (SourceBuffer, BitIndex, NumBits, FieldName)

Arguments

SourceBuffer is evaluated as a buffer. BitIndex and NumBits are evaluated as integers. FieldName is a
NameString.

Description

A new buffer field object named FieldName is created for the bits of SourceBuffer at BitIndex for NumBits.
The entire bit range of the defined field within SourceBuffer must exist. If NumBits evaluates to zero, a
fatal exception is generated.

18.5.20 CreateQWordField (Create 64-Bit Buffer Field)

Syntax

CreateQWordField (SourceBuffer, ByteIndex, QWordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. QWordFieldName is a
NameString.

586 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

A new buffer field object named QWordFieldName is created for the QWord of SourceBuffer at the byte
index of ByteIndex. The QWord-defined field within SourceBuffer must exist.

18.5.21 CreateWordField (Create 16-Bit Buffer Field)

Syntax

CreateWordField (SourceBuffer, ByteIndex, WordFieldName)

Arguments

SourceBuffer is evaluated as a buffer. ByteIndex is evaluated as an integer. WordFieldName is a
NameString.

Description

A new bufferfield object named WordFieldName is created for the word of SourceBuffer at the byte index
of ByteIndex. The word-defined field within SourceBuffer must exist.

18.5.22 DataTableRegion (Create Data Table Operation Region)

Syntax

DataTableRegion (RegionName, SignatureString, OemIDString, OemTableIDString)

Arguments

Creates a new region named RegionName. SignatureString, OemIDString and OemTableIDString are
evaluated as strings.

Description

A Data Table Region is a special Operation Region whose RegionSpace is SystemMemory . Any table
referenced by a Data Table Region must be in memory marked by AddressRangeReserved or
AddressRangeNVS.

The memory referred to by the Data Table Region is the memory that is occupied by the table referenced in
XSDT that is identified by SignatureString, OemIDString and OemTableIDString. Any Field object can
reference RegionName

The base address of a Data Table region is the address of the first byte of the header of the table identified
by SignatureString, OemIDString and OemTableIDString. The length of the region is the length of the
table.

ACPI Source Language (ASL) Reference 587

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.23 Debug (Debugger Output)

Syntax

Debug

Description

The debug data object is a virtual data object. Writes to this object provide debugging information. On at
least debug versions of the interpreter, any writes into this object are appropriately displayed on the
system’s native kernel debugger. All writes to the debug object are otherwise benign. If the system is in use
without a kernel debugger, then writes to the debug object are ignored. The following table relates the ASL
term types that can be written to the Debug object to the format of the information on the kernel debugger
display.

Table 18-17 Debug Object Display Formats

ASL Term Type Display Format

Numeric data object All digits displayed in hexadecimal format.

String data object String is displayed.

Object reference Information about the object is displayed (for example, object type and object
name), but the object is not evaluated.

The Debug object is a write-only object; attempting to read from the debug object is not supported.

18.5.24 Decrement (Integer Decrement)

Syntax

Decrement (Minuend) => Integer

Arguments

Minuend is evaluated as an Integer.

Description

This operation decrements the Minuend by one and the result is stored back to Minuend. Equivalent to
Subtract (Minuend, 1, Minuend). Underflow conditions are ignored and the result is Ones.

18.5.25 Default (Default Execution Path in Switch)

Syntax

Default {TermList}

Arguments

TermList is a sequence of executable ASL expressions.

Description

Within the body of a Switch (page 548) statement, the statements specified by TermList will be executed if
no Case (page 489) statement value matches the Switch statement value. If Default is omitted and no Case
match is found, none of the statements in the Switch body are executed. There can be at most one Default
statement in the immediate scope of the parent Switch statement. The Default statement can appear
anywhere in the body of the Switch statement.

588 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.26 DefinitionBlock (Declare Definition Block)

Syntax

DefinitionBlock (AMLFileName, TableSignature, ComplianceRevision, OEMID,
TableID, OEMRevision) {TermList}

Arguments

AMLFileName is a string that specifies the desired name of the translated output AML file. TableSignature
is a string that contains the 4-character ACPI signature. ComplianceRevision is an 8-bit value. OEMID is a
6-character string, TableId is an 8-character string, and OEMRevision is a 32-bit value. TermList is a
sequence of executable ASL expressions.

Description

The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an additional Definition Block.

This unit of data and/or AML code describes either the base system or some large extension (such as a
docking station). The entire DefinitionBlock will be loaded and compiled by the OS as a single unit, and
can be unloaded by the OS as a single unit.

Note: For compatibility with ACPI versions before ACPI 2.0, the bit width of Integer objects is dependent
on the ComplianceRevision of the DSDT. If the ComplianceRevision is less than 2, all integers are
restricted to 32 bits. Otherwise, full 64-bit integers are used. The version of the DSDT sets the global
integer width for all integers, including integers in SSDTs.

18.5.27 DerefOf (Dereference an Object Reference)

Syntax

DerefOf (Source) => Object

Arguments

Returns the object referred by the Source object reference.

Description

If the Source evaluates to an object reference, the actual contents of the object referred to are returned. If
the Source evaluates to a string, the string is evaluated as an ASL name (relative to the current scope) and
the contents of that object are returned. If the object specified by Source does not exist then a fatal error is
generated.

Compatibility Note: The use of a String with DerefOf was first introduced in ACPI 2.0.

18.5.28 Device (Declare Bus/Device Package)

Syntax

Device (DeviceName) {ObjectList}

Arguments

Creates a Device object of name DeviceName, which represents either a bus or a device or any other similar
hardware. Device opens a name scope.

ACPI Source Language (ASL) Reference 589

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devices in the system to the operating software. Each Bus/Device Package is defined somewhere in the
hierarchical namespace corresponding to that device’s location in the system. Within the namespace of the
device are other names that provide information and control of the device, along with any sub-devices that
in turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware standard
manner. This type of value-added function is expressible in the ACPI Definition Block such that operating
software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside
the device’s normal capabilities and for any Device Object required to fill in the tree for such a device. For
example, if the system includes a PCI device (integrated or otherwise) with no additional functions such as
power management, the BIOS would not report such a device; however, if the system included an
integrated ISA device below the integrated PCI device (device is an ISA bridge), then the system would
include a Device Package for the ISA device with the minimum feature being added being the ISA device’s
ID and configuration information and the parent PCI device, because it is required to get the ISA Device
Package placement in the namespace correct.

Example

The following block of ASL sample code shows a nested use of Device objects to describe an IDE
controller connected to the root PCI bus.

Device (IDE0) { // primary controller
Name (_ADR, 0) // put PCI Address (device/function) here

// define region for IDE mode register

OperationRegion (PCIC, PCI_Config, 0x50, 0x10)
Field (PCIC, AnyAcc, NoLock, Preserve) {

…
}
Device (PRIM) { // Primary adapter

Name (_ADR, 0) // Primary adapter = 0
…
Method (_STM, 2) {

…
}
Method (_GTM) {

…
}
Device (MSTR) { // master channel

Name (_ADR, 0)
Name (_PR0, Package () {0, PIDE})

Name (_GTF) {
…

}
}
Device (SLAV) {

Name (_ADR, 1)
Name (_PR0, Package () {0, PIDE})
Name (_GTF) {

…
}

}
}

}

590 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.29 Divide (Integer Divide)

Syntax

Divide (Dividend, Divisor, Remainder, Result) => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description

Dividend is divided by Divisor, then the resulting remainder is optionally stored into Remainder and the
resulting quotient is optionally stored into Result. Divide-by-zero exceptions are fatal.

The function return value is the Result (quotient).

18.5.30 DMA (DMA Resource Descriptor Macro)

Syntax

DMA (DmaType, IsBusMaster, DmaTransferSize, DescriptorName) {DmaChannelList}
=> Buffer

Arguments

DmaType specifies the type of DMA cycle: ISA compatible (Compatibility), EISA Type A (TypeA),
EISA Type B (TypeB) or EISA Type F (TypeF). The 2-bit field DescriptorName._TYP is automatically
created to refer to this portion of the resource descriptor, where ‘0’ is Compatibility, ‘1’ is TypeA, ‘2’ is
TypeB and ‘3’ is TypeF.

IsBusMaster specifies whether this device can generate DMA bus master cycles (BusMaster) or not
(NotBusMaster). If nothing is specified, then BusMaster is assumed. The 1-bit field DescriptorName._BM
is automatically created to refer to this portion of the resource descriptor, where ‘0’ is NotBusMaster and
‘1’ is BusMaster.

DmaTransferSize specifies the size of DMA cycles the device is capable of generating: 8-bit (Transfer8),
16-bit (Transfer16) or both 8 and 16-bit (Transfer8_16). The 2-bit field DescriptorName._SIZ is
automatically created to refer to this portion of the resource descriptor, where ‘0’ is Transfer8, ‘1’ is
Transfer8_16 and ‘2’ is Transfer16.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

DmaChannelList is a comma-delimited list of integers in the range 0 through 7 that specify the DMA
channels used by the device. There may be no duplicates in the list.

Description

The DMA macro evaluates to a buffer which contains a DMA resource descriptor. The format of the DMA
resource descriptor can be found in “DMA Descriptor” (page 225). The macro is designed to be used inside
of a ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 591

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.31 DWordIO (DWord IO Resource Descriptor Macro)

Syntax

DWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName,
TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the I/O range.
The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the resource
descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

592 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a value of zero is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName._TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName._TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

Description

The DWordIO macro evaluates to a buffer which contains a 32-bit I/O range resource descriptor. The
format of the 32-bit I/O range resource descriptor can be found in “DWord Address Space Descriptor ”
(page 238). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.32 DWordMemory (DWord Memory Resource Descriptor Macro)

Syntax

DWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable,
ReadAndWrite, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

ACPI Source Language (ASL) Reference 593

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the Memory
range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked as
normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName._MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’ is
AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic is specified, then the
secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName._TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information.

594 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The DWordMemory macro evaluates to a buffer which contains a 32-bit memory resource descriptor. The
format of the 32-bit memory resource descriptor can be found in “DWord Address Space Descriptor ”
(page 238). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.33 DWordSpace (DWord Space Resource Descriptor Macro)

Syntax

DWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 32-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 32-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 32-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 32-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

ACPI Source Language (ASL) Reference 595

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the Memory
range. The 32-bit field DescriptorName._LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The DWordSpace macro evaluates to a buffer which contains a 32-bit Address Space resource descriptor.
The format of the 32-bit Address Space resource descriptor can be found in “DWord Address Space
Descriptor ” (page 238). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.34 EISAID (EISA ID String To Integer Conversion Macro)

Syntax

EISAID (EisaIdString) => DWordConst

Arguments

The EisaIdString must be a String object of the form “UUUNNNN”, where “U” is an uppercase letter and
“N” is a hexadecimal digit. No asterisks or other characters are allowed in the string.

Description

Converts EisaIdString, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID
encoding. It can be used when declaring IDs for devices that have EISA IDs.

Example

EISAID (“PNP0C09”) // This is a valid invocation of the macro.

18.5.35 Else (Alternate Execution)

Syntax

Else {TermList}

Arguments

TermList is a sequence of executable ASL statements.

Description

If Predicate evaluates to 0 in an If statement, then control is transferred to the Else portion, which can
consist of zero or more ElseIf statements followed by zero or one Else statements. If the Predicate of any
ElseIf statement evaluates to non-zero, the statements in its term list are executed and then control is
transferred past the end of the final Else term. If no Predicate evaluates to non-zero, then the statements in
the Else term list are executed.

596 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

The following example checks Local0 to be zero or non-zero. On non-zero, CNT is incremented;
otherwise, CNT is decremented.

If (LGreater (Local0, 5)
{

Increment (CNT)
} Else If (Local0) {

Add (CNT, 5, CNT)
}
Else
{

Decrement (CNT)
}

18.5.36 ElseIf (Alternate/Conditional Execution)

Syntax

ElseIf (Predicate)

Arguments

Predicate is evaluated as an Integer.

Description

If the Predicate of any ElseIf statement evaluates to non-zero, the statements in its term list are executed
and then control is transferred past the end of the final Else. If no Predicate evaluates to non-zero, then the
statements in the Else term list are executed.

Compatibility Note: The ElseIf operator was first introduced in ACPI 2.0, but is backward compatible
with the ACPI 1.0 specification. An ACPI 2.0 and later ASL compiler must synthesize ElseIf from the If.
and Else opcodes available in 1.0. For example:

If (predicate1)
{

…statements1…
}
ElseIf (predicate2)
{

…statements2…
}
Else
{

…statements3…
}

is translated to the following:

If (predicate1)
{

…statements1…
}
Else
{

If (predicate2)
{

…statements2…
}
Else
{

…statements3…
}

}

ACPI Source Language (ASL) Reference 597

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.37 EndDependentFn (End Dependent Function Resource Descriptor
Macro)

Syntax

EndDependentFn () => Buffer

Description

The EndDependentFn macro generates an end-of-dependent-function resource descriptor buffer inside of
an ResourceTemplate (page 544). It must be matched with a StartDependentFn (page 547) or
StartDependentFnNoPri (page 547) macro.

18.5.38 Event (Declare Event Synchronization Object)

Syntax

Event (EventName)

Arguments

Creates an event synchronization object named EventName.

Description

For more information about the uses of an event synchronization object, see the ASL definitions for the
Wait, Signal, and Reset function operators.

18.5.39 ExtendedIO (Extended IO Resource Descriptor Macro)

Syntax

ExtendedIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, TypeSpecificAttributes, DescriptorName, TranslationType,
TranslationDensity)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName._MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName._MAF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

598 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 64-bit field DescriptorName._GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O range.
The 64-bit field DescriptorName._LEN is automatically created to refer to this portion of the resource
descriptor.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName._TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operatorsDescription

The ExtendedIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in
“Extended Address Space Descriptor” (page 242). The macro is designed to be used inside of a
ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 599

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro)

Syntax

ExtendedMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable,
ReadAndWrite, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, TypeSpecificAttributes,
DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName._DEC is automatically created to refer to this portion of the resource descriptor, where ‘1’
is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field
DescriptorName._MEM is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Cacheable, ‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName._GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName ._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName ._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName. _TRA is
automatically created to refer to this portion of the resource descriptor.

600 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked as
normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName. _MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’ is
AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic is specified, then the
secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
section 6.4.3.5.4.1,”Type Specific Attributes”.

Description

The ExtendedMemory macro evaluates to a buffer which contains a 64-bit memory resource descriptor,
which describes a range of memory addresses. The format of the 64-bit memory resource descriptor can be
found in “Extended Address Space Descriptor” (page 242). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor
Macro)

Syntax

ExtendedSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, TypeSpecificAttributes,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ACPI Source Language (ASL) Reference 601

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

TypeSpecificAttributes is an optional argument that specifies attributes specific to this resource type. See
section 6.4.3.5.4.1,”Type Specific Attributes”.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The ExtendedSpace macro evaluates to a buffer which contains a 64-bit Address Space resource
descriptor, which describes a range of addresses. The format of the 64-bit AddressSpace descriptor can be
found in “Extended Address Space Descriptor” (page 242). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.42 External (Declare External Objects)

Syntax

External (ObjectName, ObjectType, ReturnType, ParameterTypes)

Arguments

ObjectName is a NameString.

ObjectType is an optional ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). If not specified,
“UnknownObj” type is assumed.

602 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ReturnType is optional. If the specified ObjectType is MethodObj, then this specifies the type or types of
object returned by the method. If the method does not return an object, then nothing is specified or
UnknownObj is specified. To specify a single return type, simply use the ObjectTypeKeyword. To specify
multiple possible return types, enclose the comma-separated ObjectTypeKeywords with braces. For
example: {IntObj, BuffObj}.

ParameterTypes is optional. If the specified ObjectType is MethodObj, this specifies both the number and
type of the method parameters. It is a comma-separated, variable-length list of the expected object type or
types for each of the method parameters, enclosed in braces. For each parameter, the parameter type
consists of either an ObjectTypeKeyword or a comma-separated sub-list of ObjectTypeKeywords enclosed
in braces. There can be no more than seven parameters in total.Description

The External directive informs the ASL compiler that the object is declared external to this table so that no
errors will be generated for an undeclared object. The ASL compiler will create the external object at the
specified place in the namespace (if a full path of the object is specified), or the object will be created at the
current scope of the External term.

External is especially useful for use in secondary SSDTs, when the required scopes and objects are declared
in the main DSDT.

Example

This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{

External (_SB.PCI0, DeviceObj)

Scope (_SB.PCI0)
{
}

}

18.5.43 Fatal (Fatal Error Check)

Syntax

Fatal (Type, Code, Arg)

Arguments

This operation is used to inform the OS that there has been an OEM-defined fatal error.

Description

In response, the OS must log the fatal event and perform a controlled OS shutdown in a timely fashion.

18.5.44 Field (Declare Field Objects)

Syntax

Field (RegionName, AccessType, LockRule, UpdateRule) {FieldUnitList}

Arguments

RegionName is a namestring that refers to the host operation region.

ACPI Source Language (ASL) Reference 603

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

AccessType defines the default access width of the field definition and is any one of the following:
AnyAcc, ByteAcc, WordAcc, DWordAcc, or QWordAcc. In general, accesses within the parent object
are performed naturally aligned. If desired, AccessType set to a value other than AnyAcc can be used to
force minimum access width. Notice that the parent object must be able to accommodate the AccessType
width. For example, an access type of WordAcc cannot read the last byte of an odd-length operation
region. The exceptions to natural alignment are the access types used for a non-linear SMBus device. These
will be discussed in detail below. Not all access types are meaningful for every type of operational region.

LockRule is a flag that indicates whether the Global Lock is to be used when accessing this field and is one
of the following: Lock or NoLock. If LockRule is set to Lock, accesses to modify the component data
objects will acquire and release the Global Lock. If both types of locking occur, the Global Lock is
acquired after the parent object Mutex.

UpdateRule is used to specify how the unmodified bits of a field are treated and is any one of the
following: Preserve, WriteAsOnes, or WriteAsZeros. For example, if a field defines a component data
object of 4 bits in the middle of a WordAcc region, when those 4 bits are modified the UpdateRule
specifies how the other 12 bits are treated.

FieldUnitList is a variable-length list of individual field unit definitions, separated by commas. Each entry
in the field unit list is one of the following:

FieldUnitName, BitLength

Offset (ByteOffset)

AccessAs (AccessType, AccessAttribute)

FieldUnitName is the ACPI name for the field unit (1 to 4 characters), and BitLength is the length of the
field unit in bits. Offset is used to specify the byte offset of the next defined field unit. This can be used
instead of defining the bit lengths that need to be skipped. AccessAs is used to define the access type and
attributes for the remaining field units within the list.

Description

Declares a series of named data objects whose data values are fields within a larger object. The fields are
parts of the object named by RegionName, but their names appear in the same scope as the Field term.

For example, the field operator allows a larger operation region that represents a hardware register to be
broken down into individual bit fields that can then be accessed by the bit field names. Extracting and
combining the component field from its parent is done automatically when the field is accessed.

When reading from a FieldUnit, returned values are normalized (shifted and masked to the proper length.)
The data type of an individual FieldUnit can be either a Buffer or an Integer, depending on the bit length
of the FieldUnit. If the FieldUnit is smaller than or equal to the size of an Integer (in bits), it will be treated
as an Integer. If the FieldUnit is larger than the size of an Integer, it will be treated as a Buffer. The size of
an Integer is indicated by the DSDT header’s Revision field. A revision less than 2 indicates that the size of
an Integer is 32 bits. A value greater than or equal to 2 signifies that the size of an Integer is 64 bits. For
more information about data types and FieldUnit type conversion rules, see section 18.2.5.7, “Data Type
Conversion Rules”.

Accessing the contents of a field data object provides access to the corresponding field within the parent
object. If the parent object supports Mutex synchronization, accesses to modify the component data objects
will acquire and release ownership of the parent object around the modification.

604 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The following table relates region types declared with an OperationRegion term to the different access
types supported for each region.

Table 18-18 OperationRegion Region Types and Access Types

Region Type Permitted Access Type(s) Description

SystemMemory ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

SystemIO ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

PCI_Config ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

EmbeddedControl ByteAcc Byte access only

SMBus BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

CMOS ByteAcc Byte access only

PciBarTarget ByteAcc, WordAcc, DWordAcc,
QWordAcc, or AnyAcc

All access allowed

IPMI BufferAcc Reads and writes to this operation region
involve the use of a region specific data buffer.
(See below.)

The named FieldUnit data objects are provided in the FieldList as a series of names and bit widths. Bits
assigned no name (or NULL) are skipped. The ASL compiler supports the Offset (ByteOffset) macro
within a FieldList to skip to the bit position of the supplied byte offset, and the AccessAs macro to change
access within the field list.

SMBus and IPMI regions are inherently non-linear, where each offset within the respective address space
represents a variable sized (0 to 32 bytes) field. Given this uniqueness, these operation regions include
restrictions on their field definitions and require the use of a region-specific data buffer when initiating
transactions. For more information on the SMBus data buffer format, see section 14, “ACPI System
Management Bus Interface Specification,”. For more information on the IPMI data buffer format, see
section 5.5.2.4.3, “Declaring IPMI Operation Regions”.

Example

OperationRegion (MIOC, PCI_Config, Zero, 0xFF)

Field (MIOC, AnyAcc, NoLock, Preserve)
{

Offset (0x58),
HXGB, 32,
HXGT, 32,
GAPE, 8,
MR0A, 4,
MR0B, 4

}

ACPI Source Language (ASL) Reference 605

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.45 FindSetLeftBit (Find First Set Left Bit)

Syntax

FindSetLeftBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description

The one-based bit location of the first MSb (most significant set bit) is optionally stored into Result. The
result of 0 means no bit was set, 1 means the left-most bit set is the first bit, 2 means the left-most bit set is
the second bit, and so on.

18.5.46 FindSetRightBit (Find First Set Right Bit)

Syntax

FindSetRightBit (Source, Result) => Integer

Arguments

Source is evaluated as an Integer.

Description

The one-based bit location of the most LSb (least significant set bit) is optionally stored in Result. The
result of 0 means no bit was set, 32 means the first bit set is the thirty-second bit, 31 means the first bit set
is the thirty-first bit, and so on.

18.5.47 FixedIO (Fixed IO Resource Descriptor Macro)

Syntax

FixedIO (AddressBase, RangeLength, DescriptorName) => Buffer

Arguments

AddressBase evaluates to a 16-bit integer. It describes the starting address of the fixed I/O range. The field
DescriptorName. _BAS is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to an 8-bit integer. It describes the length of the fixed I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

Description

The FixedIO macro evaluates to a buffer which contains a fixed I/O resource descriptor. The format of the
fixed I/O resource descriptor can be found in “Fixed Location I/O Port Descriptor ” (page 228). The macro
is designed to be used inside of a ResourceTemplate (page 544).

606 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.48 FromBCD (Convert BCD To Integer)

Syntax

FromBCD (BCDValue, Result) => Integer

Arguments

BCDValue is evaluated as an Integer.

Description

The FromBCD operation is used to convert BCDValue to a numeric format and store the numeric value
into Result.

18.5.49 Function (Declare Control Method)

Syntax

Function (FunctionName, ReturnType, ParameterTypes) {TermList}

Arguments

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the method does
not return an object, then nothing is specified or UnknownObj is specified. To specify a single return type,
simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify multiple possible return types,
enclose the comma-separated ObjectTypeKeywords with braces. For example: {IntObj, BuffObj}.

ParameterTypes specifies both the number and type of the method parameters. It is a comma-separated,
variable-length list of the expected object type or types for each of the method parameters, enclosed in
braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword or a comma-
separated sub-list of ObjectTypeKeywords enclosed in braces. There can be no more than seven parameters
in total.

Description

Function declares a named package containing a series of terms that collectively represent a control
method. A control method is a procedure that can be invoked to perform computation. Function opens a
name scope.

System software executes a control method by executing the terms in the package in order. For more
information on method execution, see section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

Functions are equivalent to a Method that specifies NotSerialized. As such, a function should not create
any named objects, since a second thread that might re-enter the function will cause a fatal error if an
attempt is made to create the same named object twice.

Compatibility Note: New for ACPI 3.0

ACPI Source Language (ASL) Reference 607

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

The following block of ASL sample code shows the use of Function for defining a control method:

Function (EXAM, IntObj, {StrObj, {IntObj, StrObj}})
{

Name (Temp,””)
Store (Arg0, Temp) // could have used Arg1
Return (SizeOf (Concatenate (Arg1, Temp)))

}

This declaration is equivalent to:

Method (EXAM, 2, NotSerialized, 0, IntObj, {StrObj, {IntObj, StrObj}})
{
…
}

18.5.50 If (Conditional Execution)

Syntax

If (Predicate) {TermList}

Arguments

Predicate is evaluated as an Integer.

Description

If the Predicate is non-zero, the term list of the If term is executed.

Example

The following examples all check for bit 3 in Local0 being set, and clear it if set.

// example 1

If (And (Local0, 4))
{

XOr (Local0, 4, Local0)
}

// example 2

Store (4, Local2)
If (And (Local0, Local2))
{

XOr (Local0, Local2, Local0)
}

18.5.51 Include (Include Additional ASL File)

Syntax

Include (FilePathName)

Arguments

FilePathname is a StringData data type that contains the full OS file system path.

608 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

Include another file that contains ASL terms to be inserted in the current file of ASL terms. The file must
contain elements that are grammatically correct in the current scope.

Example

Include ("dataobj.asl")

18.5.52 Increment (Integer Increment)

Syntax

Increment (Addend) => Integer

Arguments

Addend is evaluated as an Integer.

Description

Add one to the Addend and place the result back in Addend. Equivalent to Add (Addend, 1, Addend).
Overflow conditions are ignored and the result of an overflow is zero.

18.5.53 Index (Indexed Reference To Member Object)

Syntax

Index (Source, Index, Destination) => ObjectReference

Arguments

Source is evaluated to a buffer, string, or package data type. Index is evaluated to an integer. The reference
to the nth object (where n = Index) within Source is optionally stored as a reference into Destination.

Description

When Source evaluates to a Buffer, Index returns a reference to a Buffer Field containing the nth byte in
the buffer. When Source evaluates to a String, Index returns a reference to a Buffer Field containing the nth
character in the string. When Source evaluates to a Package, Index returns a reference to the nth object in
the package.

18.5.53.1 Index with Packages

The following example ASL code shows a way to use the Index term to store into a local variable the sixth
element of the first package of a set of nested packages:

ACPI Source Language (ASL) Reference 609

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Name (IO0D, Package () {
Package () {

0x01, 0x03F8, 0x03F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFE, 0x00, 0x00
},
Package () {

0x01, 0x02F8, 0x02F8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBE, 0x00, 0x00
},
Package () {

0x01, 0x03E8, 0x03E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xFA, 0x00, 0x00
},
Package () {

x01, 0x02E8, 0x02E8, 0x01, 0x08, 0x01, 0x25, 0xFF, 0xBA, 0x00, 0x00
},
Package() {

0x01, 0x0100, 0x03F8, 0x08, 0x08, 0x02, 0x25, 0x20, 0x7F, 0x00, 0x00
}

})

// Get the 6th element of the first package

Store (DeRefOf (Index (DeRefOf (Index (IO0D, 0)), 5)), Local0)

Note: DeRefOf is necessary in the first operand of the Store operator in order to get the actual object,
rather than just a reference to the object. If DeRefOf were not used, then Local0 would contain an object
reference to the sixth element in the first package rather than the number 1.

18.5.53.2 Index with Buffers

The following example ASL code shows a way to store into the third byte of a buffer:

Name (BUFF, Buffer () {0x01, 0x02, 0x03, 0x04, 0x05})

// Store 0x55 into the third byte of the buffer

Store (0x55, Index (BUFF, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

If Source is evaluated to a buffer data type, the ObjectReference refers to the byte at Index within Source. If
Source is evaluated to a buffer data type, a Store operation will only change the byte at Index within
Source.

The following example ASL code shows the results of a series of Store operations:

Name (SRCB, Buffer () {0x10, 0x20, 0x30, 0x40})
Name (BUFF, Buffer () {0x1, 0x2, 0x3, 0x4})

The following will store 0x78 into the 3rd byte of the destination buffer:

Store (0x12345678, Index (BUFF, 2))

The following will store 0x10 into the 2nd byte of the destination buffer:

Store (SRCB, Index (BUFF, 1))

The following will store 0x41 (an ‘A’) into the 4th byte of the destination buffer:

Store (“ABCDEFGH”, Index (BUFF, 3))

Compatibility Note: First introduced in ACPI 2.0. In ACPI 1.0, the behavior of storing data larger than 8-
bits into a buffer using Index was undefined.

610 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.53.3 Index with Strings

The following example ASL code shows a way to store into the 3rd character in a string:

Name (STR, “ABCDEFGHIJKL”)

// Store ‘H’ (0x48) into the third character to the string

Store (“H”, Index (STR, 2))

The Index operator returns a reference to an 8-bit Buffer Field (similar to that created using
CreateByteField).

Compatibility Note: First introduced in ACPI 2.0.

18.5.54 IndexField (Declare Index/Data Fields)

Syntax

IndexField (IndexName, DataName, AccessType, LockRule, UpdateRule)
{FieldUnitList}

Arguments

IndexName and DataName refer to field unit objects. AccessType, LockRule, UpdateRule, and FieldList are
the same format as the Field term.

Description

Creates a series of named data objects whose data values are fields within a larger object accessed by an
index/data-style reference to IndexName and DataName.

This encoding is used to define named data objects whose data values are fields within an index/data
register pair. This provides a simple way to declare register variables that occur behind a typical index and
data register pair.

Accessing the contents of an indexed field data object will automatically occur through the DataName
object by using an IndexName object aligned on an AccessType boundary, with synchronization occurring
on the operation region that contains the index data variable, and on the Global Lock if specified by
LockRule.

The value written to the IndexName register is defined to be a byte offset that is aligned on an AccessType
boundary. For example, if AccessType is DWordAcc, valid index values are 0, 4, 8, etc. This value is
always a byte offset and is independent of the width or access type of the DataName register.

Example

The following is a block of ASL sample code using IndexField:

Creates an index/data register in system I/O space made up of 8-bit registers.
 Creates a FET0 field within the indexed range.

ACPI Source Language (ASL) Reference 611

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Method (EX1) {
// Define a 256-byte operational region in SystemIO space
// and name it GIO0

OperationRegion (GIO0, 1, 0x125, 0x100)

// Create a field named Preserve structured as a sequence
// of index and data bytes

Field (GIO0, ByteAcc, NoLock, WriteAsZeros) {
IDX0, 8,
DAT0, 8,

.

.

.
}
// Create an IndexField within IDX0 & DAT0 which has
// FETs in the first two bits of indexed offset 0,
// and another 2 FETs in the high bit on indexed
// 2F and the low bit of indexed offset 30

IndexField (IDX0, DAT0, ByteAcc, NoLock, Preserve) {
FET0, 1,
FET1, 1,
Offset (0x2f), // skip to byte offset 2f
, 7, // skip another 7 bits
FET3, 1,
FET4, 1

}

// Clear FET3 (index 2F, bit 7)

Store (Zero, FET3)

} // End EX1

18.5.55 Interrupt (Interrupt Resource Descriptor Macro)

Syntax

Interrupt (ResourceUsage, EdgeLevel, ActiveLevel, Shared,
ResourceSourceIndex, ResourceSource, DescriptorName) {InterruptList} =>
Buffer

Arguments

ResourceUsage describes whether the device consumes the specified interrupt (ResourceConsumer) or
produces it for use by a child device (ResourceProducer). If nothing is specified, then ResourceConsumer
is assumed.

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The field
DescriptorName. _HE is automatically created to refer to this portion of the resource descriptor, where ‘1’
is Edge and ‘0’ is Level.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow). The
field DescriptorName. _LL is automatically created to refer to this portion of the resource descriptor, where
‘1’ is ActiveHigh and ‘0’ is ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not (Exclusive). The
field DescriptorName. _SHR is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Shared and ‘0’ is Exclusive. If nothing is specified, then Exclusive is assumed.

ResourceSourceIndex evaluates to an integer between 0x00 and 0xFF and describes the resource source
index. If it is not specified, then it is not generated. If this argument is specified, the ResourceSource
argument must also be specified.

612 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ResourceSource evaluates to a string which uniquely identifies the resource source. If it is not specified, it
is not generated. If this argument is specified, but the ResourceSourceIndex argument is not specified, a
zero value is assumed.

DescriptorName evaluates to a name string which refers to the entire resource descriptor.

InterruptList is a comma-delimited list on integers, at least one value is required. Each integer represents a
32-bit interrupt number. At least one interrupt must be defined, and there may be no duplicates in the list.
The field “DescriptorName. _INT” is automatically created to refer to this portion of the resource
descriptor.

Description

The Interrupt macro evaluates to a buffer that contains an interrupt resource descriptor. The format of the
interrupt resource descriptor can be found in “Extended Interrupt Descriptor ” (page 249). The macro is
designed to be used inside of a ResourceTemplate (page 544).

18.5.56 IO (IO Resource Descriptor Macro)

Syntax

IO (Decode, AddressMin, AddressMax, AddressAlignment, RangeLength,
DescriptorName) => Buffer

Argument

Decode describes whether the I/O range uses 10-bit decode (Decode10) or 16-bit decode (Decode16). The
field DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Decode16 and ‘0’ is Decode10.

AddressMin evaluates to a 16-bit integer that specifies the minimum acceptable starting address for the I/O
range. It must be an even multiple of AddressAlignment. The field DescriptorName._MIN is automatically
created to refer to this portion of the resource descriptor.

AddressMax evaluates to a 16-bit integer that specifies the maximum acceptable starting address for the I/O
range. It must be an even multiple of AddressAlignment. The field DescriptorName._MAX is automatically
created to refer to this portion of the resource descriptor.

AddressAlignment evaluates to an 8-bit integer that specifies the alignment granularity for the I/O address
assigned. The field DescriptorName. _ALN is automatically created to refer to this portion of the resource
descriptor.

RangeLength evaluates to an 8-bit integer that specifies the number of bytes in the I/O range. The field
DescriptorName. _LEN is automatically created to refer to this portion of the resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The IO macro evaluates to a buffer which contains an IO resource descriptor. The format of the IO
descriptor can be found in “I/O Port Descriptor” (page 227). The macro is designed to be used inside of a
ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 613

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.57 IRQ (Interrupt Resource Descriptor Macro)

Syntax

IRQ (EdgeLevel, ActiveLevel, Shared, DescriptorName) {InterruptList} =>
Buffer

Arguments

EdgeLevel describes whether the interrupt is edge triggered (Edge) or level triggered (Level). The field
DescriptorName. _HE is automatically created to refer to this portion of the resource descriptor, where ‘1’
is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

ActiveLevel describes whether the interrupt is active-high (ActiveHigh) or active-low (ActiveLow). The
field DescriptorName. _LL is automatically created to refer to this portion of the resource descriptor, where
‘1’ is Edge and ActiveHigh and ‘0’ is Level and ActiveLow.

Shared describes whether the interrupt can be shared with other devices (Shared) or not (Exclusive). The
field DescriptorName. _SHR is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is Shared and ‘0’ is Exclusive. If nothing is specified, then Exclusive is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is required.
There may be no duplicates in the list.

Description

The IRQ macro evaluates to a buffer that contains an IRQ resource descriptor. The format of the IRQ
descriptor can be found in “IRQ Descriptor” (page 225). The macro produces the three-byte form of the
descriptor. The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.58 IRQNoFlags (Interrupt Resource Descriptor Macro)

Syntax

IRQNoFlags (DescriptorName) {InterruptList} => Buffer

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer.

InterruptList is a comma-delimited list of integers in the range 0 through 15, at least one value is required.
There may be no duplicates in the list Description

The IRQNoFlags macro evaluates to a buffer which contains an active-high, edge-triggered IRQ resource
descriptor. The format of the IRQ descriptor can be found in IRQ Descriptor (page 225). The macro
produces the two-byte form of the descriptor. The macro is designed to be used inside of a
ResourceTemplate (page 544).

614 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.59 LAnd (Logical And)

Syntax

LAnd (Source1, Source2) => Boolean

Arguments

Source1 and source2 are evaluated as integers.

Description

If both values are non-zero, True is returned: otherwise, False is returned.

18.5.60 LEqual (Logical Equal)

Syntax

LEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If the values are equal, True is returned; otherwise, False is returned. For integers, a numeric compare is
performed. For strings and buffers, True is returned only if both lengths are the same and the result of a
byte-wise compare indicates exact equality.

18.5.61 LGreater (Logical Greater)

Syntax

LGreater (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is greater than Source2, True is returned; otherwise, False is returned. For integers, a numeric
comparison is performed. For strings and buffers, a lexicographic comparison is performed. True is
returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is numerically
greater than the corresponding byte in Source2. False is returned if at least one byte in Source1 is
numerically less than the corresponding byte in Source2. In the case of byte-wise equality, True is returned
if the length of Source1 is greater than Source2, False is returned if the length of Source1 is less than or
equal to Source2.

ACPI Source Language (ASL) Reference 615

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.62 LGreaterEqual (Logical Greater Than Or Equal)

Syntax

LGreaterEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is greater than or equal to Source2, True is returned; otherwise, False is returned. Equivalent to
LNot(LLess()). See the description of the LLess operator.

18.5.63 LLess (Logical Less)

Syntax

LLess (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is less than Source2, True is returned; otherwise, False is returned. For integers, a numeric
comparison is performed. For strings and buffers, a lexicographic comparison is performed. True is
returned if a byte-wise (unsigned) compare discovers at least one byte in Source1 that is numerically less
than the corresponding byte in Source2. False is returned if at least one byte in Source1 is numerically
greater than the corresponding byte in Source2. In the case of byte-wise equality, True is returned if the
length of Source1 is less than Source2, False is returned if the length of Source1 is greater than or equal to
Source2.

18.5.64 LLessEqual (Logical Less Than Or Equal)

Syntax

LLessEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is less than or equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LGreater()). See the description of the LGreater operator.

616 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.65 LNot (Logical Not)

Syntax

LNot (Source) => Boolean

Arguments

Source is evaluated as an integer.

Description

If the value is zero True is returned; otherwise, False is returned.

18.5.66 LNotEqual (Logical Not Equal))

Syntax

LNotEqual (Source1, Source2) => Boolean

Arguments

Source1 and Source2 must each evaluate to an integer, a string, or a buffer. The data type of Source1
dictates the required type of Source2. Source2 is implicitly converted if necessary to match the type of
Source1.

Description

If Source1 is not equal to Source2, True is returned; otherwise False is returned. Equivalent to
LNot(LEqual()).See the description of the LEqual operator.

18.5.67 Load (Load Definition Block)

Syntax

Load (Object, DDBHandle)

Arguments

The Object parameter can either refer to an operation region field or an operation region directly. If the
object is an operation region, the operation region must be in SystemMemory space. The Definition Block
should contain an ACPI DESCRIPTION_HEADER of type SSDT. The Definition Block must be totally
contained within the supplied operation region or operation region field. OSPM reads this table into
memory, the checksum is verified, and then it is loaded into the ACPI namespace. The DDBHandle
parameter is the handle to the Definition Block that can be used to unload the Definition Block at a future
time via the Unload operator.

Description

Performs a run-time load of a Definition Block. Any table referenced by Load must be in memory marked
as AddressRangeReserved or AddressRangeNVS.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the root of the namespace. The
new Definition Block can override this by specifying absolute names or by adjusting the namespace
location using the Scope operator.

ACPI Source Language (ASL) Reference 617

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

18.5.68 LoadTable (Load Definition Block From XSDT)

Syntax

LoadTable (SignatureString, OEMIDString, OEMTableIDString, RootPathString,
ParameterPathString, ParameterData) => DDBHandle

Arguments

The XSDT is searched for a table where the Signature field matches SignatureString, the OEM ID field
matches OEMIDString, and the OEM Table ID matches OEMTableIDString. All comparisons are case
sensitive. If the SignatureString is greater than four characters, the OEMIDString is greater than six
characters, or the OEMTableID is greater than eight characters, a run-time error is generated. The OS can
also check the OEM Table ID and Revision ID against a database for a newer revision Definition Block of
the same OEM Table ID and load it instead.

The RootPathString specifies the root of the Definition Block. It is evaluated using normal scoping rules,
assuming that the scope of the LoadTable instruction is the current scope. The new Definition Block can
override this by specifying absolute names or by adjusting the namespace location using the Scope
operator. If RootPathString is not specified, “\” is assumed

If ParameterPathString and ParameterData are specified, the data object specified by ParameterData is
stored into the object specified by ParameterPathString after the table has been added into the namespace.
If the first character of ParameterPathString is a backslash (‘\’) or caret (‘^’) character, then the path of the
object is ParameterPathString. Otherwise, it is RootPathString.ParameterPathString. If the specified
object does not exist, a run-time error is generated.

The handle of the loaded table is returned. If no table matches the specified signature, then 0 is returned.

Description

Performs a run-time load of a Definition Block from the XSDT. Any table referenced by LoadTable must
be in memory marked by AddressRangeReserved or AddressRangeNVS. Note: OSPM loads the DSDT and
all SSDTs during initialization. As such, Definition Blocks to be conditionally loaded via LoadTable must
contain signatures other than “SSDT”.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

Example

Store (LoadTable (“OEM1”, ”MYOEM”, ”TABLE1”, ”_SB.PCI0”,”MYD”,
Package () {0,”_SB.PCI0”}), Local0)

This operation would search through the RSDT or XSDT for a table with the signature “OEM1,” the OEM
ID of “MYOEM,” and the table ID of “TABLE1.” If not found, it would store Zero in Local0. Otherwise,
it will store a package containing 0 and “_SB.PCI0” into the variable at _SB.PCI0.MYD.

618 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.69 Localx (Method Local Data Objects)

Syntax

Local0 | Local1 | Local2 | Local3 | Local4 | Local5 | Local6 | Local7

Description

Up to 8 local objects can be referenced in a control method. On entry to a control method, these objects are
uninitialized and cannot be used until some value or reference is stored into the object. Once initialized,
these objects are preserved in the scope of execution for that control method.

18.5.70 LOr (Logical Or)

Syntax

LOr (Source1, Source2) => Boolean

Arguments

Source1 and Source2 are evaluated as integers.

Description

If either value is non-zero, True is returned; otherwise, False is returned.

18.5.71 Match (Find Object Match)

Syntax

Match (SearchPackage, Op1, MatchObject1, Op2, MatchObject2, StartIndex) =>
Ones | Integer

Arguments

SearchPackage is evaluated to a package object and is treated as a one-dimension array. Each package
element must evaluate to either an integer, a string, or a buffer. Uninitialized package elements and
elements that do not evaluate to integers, strings, or buffers are ignored. Op1 and Op2 are match operators.
MatchObject1 and MatchObject2 are the objects to be matched and must each evaluate to either an integer,
a string, or a buffer. StartIndex is the starting index within the SearchPackage.

Description

A comparison is performed for each element of the package, starting with the index value indicated by
StartIndex (0 is the first element). If the element of SearchPackage being compared against is called P[i],
then the comparison is:

If (P[i] Op1 MatchObject1) and (P[i] Op2 MatchObject2) then Match => i is returned.

If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant
object Ones is returned. The data type of the MatchObject dictates the required type of the package
element. If necessary, the package element is implicitly converted to match the type of the MatchObject. If
the implicit conversion fails for any reason, the package element is ignored (no match.)

Op1 and Op2 have the values and meanings listed in the Table 18-19.

ACPI Source Language (ASL) Reference 619

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 18-19 Match Term Operator Meanings

Operator Encoding Macro

TRUE – A don’t care, always returns TRUE 0 MTR

EQ – Returns TRUE if P[i] == MatchObject 1 MEQ

LE – Returns TRUE if P[i] <= MatchObject 2 MLE

LT – Returns TRUE if P[i] < MatchObject 3 MLT

GE – Returns TRUE if P[i] >= MatchObject 4 MGE

GT – Returns TRUE if P[i] > MatchObject 5 MGT

Example

Following are some example uses of Match:

Name (P1,
Package () {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

// match 1993 == P1[i]
Match (P1, MEQ, 1993, MTR, 0, 0) // -> 7, since P1[7] == 1993

// match 1984 == P1[i]
Match (P1, MEQ, 1984, MTR, 0, 0) // -> ONES (not found)

// match P1[i] > 1984 and P1[i] <= 2000
Match (P1, MGT, 1984, MLE, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

// match P1[i] > 1984 and P1[i] <= 2000, starting with 3rd element
Match (P1, MGT, 1984, MLE, 2000, 3) // -> 3, first match at or past Start

18.5.72 Memory24 (Memory Resource Descriptor Macro)

Syntax

Memory24 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment,
RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressMinimum evaluates to a 16-bit integer that specifies bits [8:23] of the lowest possible base address
of the memory range. All other bits are assumed to be zero. The value must be an even multiple of
AddressAlignment. The 16-bit field DescriptorName._MIN is automatically created to refer to this portion
of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies bits [8:23] of the highest possible base address
of the memory range. All other bits are assumed to be zero. The value must be an even multiple of
AddressAlignment. The 16-bit field DescriptorName._MAX is automatically created to refer to this portion
of the resource descriptor.

AddressAlignment evaluates to a 16-bit integer that specifies bits [0:15] of the required alignment for the
memory range. All other bits are assumed to be zero. The address selected must be an even multiple of this
value. The 16-bit field DescriptorName. _ALN is automatically created to refer to this portion of the
resource descriptor.

620 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the memory
range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor. The range length provides the length of the memory range in 256 byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Memory24 macro evaluates to a buffer which contains an 24-bit memory descriptor. The format of the
24-bit memory descriptor can be found in “24-Bit Memory Range Descriptor ” (page 231). The macro is
designed to be used inside of a ResourceTemplate (page 544).

NOTE: The use of Memory24 is deprecated and should not be used in new designs.

18.5.73 Memory32 (Memory Resource Descriptor Macro)

Syntax

Memory32 (ReadAndWrite, AddressMinimum, AddressMaximum, AddressAlignment,
RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressMinimum evaluates to a 32-bit integer that specifies the lowest possible base address of the memory
range. The value must be an even multiple of AddressAlignment. The 32-bit field DescriptorName._MIN is
automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 32-bit integer that specifies the highest possible base address of the
memory range. The value must be an even multiple of AddressAlignment. The 32-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressAlignment evaluates to a 32-bit integer that specifies the required alignment for the memory range.
The address selected must be an even multiple of this value. The 32-bit field DescriptorName. _ALN is
automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the memory
range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor. The range length provides the length of the memory range in 1 byte blocks.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Memory32 macro evaluates to a buffer which contains a 32-bit memory descriptor, which describes a
memory range with a minimum, a maximum and an alignment. The format of the 32-bit memory descriptor
can be found in “32-Bit Memory Range Descriptor ” (page 232). The macro is designed to be used inside
of a ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 621

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.74 Memory32Fixed (Memory Resource Descriptor Macro)

Syntax

Memory32Fixed (ReadAndWrite, AddressBase, RangeLength, DescriptorName)

Arguments

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressBase evaluates to a 32-bit integer that specifies the base address of the memory range. The 32-bit
field DescriptorName. _BAS is automatically created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 32-bit integer that specifies the total number of bytes decoded in the memory
range. The 32-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Memory32Fixed macro evaluates to a buffer which contains a 32-bit memory descriptor, which
describes a fixed range of memory addresses. The format of the fixed 32-bit memory descriptor can be
found in 32-Bit Fixed Memory Range Descriptor (page 233). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.75 Method (Declare Control Method)

Syntax

Method (MethodName, NumArgs, SerializeRule, SyncLevel, ReturnType,
ParameterTypes) {TermList}

Arguments

MethodName is evaluated as a Namestring data type.

NumArgs is optional and is the required number of arguments to be passed to the method, evaluated as an
Integer data type. If not specified, the default value is zero arguments. Up to 7 arguments may be passed to
a method. These arguments may be referenced from within the method as Arg0 through Arg6.

SerializeRule is optional and is a flag that defines whether the method is serialized or not and is one of the
following: Serialized or NotSerialized. A method that is serialized cannot be reentered by additional
threads. If not specified, the default is NotSerialized.

SyncLevel is optional and specifies the synchronization level for the method (0 – 15). If not specified, the
default sync level is zero.

ReturnType is optional and specifies the type(s) of the object(s) returned by the method. If the method does
not return an object, then nothing is specified or UnknownObj is specified. To specify a single return type,
simply use the ObjectTypeKeyword (e.g. IntObj, PkgObj, etc.). To specify multiple possible return types,
enclose the comma-separated ObjectTypeKeywords with braces. For example: {IntObj, BuffObj}.

622 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ParameterTypes is optional and specifies the type of the method parameters. It is a comma-separated,
variable-length list of the expected object type or types for each of the method parameters, enclosed in
braces. For each parameter, the parameter type consists of either an ObjectTypeKeyword or a comma-
separated sub-list of ObjectTypeKeywords enclosed in braces. If ParameterTypes is specified, the number
of parameters must match NumArgs.

TermList is a variable-length list of executable ASL statements representing the body of the control
method.

Description

Creates a new control method of name MethodName. This is a named package containing a series of object
references that collectively represent a control method, which is a procedure that can be invoked to perform
computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on method execution, see section 5.5.2, “Control Method Execution.”

The current namespace location used during name creation is adjusted to be the current location on the
namespace tree. Any names created within this scope are “below” the name of this package. The current
namespace location is assigned to the method package, and all namespace references that occur during
control method execution for this package are relative to that location.

If a method is declared as Serialized, an implicit mutex associated with the method object is acquired at the
specified SyncLevel. If no SyncLevel is specified, SyncLevel 0 is assumed. The serialize rule can be used to
prevent reentering of a method. This is especially useful if the method creates namespace objects. Without
the serialize rule, the reentering of a method will fail when it attempts to create the same namespace object.

There are eight local variables automatically available for each method, referenced as Local0 through
Local7. These locals may be used to store any type of ASL object.

Also notice that all namespace objects created by a method have temporary lifetime. When method
execution exits, the created objects will be destroyed.

Examples

The following block of ASL sample code shows a use of Method for defining a control method that turns
on a power resource.

Method (_ON) {
Store (One, GIO.IDEP) // assert power
Sleep (10) // wait 10ms
Store (One, GIO.IDER) // de-assert reset#
Stall (10) // wait 10us
Store (Zero, GIO.IDEI) // de-assert isolation

}

This method is an implementation of _SRS (Set Resources). It shows the use of a method argument and
two method locals.

Method (_SRS, 1, NotSerialized)
{

CreateWordField (Arg0, One, IRQW)
Store (_SB.PCI0.PID1.IENA, Local1)
Or (IRQW, Local1, Local1)
Store (Local1, _SB.PCI0.PID1.IENA)
FindSetRightBit (IRQW, Local0)
If (Local0)
{

Decrement (Local0)
Store (Local0, _SB.PCI0.PID1.IN01)

}
}

ACPI Source Language (ASL) Reference 623

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.76 Mid (Extract Portion of Buffer or String)

Syntax

Mid (Source, Index, Length, Result) => Buffer or String

Arguments

Source is evaluated as either a Buffer or String. Index and Length are evaluated as Integers.

Description

If Source is a buffer, then Length bytes, starting with the Indexth byte (zero-based) are optionally copied
into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty buffer.
Otherwise, if Index + Length is greater than or equal to the length of the buffer, then only bytes up to and
including the last byte are included in the result.

If Source is a string, then Length characters, starting with the Indexth character (zero-based) are optionally
copied into Result. If Index is greater than or equal to the length of the buffer, then the result is an empty
string. Otherwise, if Index + Length is greater than or equal to the length of the string, then only bytes up to
an including the last character are included in the result.

18.5.77 Mod (Integer Modulo)

Syntax

Mod (Dividend, Divisor, Result) => Integer

Arguments

Dividend and Divisor are evaluated as Integers.

Description

The Dividend is divided by Divisor, and then the resulting remainder is optionally stored into Result. If
Divisor evaluates to zero, a fatal exception is generated.

18.5.78 Multiply (Integer Multiply)

Syntax

Multiply (Multiplicand, Multiplier, Result) => Integer

Arguments

Multiplicand and Multiplier are evaluated as Integers.

Description

The Multiplicand is multiplied by Multiplier and the result is optionally stored into Result. Overflow
conditions are ignored and results are undefined.

624 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.79 Mutex (Declare Synchronization/Mutex Object)

Syntax

Mutex (MutexName, SyncLevel)

Arguments

Creates a data mutex synchronization object named MutexName, with a synchronization level from 0 to 15
as specified by the Integer SyncLevel.

Description

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired.

The SyncLevel parameter declares the logical nesting level of the synchronization object. The current sync
level is maintained internally for a thread, and represents the greatest SyncLevel among mutex objects that
are currently acquired by the thread. The SyncLevel of a thread before acquiring any mutexes is zero. The
SyncLevel of the Global Lock (_GL) is zero.

All Acquire terms must refer to a synchronization object with a SyncLevel that is equal or greater than the
current level, and all Release terms must refer to a synchronization object with a SyncLevel that is equal to
the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation. For example, the top-level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested (can be acquired multiple times by
the same thread).

18.5.80 Name (Declare Named Object)

Syntax

Name (ObjectName, Object)

Arguments

Creates a new object named ObjectName. Attaches Object to ObjectName in the Global ACPI namespace.

Description

Creates ObjectName in the namespace, which references the Object.

Example

The following example creates the name PTTX in the root of the namespace that references a package.

Name (\PTTX, // Port to Port Translate Table
Package () {Package () {0x43, 0x59}, Package) {0x90, 0xFF}}

)

The following example creates the name CNT in the root of the namespace that references an integer data
object with the value 5.

Name (\CNT, 5)

ACPI Source Language (ASL) Reference 625

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.81 NAnd (Integer Bitwise Nand)

Syntax

NAnd (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise NAND is performed and the result is optionally stored in Result.

18.5.82 NoOp Code (No Operation)

Syntax

NoOp

Description

This operation has no effect.

18.5.83 NOr (Integer Bitwise Nor)

Syntax

NOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise NOR is performed and the result is optionally stored in Result.

18.5.84 Not (Integer Bitwise Not)

Syntax

Not (Source, Result) => Integer

Arguments

Source is evaluated as an integer data type.

Description

A bitwise NOT is performed and the result is optionally stored in Result.

626 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.85 Notify (Notify Object of Event)

Syntax

Notify (Object, NotificationValue)

Arguments

Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to a
device, processor, or thermal zone object.

Description

Object type determines the notification values. For example, the notification values for a thermal zone
object are different from the notification values used for a device object. Undefined notification values are
treated as reserved and are ignored by the OS.

For lists of defined Notification values, see section 5.6.5, “Device Object Notifications.”

18.5.86 ObjectType (Get Object Type)

Syntax

ObjectType (Object) => Integer

Arguments

Object is any valid object.

Description

The execution result of this operation is an integer that has the numeric value of the object type for Object.

The object type codes are listed in Table 18-20. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base object
is returned. For typeless objects such as predefined scope names (in other words, _SB, _GPE, etc.), the
type value 0 (Uninitialized) is returned.

Table 18-20 Values Returned By the ObjectType Operator

Value Object

0 Uninitialized

1 Integer

2 String

3 Buffer

4 Package

5 Field Unit

6 Device

7 Event

8 Method

9 Mutex

10 Operation Region

11 Power Resource

ACPI Source Language (ASL) Reference 627

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Object

12 Processor

13 Thermal Zone

14 Buffer Field

15 DDB Handle

16 Debug Object

>16 Reserved

18.5.87 One (Constant One Object)

Syntax

One

Description

The constant One object is an object of type Integer that will always read the LSB as set and all other bits
as clear (that is, the value of 1). Writes to this object are not allowed.

18.5.88 Ones (Constant Ones Object)

Syntax

Ones

Description

The constant Ones object is an object of type Integer that will always read as all bits set. Writes to this
object are not allowed.

18.5.89 OperationRegion (Declare Operation Region)

Syntax

OperationRegion (RegionName, RegionSpace, Offset, Length)

Arguments

Declares an operation region named RegionName. Offset is the offset within the selected RegionSpace at
which the region starts (byte-granular), and Length is the length of the region in bytes.

Description

An Operation Region is a type of data object where read or write operations to the data object are
performed in some hardware space. For example, the Definition Block can define an Operation Region
within a bus, or system I/O space. Any reads or writes to the named object will result in accesses to the I/O
space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI
control methods. In general, no hardware register (at least byte-granular) within the operation region
accessed by an ACPI control method can be shared with any accesses from any other source, with the
exception of using the Global Lock to share a region with the firmware. The entire Operation Region can
be allocated for exclusive use to the ACPI subsystem in the host OS.

628 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Operation Regions that are defined within the scope of a method are the exception to this rule. These
Operation Regions are known as “Dynamic” since the OS has no idea that they exist or what registers they
use until the control method is executed. Using a Dynamic SystemIO or SystemMemory Operation Region
is not recommended since the OS cannot guarantee exclusive access. All other types of Operation Regions
may be Dynamic.

Operation Regions define the overall base address and length of a hardware region, but they cannot be
accessed directly by AML code. A Field object containing one or more FieldUnits is used to overlay the
Operation Region in order to access individual areas of the Region. An individual FieldUnit within an
Operation Region may be as small as one bit, or as large as the length of the entire Region. FieldUnit
values are normalized (shifted and masked to the proper length.) The data type of a FieldUnit can be either
a Buffer or an Integer, depending on the bit length of the FieldUnit. If the FieldUnit is smaller than or
equal to the size of an Integer (in bits), it will be treated as an Integer. If the FieldUnit is larger than the size
of an Integer, it will be treated as a Buffer. The size of an Integer is indicated by the DSDT header’s
Revision field. A revision less than 2 indicates that the size of an Integer is 32 bits. A value greater than or
equal to 2 signifies that the size of an Integer is 64 bits. For more information about data types and
FieldUnit type conversion rules, see section 18.2.5.7, “Data Type Conversion Rules”.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field
data object for the region, will automatically synchronize on the Operation Region object; however, a
control method may also explicitly synchronize to a region to prevent other accesses to the region (from
other control methods). Notice that according to the control method execution model, control method
execution is non-preemptive. Because of this, explicit synchronization to an Operation Region needs to be
done only in cases where a control method blocks or yields execution and where the type of register usage
requires such synchronization.

There are eight predefined Operation Region types specified in ACPI:

Name (RegionSpace Keyword) Value

SystemMemory 0

SystemIO 1

PCI_Config 2

EmbeddedControl 3

SMBus 4

CMOS 5

PCIBARTarget 6

IPMI 7

Reserved 0x08-0x7F

In addition, OEMs may define Operation Regions types 0x80 to 0xFF.

Example

The following example ASL code shows the use of OperationRegion combined with Field to describe
IDE 0 and 1 controlled through general I/O space, using one FET.

OperationRegion (GIO, SystemIO, 0x125, 0x1)
Field (GIO, ByteAcc, NoLock, Preserve) {

IDEI, 1, // IDEISO_EN - isolation buffer
IDEP, 1, // IDE_PWR_EN - power
IDER, 1 // IDERST#_EN - reset#

}

ACPI Source Language (ASL) Reference 629

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.90 Or (Integer Bitwise Or)

Syntax

Or (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise OR is performed and the result is optionally stored in Result.

18.5.91 Package (Declare Package Object)

Syntax

Package (NumElements) {PackageList} => Package

Arguments

NumElements is evaluated as an integer data type. PackageList is an initializer list of objects.

Description

Declares an unnamed aggregation of data items, constants, and/or references to control methods. The size
of the package is NumElements. PackageList contains the list data items, constants, and/or control method
references used to initialize the package.

If NumElements is absent, it is set to match the number of elements in the PackageList. If NumElements is
present and greater than the number of elements in the PackageList, the default entry of type Uninitialized
(see ObjectType) is used to initialize the package elements beyond those initialized from the PackageList.

Evaluating an undefined element will yield an error, but elements can be assigned values to make them
defined. It is an error for NumElements to be less than the number of elements in the PackageList. It is an
error for NumElements to exceed 255.

There are two types of package elements in the PackageList: data objects and references to control
methods.

Examples

Example 1:

Package () {
3,
9,
“ACPI 1.0 COMPLIANT”,
Package () {

“CheckSum=>”,
Package () {7, 9}

},
0

}

Example 2: This example defines and initializes a two-dimensional array.

Package () {
Package () {11, 12, 13},
Package () {21, 22, 23}

}

630 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example 3: This encoding allocates space for ten things to be defined later (see the Name and Index term
definitions).

Package (10) {}

Note: The ability to create variable-sized packages was first introduced in ACPI 2.0. ACPI 1.0 only
allowed fixed-size packages with up to 255 elements.

18.5.92 PowerResource (Declare Power Resource)

Syntax

PowerResource (ResourceName, SystemLevel, ResourceOrder) {ObjectList}

Arguments

Declares a power resource named ResourceName. PowerResource opens a name scope.

Description

For a definition of the PowerResource term, see section 7.1, “Declaring a Power Resource Object.”

18.5.93 Processor (Declare Processor)

Syntax

Processor (ProcessorName, ProcessorID, PBlockAddress, PblockLength)
{ObjectList}

Arguments

Declares a named processor object named ProcessorName. Processor opens a name scope. Each processor
is required to have a unique ProcessorID value that is unique from any other ProcessorID value.

For each processor in the system, the ACPI BIOS declares one processor object in the namespace anywhere
within the _SB scope. For compatibility with operating systems implementing ACPI 1.0, the processor
object may also be declared under the _PR scope. An ACPI-compatible namespace may define Processor
objects in either the _SB or _PR scope but not both.

PBlockAddress provides the system I/O address for the processors register block. Each processor can
supply a different such address. PBlockLength is the length of the processor register block, in bytes and is
either 0 (for no P_BLK) or 6. With one exception, all processors are required to have the same
PBlockLength. The exception is that the boot processor can have a non-zero PBlockLength when all other
processors have a zero PBlockLength. It is valid for every processor to have a PBlockLength of 0.

Description

The following block of ASL sample code shows a use of the Processor term.

Processor (
_PR.CPU0, // Namespace name
1,
0x120, // PBlk system IO address
6 // PBlkLen

) {ObjectList}

The ObjectList is an optional list that may contain an arbitrary number of ASL Objects. Processor-specific
objects that may be included in the ObjectList include _PTC, _CST, _PCT, _PSS, _PPC, _PSD, _TSD,
_CSD, _PDC, _TPC, _TSS, and _OSC. These processor-specific objects can only be specified when the
processor object is declared within the _SB scope. For a full definition of these objects, see section 8,
“Processor Configuration and Control.”

ACPI Source Language (ASL) Reference 631

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.94 QWordIO (QWord IO Resource Descriptor Macro)

Syntax

QWordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName,
TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the I/O range.
The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the resource
descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

632 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName. _TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The QWordIO macro evaluates to a buffer which contains a 64-bit I/O resource descriptor, which
describes a range of I/O addresses. The format of the 64-bit I/O resource descriptor can be found in QWord
Address Space Descriptor (page 235). The macro is designed to be used inside of a ResourceTemplate
(page 544).

18.5.95 QWordMemory (QWord Memory Resource Descriptor Macro)

Syntax

QWordMemory (ResourceUsage, Decode, IsMinFixed, IsMaxFixed, Cacheable,
ReadAndWrite, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName, MemoryType, TranslationType)

Arguments

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

ACPI Source Language (ASL) Reference 633

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Cacheable specifies whether or not the memory region is cacheable (Cacheable), cacheable and write-
combining (WriteCombining), cacheable and prefetchable (Prefetchable) or uncacheable
(NonCacheable). If nothing is specified, then NonCacheable is assumed. The 2-bit field DescriptorName.
_MEM is automatically created to refer to this portion of the resource descriptor, where ‘1’ is Cacheable,
‘2’ is WriteCombining, ‘3’ is Prefetchable and ‘0’ is NonCacheable.

ReadAndWrite specifies whether or not the memory region is read-only (ReadOnly) or read/write
(ReadWrite). If nothing is specified, then ReadWrite is assumed. The 1-bit field DescriptorName._RW is
automatically created to refer to this portion of the resource descriptor, where ‘1’ is ReadWrite and ‘0’ is
ReadOnly.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

MemoryType is an optional argument that specifies the memory usage. The memory can be marked as
normal (AddressRangeMemory), used as ACPI NVS space (AddressRangeNVS), used as ACPI
reclaimable space (AddressRangeACPI) or as system reserved (AddressRangeReserved). If nothing is
specified, then AddressRangeMemory is assumed. The 2-bit field DescriptorName. _MTP is automatically
created in order to refer to this portion of the resource descriptor, where ‘0’ is AddressRangeMemory, ‘1’ is
AddressRangeReserved, ‘2’ is AddressRangeACPI and ‘3’ is AddressRangeNVS.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is I/O. If TypeStatic is specified, then the
secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information.

634 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The QWordMemory macro evaluates to a buffer which contains a 64-bit memory resource descriptor,
which describes a range of memory addresses. The format of the 64-bit memory resource descriptor can be
found in “QWord Address Space Descriptor ” (page 235). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.96 QWordSpace (QWord Space Resource Descriptor Macro)

Syntax

QWordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the Memory range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

Decode specifies whether or not the device decodes the Memory range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this Memory range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this Memory range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 64-bit integer that specifies the power-of-two boundary (- 1) on which
the Memory range must be aligned. The 64-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 64-bit integer that specifies the lowest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 64-bit integer that specifies the highest possible base address of the
Memory range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is
‘1’. For bridge devices which translate addresses, this is the address on the secondary bus. The 64-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 64-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 64-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

ACPI Source Language (ASL) Reference 635

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RangeLength evaluates to a 64-bit integer that specifies the total number of bytes decoded in the Memory
range. The 64-bit field DescriptorName. _LEN is automatically created to refer to this portion of the
resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this Memory range is allocated. If this argument is specified, but
the ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The QWordSpace macro evaluates to a buffer which contains a 64-bit Address Space resource descriptor,
which describes a range of addresses. The format of the 64-bit AddressSpace descriptor can be found in
“QWord Address Space Descriptor ” (page 235). The macro is designed to be used inside of a
ResourceTemplate (page 544).

18.5.97 RefOf (Create Object Reference)

Syntax

RefOf (Object) => ObjectReference

Arguments

Object can be any object type (for example, a package, a device object, and so on).

Description

Returns an object reference to Object. If the Object does not exist, the result of a RefOf operation is fatal.
Use the CondRefOf term in cases where the Object might not exist.

The primary purpose of RefOf() is to allow an object to be passed to a method as an argument to the
method without the object being evaluated at the time the method was loaded.

18.5.98 Register (Generic Register Resource Descriptor Macro)

Syntax

Register (AddressSpaceKeyword, RegisterBitWidth, RegisterBitOffset,
RegisterAddress, AccessSize, DescriptorName)

Arguments

AddressSpaceKeyword specifies the address space where the register exists. The register can exist in I/O
space (SystemIO), memory (SystemMemory), PCI configuration space (PCI_Config), embedded
controller space (EmbeddedControl), SMBus (SMBus) or fixed-feature hardware (FFixedHW). The 8-bit
field DescriptorName. _ASI is automatically created in order to refer to this portion of the resource
descriptor. See _ASI (page 251) for more information, including a list of valid values and their meanings.

RegisterBitWidth evaluates to an 8-bit integer that specifies the number of bits in the register. The 8-bit
field DescriptorName. _RBW is automatically created in order to refer to this portion of the resource
descriptor. See _RBW (page 251) for more information.

636 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

RegisterBitOffset evaluates to an 8-bit integer that specifies the offset in bits from the start of the register
indicated by RegisterAddress. The 8-bit field DescriptorName. _RBO is automatically created in order to
refer to this portion of the resource descriptor. See _RBO (page 251) for more information.

RegisterAddress evaluates to a 64-bit integer that specifies the register address. The 64-bit field
DescriptorName. _ADR is automatically created in order to refer to this portion of the resource descriptor.
See _ADR (page 251) for more information.

AccessSize evaluates to an 8-bit integer that specifies the size of data values used when accessing the
address space as follows:

0 - Undefined (legacy)
1 - Byte access
2 - Word access
3 - DWord access
4 - QWord access

The 8-bit field DescriptorName. _ASZ is automatically created in order to refer to this portion of the
resource descriptor. See _ASZ(page 251) for more information. For backwards compatibility, the AccesSize
parameter is optional when invoking the Register macro. If the AccessSize parameter is not supplied then
the AccessSize field will be set to zero. In this case, OSPM will assume the access size.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The Register macro evaluates to a buffer which contains a generic register resource descriptor. The format
of the generic register resource descriptor can be found in “Generic Register Descriptor ” (page 251). The
macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.99 Release (Release a Mutex Synchronization Object)

Syntax

Release (SyncObject)

Arguments

SynchObject must be a mutex synchronization object.

Description

If the mutex object is owned by the current invocation, ownership for the Mutex is released once. It is fatal
to release ownership on a Mutex unless it is currently owned. A Mutex must be totally released before an
invocation completes.

18.5.100 Reset (Reset an Event Synchronization Object)

Syntax

Reset (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

ACPI Source Language (ASL) Reference 637

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

This operator is used to reset an event synchronization object to a non-signaled state. See also the Wait and
Signal function operator definitions.

18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)

Syntax

ResourceTemplate () {ResourceMacroList} => Buffer

Description

For a full definition of the ResourceTemplateTerm macro, see section 18.2.3 “ASL Resource Templates”
(page 560)

18.5.102 Return (Return from Method Execution)

Syntax

Return
Return ()
Return (Arg)

Arguments

Arg is optional and can be any valid object or reference.

Description

Returns control to the invoking control method, optionally returning a copy of the object named in Arg. If
no Arg object is specified, a Return(Zero) is generated by the ASL compiler.

Note: in the absence of an explicit Return () statement, the return value to the caller is undefined.

18.5.103 Revision (Constant Revision Object)

Syntax

Revision

Description

The constant Revision object is an object of type Integer that will always read as the revision of the AML
interpreter.

18.5.104 Scope (Open Named Scope)

Syntax

Scope (Location) {ObjectList}

Arguments

Opens and assigns a base namespace scope to a collection of objects. All object names defined within the
scope are created relative to Location. Note that Location does not have to be below the surrounding scope,
but can refer to any location within the namespace. The Scope term itself does not create objects, but only
locates objects within the namespace; the actual objects are created by other ASL terms.

638 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The object referred to by Location must already exist in the namespace and be one of the following object
types that has a namespace scope associated with it:

 A predefined scope such as: \ (root), _SB, \GPE, _PR, _TZ, etc.
 Device
 Processor
 Thermal Zone
 Power Resource

The Scope term alters the current namespace location to the existing Location. This causes the defined
objects within ObjectList to be created relative to this new location in the namespace.

Note: When creating secondary SSDTs, it is often required to use the Scope operator to change the
namespace location in order create objects within some part of the namespace that has been defined by the
main DSDT. Use the External operator to declare the scope location so that the ASL compiler will not
issue an error for an undefined Location.

Examples

The following example ASL code uses the Scope operator and creates several objects:

Scope (\PCI0)
{

Name (X, 3)
Scope (\)
{

Method (RQ) {Return (0)}
}
Name (^Y, 4)

}

The created objects are placed in the ACPI namespace as shown:

\PCI0.X
\RQ
\Y

This example shows the use of External in conjunction with Scope within an SSDT:

DefinitionBlock ("ssdt.aml", "SSDT", 2, "X", "Y", 0x00000001)
{

External (_SB.PCI0, DeviceObj)

Scope (_SB.PCI0)
{
}

}

18.5.105 ShiftLeft (Integer Shift Left)

Syntax

ShiftLeft (Source, ShiftCount, Result) => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description

Source is shifted left with the least significant bit zeroed ShiftCount times. The result is optionally stored
into Result.

ACPI Source Language (ASL) Reference 639

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.106 ShiftRight (Integer Shift Right)

Syntax

ShiftRight (Source, ShiftCount, Result) => Integer

Arguments

Source and ShiftCount are evaluated as Integers.

Description

Source is shifted right with the most significant bit zeroed ShiftCount times. The result is optionally stored
into Result.

18.5.107 Signal (Signal a Synchronization Event)

Syntax

Signal (SyncObject)

Arguments

SynchObject must be an Event synchronization object.

Description

The Event object is signaled once, allowing one invocation to acquire the event.

18.5.108 SizeOf (Get Data Object Size)

Syntax

SizeOf (ObjectName) => Integer

Arguments

ObjectName must be a buffer, string or package object.

Description

Returns the size of a buffer, string, or package data object.

For a buffer, it returns the size in bytes of the data. For a string, it returns the size in bytes of the string, not
counting the trailing NULL. For a package, it returns the number of elements. For an object reference, the
size of the referenced object is returned. Other data types cause a fatal run-time error.

18.5.109 Sleep (Milliseconds Sleep)

Syntax

Sleep (MilliSeconds)

Arguments

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds.

640 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

The implementation of Sleep is to round the request up to the closest sleep time supported by the OS and
relinquish the processor.

18.5.110 Stall (Stall for a Short Time)

Syntax

Stall (MicroSeconds)

Arguments

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the
required number of microseconds.

Description

The implementation of Stall is OS-specific, but must not relinquish control of the processor. Because of
this, delays longer than 100 microseconds must use Sleep instead of Stall.

18.5.111 StartDependentFn (Start Dependent Function Resource
Descriptor Macro)

Syntax

StartDependentFn (CompatibilityPriority, PerformancePriority) {ResourceList}

Arguments

CompatibilityPriority indicates the relative compatibility of the configuration specified by ResourceList
relative to the PC/AT. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

PerformancePriority indicates the relative performance of the configuration specified by ResourceList
relative to the other configurations. 0 = Good, 1 = Acceptable, 2 = Sub-optimal.

ResourceList is a list of resources descriptors which must be selected together for this configuration.

Description

The StartDependentFn macro evaluates to a buffer which contains a start dependent function resource
descriptor, which describes a group of resources which must be selected together. Each subsequent
StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new choice of resources for
configuring the device, with the last choice terminated with an EndDependentFn resource descriptor. The
format of the start dependent function resource descriptor can be found in “Start Dependent Functions
Descriptor” (page 226). This macro generates the two-byte form of the resource descriptor. The macro is
designed to be used inside of a ResourceTemplate (page 544).

ACPI Source Language (ASL) Reference 641

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.112 StartDependentFnNoPri (Start Dependent Function Resource
Descriptor Macro)

Syntax

StartDependentFnNoPri () {ResourceList}

Description

The StartDependentFnNoPri macro evaluates to a buffer which contains a start dependent function
resource descriptor, which describes a group of resources which must be selected together. Each
subsequent StartDependentFn or StartDependentFnNoPri resource descriptor introduces a new choice of
resources for configuring the device, with the last choice terminated with an EndDependentFn resource
descriptor. The format of the start dependent function resource descriptor can be found in “Start Dependent
Functions Descriptor” (page 226). This macro generates the one-byte form of the resource descriptor. The
macro is designed to be used inside of a ResourceTemplate (page 544).

This is similar to StartDependentFn (page 547) with both CompatibilityPriority and PerformancePriority
set to 1, but is one byte shorter.

18.5.113 Store (Store an Object)

Syntax

Store (Source, Destination) => DataRefObject

Arguments

This operation evaluates Source, converts it to the data type of Destination, and writes the result into
Destination. For information on automatic data-type conversion, see section 16.2.2, “ASL Data Types.”

Description

Stores to OperationRegion Field data types may relinquish the processor depending on the region type.

All stores (of any type) to the constant Zero, constant One, or constant Ones object are not allowed. Stores
to read-only objects are fatal. The execution result of the operation depends on the type of Destination. For
any type other than an operation region field, the execution result is the same as the data written to
Destination. For operation region fields with an AccessType of ByteAcc, WordAcc, DWordAcc,
QWordAcc or AnyAcc, the execution result is the same as the data written to Destination as in the normal
case, but when the AccessType is BufferAcc, the operation region handler may modify the data when it is
written to the Destination so that the execution result contains modified data.

Example

The following example creates the name CNT that references an integer data object with the value 5 and
then stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Name (CNT, 5)
Store (CNT, Local0)

18.5.114 Subtract (Integer Subtract)

Syntax

Subtract (Minuend, Subtrahend, Result) => Integer

Arguments

Minuend and Subtrahend are evaluated as Integers.

642 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Description

Subtrahend is subtracted from Minuend, and the result is optionally stored into Result. Underflow
conditions are ignored and the result simply loses the most significant bits.

18.5.115 Switch (Select Code To Execute Based On Expression)

Syntax

Switch (Expression) {CaseTermList}

Arguments

Expression is an ASL expression that evaluates to an Integer, String or Buffer.

Description

The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within the enclosed body of executable ASL code

If the Case Value is an Integer, Buffer or String, then control passes to the statement that matches the value
of Switch (Expression). If the Case value is a Package, then control passes if any member of the package
matches the Switch (Value) The Switch CaseTermList can include any number of Case instances, but no
two Case Values (or members of a Value, if Value is a Package) within the same Switch statement can
have the same value.

Execution of the statement body begins at the selected TermList and proceeds until the TermList end of
body or until a Break or Continue statement transfers control out of the body.

The Default statement is executed if no Case Value matches the value of Switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body are
executed. There can be at most one Default statement. The Default statement can appear anywhere in the
body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.

Compatibility Note: The Switch, Case, and Default terms were first introduced in ACPI 2.0. However,
their implementation is backward compatible with ACPI 1.0 AML interpreters.

Example

Use of the Switch statement usually looks something like this:

Switch (expression)
{

Case (value) {
Statements executed if Lequal (expression, value)

}
Case (Package () {value, value, value}) {

Statements executed if Lequal (expression, any value in package)
}
Default {

Statements executed if expression does not equal
any case constant-expression

}
}

Compiler Note: The following example demonstrates how the Switch statement should be translated into
ACPI 1.0-compatible AML:

ACPI Source Language (ASL) Reference 643

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Switch (Add (ABCD(),1)
{

Case (1) {
…statements1…

}
Case (Package () {4,5,6}) {

…statements2…
}
Default {

…statements3…
}

}

is translated as:

Name (_T_I, 0) // Create Integer temporary variable for result
While (One)
{

Store (Add (ABCD (), 1), _T_I)
If (LEqual (_T_I, 1)) {

…statements1…
}
Else {
If (LNotEqual (Match (Package () {4, 5, 6}, MEQ, _T_I, MTR, 0, 0), Ones)) {

…statements2…
}
Else {

…statements3…
}
Break

}

The While (One) is emitted to enable the use of Break and Continue within the Switch statement.
Temporary names emitted by the ASL compiler should appear at the top level of the method, since the
Switch statement could appear within a loop and thus attempt to create the name more than once.

Note: If the ASL compiler is unable to determine the type of the expression, then it will generate a warning
and assume a type of Integer. The warning will indicate that the code should use one of the type conversion
operators (Such as ToInteger, ToBuffer, ToDecimalString or ToHexString). Caution: Some of these
operators are defined starting with ACPI 2.0 and as such may not be supported by ACPI 1.0b compatible
interpreters.

For example:

Switch (ABCD ()) // Cannot determine the type because methods can return anything.
{

…case statements…
}

will generate a warning and the following code:

Name (_T_I, 0)
Store (ABCD (), _T_I)

To remove the warning, the code should be:

Switch (ToInteger (ABCD ()))
{

…case statements…
}

644 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.116 ThermalZone (Declare Thermal Zone)

Syntax

ThermalZone (ThermalZoneName) {ObjectList}

Arguments

Declares a Thermal Zone object named ThermalZoneName. ThermalZone opens a name scope.

Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zone in a system
is required to have a unique ThermalZoneName.

Description

A thermal zone may be declared in the namespace anywhere within the _SB scope. For compatibility with
operating systems implementing ACPI 1.0, a thermal zone may also be declared under the _TZ scope. An
ACPI-compatible namespace may define Thermal Zone objects in either the _SB or _TZ scope but not
both.

For example ASL code that uses a ThermalZone statement, see section 12, “Thermal Management.”

18.5.117 Timer (Get 64-Bit Timer Value)

Syntax

Timer => Integer

Description

The timer opcode returns a monotonically increasing value that can be used by ACPI methods to measure
time passing, this enables speed optimization by allowing AML code to mark the passage of time
independent of OS ACPI interpreter implementation.

The Sleep opcode can only indicate waiting for longer than the time specified.

The value resulting from this opcode is 64-bits. It is monotonically increasing, but it is not guaranteed that
every result will be unique, i.e. two subsequent instructions may return the same value. The only guarantee
is that each subsequent evaluation will be greater-than or equal to the previous ones.

The period of this timer is 100 nanoseconds. While the underlying hardware may not support this
granularity, the interpreter will do the conversion from the actual timer hardware frequency into 100
nanosecond units.

Users of this opcode should realize that a value returned only represents the time at which the opcode itself
executed. There is no guarantee that the next opcode in the instruction stream will execute in any particular
time bound.

The OSPM can implement this using the ACPI Timer and keep track of overrun. Other implementations are
possible. This provides abstraction away from chipset differences

Compatibility Note: New for ACPI 3.0

ACPI Source Language (ASL) Reference 645

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.118 ToBCD (Convert Integer to BCD)

Syntax

ToBCD (Value, Result) => Integer

Arguments

Value is evaluated as an integer

Description

The ToBCD operator is used to convert Value from a numeric (Integer) format to a BCD format and
optionally store the numeric value into Result.

18.5.119 ToBuffer (Convert Data to Buffer)

Syntax

ToBuffer (Data, Result) => Buffer

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to buffer type and the result is optionally stored into Result. If Data is an integer, it is
converted into n bytes of buffer (where n is 4 if the definition block has defined integers as 32-bits or 8 if
the definition block has defined integers as 64-bits as indicated by the Definition Block table header’s
Revision field), taking the least significant byte of integer as the first byte of buffer. If Data is a buffer, no
conversion is performed. If Data is a string, each ASCII string character is copied to one buffer byte,
including the string null terminator. A null (zero-length) string will be converted to a zero-length buffer.

18.5.120 ToDecimalString (Convert Data to Decimal String)

Syntax

ToDecimalString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to a decimal string, and the result is optionally stored into Result. If Data is already a
string, no action is performed. If Data is a buffer, it is converted to a string of decimal values separated by
commas. (Each byte of the buffer is converted to a single decimal value.) A zero-length buffer will be
converted to a null (zero-length) string.

646 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.121 ToHexString (Convert Data to Hexadecimal String)

Syntax

ToHexString (Data, Result) => String

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to a hexadecimal string, and the result is optionally stored into Result. If Data is already
a string, no action is performed. If Data is a buffer, it is converted to a string of hexadecimal values
separated by commas. A zero-length buffer will be converted to a null (zero-length) string.

18.5.122 ToInteger (Convert Data to Integer)

Syntax

ToInteger (Data, Result) => Integer

Arguments

Data must be an Integer, String, or Buffer data type.

Description

Data is converted to integer type and the result is optionally stored into Result. If Data is a string, it must
be either a decimal or hexadecimal numeric string (in other words, prefixed by “0x”) and the value must
not exceed the maximum of an integer value. If the value is exceeding the maximum, the result of the
conversion is unpredictable. A null (zero-length) string is illegal. If Data is a Buffer, the first 8 bytes of the
buffer are converted to an integer, taking the first byte as the least significant byte of the integer. A zero-
length buffer is illegal. If Data is an integer, no action is performed.

18.5.123 ToString (Convert Buffer To String)

Syntax

ToString (Source, Length, Result) => String

Arguments

Source is evaluated as a buffer. Length is evaluated as an integer data type.

Description

Starting with the first byte, the contents of the buffer are copied into the string until the number of
characters specified by Length is reached or a null (0) character is found. If Length is not specified or is
Ones, then the contents of the buffer are copied until a null (0) character is found. If the source buffer has a
length of zero, a zero length (null terminator only) string will be created. The result is copied into the
Result.

ACPI Source Language (ASL) Reference 647

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.124 ToUUID (Convert String to UUID Macro)

Syntax

ToUUID (AsciiString) => Buffer

Arguments

AsciiString is evaluated as a String data type.

Description

This macro will convert an ASCII string to a 128-bit buffer. The string must have the following format:

aabbccdd-eeff-gghh-iijj-kkllmmnnoopp

where aa – pp are one byte hexadecimal numbers, made up of hexadecimal digits. The resulting buffer has
the following format:

Table 18-21 UUID Buffer Format

String Offset In Buffer

aa 3

bb 2

cc 1

dd 0

ee 5

ff 4

gg 7

hh 6

ii 8

jj 9

kk 10

ll 11

mm 12

nn 13

oo 14

pp 15

Compatibility Note: New for ACPI 3.0

648 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.125 Unicode (String To Unicode Conversion Macro)

Syntax

Unicode (String) => Buffer

Arguments

This macro will convert a string to a Unicode (UTF-16) string contained in a buffer. The format of the
Unicode string is 16 bits per character, with a 16-bit null terminator.

18.5.126 Unload (Unload Definition Block)

Syntax

Unload (Handle)

Arguments

Handle is evaluated as a DDBHandle data type.

Description

Performs a run-time unload of a Definition Block that was loaded using a Load term or LoadTable term.
Loading or unloading a Definition Block is a synchronous operation, and no control method execution
occurs during the function. On completion of the Unload operation, the Definition Block has been
unloaded (all the namespace objects created as a result of the corresponding Load operation will be
removed from the namespace).

18.5.127 VendorLong (Long Vendor Resource Descriptor)

Syntax

VendorLong (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer.

VendorByteList evaluates to a comma-separated list of 8-bit integer constants, where each byte is added
verbatim to the body of the VendorLong resource descriptor. A maximum of n bytes can be specified.
UUID and UUID specific descriptor subtype are part of the VendorByteList.

Description

The VendorLong macro evaluates to a buffer which contains a vendor-defined resource descriptor. The
format of the long form of the vendor-defined resource descriptor can be found in Vendor-Defined
Descriptor (page 232). The macro is designed to be used inside of a ResourceTemplate (page 544).

This is similar to VendorShort (page 555), except that the number of allowed bytes in VendorByteList is
65,533 (instead of 7).

ACPI Source Language (ASL) Reference 649

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.128 VendorShort (Short Vendor Resource Descriptor)

Syntax

VendorShort (DescriptorName) {VendorByteList}

Arguments

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer.

Description

The VendorShort macro evaluates to a buffer which contains a vendor-defined resource descriptor. The
format of the short form of the vendor-defined resource descriptor can be found in “Vendor-Defined
Descriptor” (page 229). The macro is designed to be used inside of a ResourceTemplate (page 544).

This is similar to VendorLong (page 555), except that the number of allowed bytes in VendorByteList is 7
(instead of 65,533).

18.5.129 Wait (Wait for a Synchronization Event)

Syntax

Wait (SyncObject, TimeoutValue) => Boolean

Arguments

SynchObject must be an event synchronization object. TimeoutValue is evaluated as an Integer. The calling
method blocks while waiting for the event to be signaled.

Description

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished
until a signal count is posted to the Event or until at least TimeoutValue milliseconds have elapsed.

This operation returns a non-zero value if a timeout occurred and a signal was not acquired. A
TimeoutValue of 0xFFFF (or greater) indicates that there is no time out and the operation will wait
indefinitely.

18.5.130 While (Conditional Loop)

Syntax

While (Predicate) {TermList}

Arguments

Predicate is evaluated as an integer.

Description

If the Predicate is non-zero, the list of terms in TermList is executed. The operation repeats until the
Predicate evaluates to zero.

Note: Creation of a named object more than once in a given scope is not allowed. As such, unconditionally
creating named objects within a While loop must be avoided. A fatal error will be generated on the second
iteration of the loop, during the attempt to create the same named object a second time.

650 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.131 WordBusNumber (Word Bus Number Resource Descriptor
Macro)

Syntax

WordBusNumber (ResourceUsage, IsMinFixed, IsMaxFixed, Decode,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName)

Arguments

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed) or can
be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the bus number range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus bus
number which results in the corresponding primary bus bus number. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in the bus
number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

ACPI Source Language (ASL) Reference 651

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The WordBusNumber macro evaluates to a buffer which contains a 16-bit bus-number resource
descriptor. The format of the 16-bit bus number resource descriptor can be found in “Word Address Space
Descriptor ” (page 240). The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.132 WordIO (Word IO Resource Descriptor Macro)

Syntax

WordIO (ResourceUsage, IsMinFixed, IsMaxFixed, Decode, ISARanges,
AddressGranularity, AddressMinimum, AddressMaximum, AddressTranslation,
RangeLength, ResourceSourceIndex, ResourceSource, DescriptorName,
TranslationType, TranslationDensity)

Arguments

ResourceUsage specifies whether the I/O range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

IsMinFixed specifies whether the minimum address of this I/O range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this I/O range is fixed (MaxFixed) or can be
changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

Decode specifies whether or not the device decodes the I/O range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

ISARanges specifies whether the I/O ranges specifies are limited to valid ISA I/O ranges (ISAOnly), valid
non-ISA I/O ranges (NonISAOnly) or encompass the whole range without limitation (EntireRange). The
2-bit field DescriptorName._RNG is automatically created to refer to this portion of the resource
descriptor, where ‘1’ is NonISAOnly, ‘2’ is ISAOnly and ‘0’ is EntireRange.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the I/O range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to refer to
this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible base address of the I/O
range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’. For
bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

652 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus I/O
address which results in the corresponding primary bus I/O address. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bytes decoded in the I/O range.
The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of the resource
descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

TranslationType is an optional argument that specifies whether the resource type on the secondary side of
the bus is different (TypeTranslation) from that on the primary side of the bus or the same (TypeStatic).
If TypeTranslation is specified, then the secondary side of the bus is Memory. If TypeStatic is specified,
then the secondary side of the bus is I/O. If nothing is specified, then TypeStatic is assumed. The 1-bit field
DescriptorName. _TTP is automatically created to refer to this portion of the resource descriptor, where ‘1’
is TypeTranslation and ‘0’ is TypeStatic. See _TTP (page 248) for more information

TranslationDensity is an optional argument that specifies whether or not the translation from the primary to
secondary bus is sparse (SparseTranslation) or dense (DenseTranslation). It is only used when
TranslationType is TypeTranslation. If nothing is specified, then DenseTranslation is assumed. The 1-bit
field DescriptorName. _TRS is automatically created to refer to this portion of the resource descriptor,
where ‘1’ is SparseTranslation and ‘0’ is DenseTranslation. See _TRS (page 248) for more information.

Description

The WordIO macro evaluates to a buffer which contains a 16-bit I/O range resource descriptor. The format
of the 16-bit I/O range resource descriptor can be found in “Word Address Space Descriptor ” (page 240).
The macro is designed to be used inside of a ResourceTemplate (page 544).

18.5.133 WordSpace (Word Space Resource Descriptor Macro))

Syntax

WordSpace (ResourceType, ResourceUsage, Decode, IsMinFixed, IsMaxFixed,
TypeSpecificFlags, AddressGranularity, AddressMinimum, AddressMaximum,
AddressTranslation, RangeLength, ResourceSourceIndex, ResourceSource,
DescriptorName)

Arguments

ResourceType evaluates to an 8-bit integer that specifies the type of this resource. Acceptable values are
0xC0 through 0xFF.

ResourceUsage specifies whether the bus range is consumed by this device (ResourceConsumer) or
passed on to child devices (ResourceProducer). If nothing is specified, then ResourceConsumer is
assumed.

ACPI Source Language (ASL) Reference 653

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Decode specifies whether or not the device decodes the bus number range using positive (PosDecode) or
subtractive (SubDecode) decode. If nothing is specified, then PosDecode is assumed. The 1-bit field
DescriptorName. _DEC is automatically created to refer to this portion of the resource descriptor, where
‘1’ is SubDecode and ‘0’ is PosDecode.

IsMinFixed specifies whether the minimum address of this bus number range is fixed (MinFixed) or can be
changed (MinNotFixed). If nothing is specified, then MinNotFixed is assumed. The 1-bit field
DescriptorName. _MIF is automatically created to refer to this portion of the resource descriptor, where ‘1’
is MinFixed and ‘0’ is MinNotFixed.

IsMaxFixed specifies whether the maximum address of this bus number range is fixed (MaxFixed) or can
be changed (MaxNotFixed). If nothing is specified, then MaxNotFixed is assumed. The 1-bit field
DescriptorName. _MAF is automatically created to refer to this portion of the resource descriptor, where
‘1’ is MaxFixed and ‘0’ is MaxNotFixed.

TypeSpecificFlags evaluates to an 8-bit integer. The flags are specific to the ResourceType.

AddressGranularity evaluates to a 16-bit integer that specifies the power-of-two boundary (- 1) on which
the bus number range must be aligned. The 16-bit field DescriptorName. _GRA is automatically created to
refer to this portion of the resource descriptor.

AddressMinimum evaluates to a 16-bit integer that specifies the lowest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MIN is automatically created to refer to this portion of the resource descriptor.

AddressMaximum evaluates to a 16-bit integer that specifies the highest possible bus number for the bus
number range. The value must have ‘0’ in all bits where the corresponding bit in AddressGranularity is ‘1’.
For bridge devices which translate addresses, this is the address on the secondary bus. The 16-bit field
DescriptorName._MAX is automatically created to refer to this portion of the resource descriptor.

AddressTranslation evaluates to a 16-bit integer that specifies the offset to be added to a secondary bus bus
number which results in the corresponding primary bus bus number. For all non-bridge devices or bridges
which do not perform translation, this must be ‘0’. The 16-bit field DescriptorName._TRA is automatically
created to refer to this portion of the resource descriptor.

RangeLength evaluates to a 16-bit integer that specifies the total number of bus numbers decoded in the bus
number range. The 16-bit field DescriptorName. _LEN is automatically created to refer to this portion of
the resource descriptor.

ResourceSourceIndex is an optional argument which evaluates to an 8-bit integer that specifies the resource
descriptor within the object specified by ResourceSource. If this argument is specified, the ResourceSource
argument must also be specified.

ResourceSource is an optional argument which evaluates to a string containing the path of a device which
produces the pool of resources from which this I/O range is allocated. If this argument is specified, but the
ResourceSourceIndex argument is not specified, a zero value is assumed.

DescriptorName is an optional argument that specifies a name for an integer constant that will be created in
the current scope that contains the offset of this resource descriptor within the current resource template
buffer. The predefined descriptor field names may be appended to this name to access individual fields
within the descriptor via the Buffer Field operators.

Description

The WordSpace macro evaluates to a buffer which contains a 16-bit Address Space resource descriptor.
The format of the 16-bit Address Space resource descriptor can be found in “Word Address Space
Descriptor ” (page 240). The macro is designed to be used inside of a ResourceTemplate (page 544).

654 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

18.5.134 XOr (Integer Bitwise Xor)

Syntax

XOr (Source1, Source2, Result) => Integer

Arguments

Source1 and Source2 are evaluated as Integers.

Description

A bitwise XOR is performed and the result is optionally stored into Result.

18.5.135 Zero (Constant Zero Object)

Syntax

Zero

Description

The constant Zero object is an object of type Integer that will always read as all bits clear. Writes to this
object are not allowed.

ACPI Machine Language (AML) Specification 655

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

19 ACPI Machine Language (AML) Specification

This section formally defines the ACPI Control Method Machine Language (AML) language. AML is the
ACPI Control Method virtual machine language, machine code for a virtual machine that is supported by
an ACPI-compatible OS. ACPI control methods can be written in AML, but humans ordinarily write
control methods in ASL.

AML is the language processed by the ACPI AML interpreter. It is primarily a declarative language. It’s
best not to think of it as a stream of code, but rather as a set of declarations that the ACPI AML interpreter
will compile into the ACPI Namespace at definition block load time. For example, notice that DefByte
allocates an anonymous integer variable with a byte-size initial value in ACPI namespace, and passes in an
initial value. The byte in the AML stream that defines the initial value is not the address of the variable’s
storage location.

An OEM or BIOS vendor needs to write ASL and be able to single-step AML for debugging. (Debuggers
and other ACPI control method language tools are expected to be AML-level tools, not source-level tools.)
An ASL translator implementer must understand how to read ASL and generate AML. An AML interpreter
author must understand how to execute AML.

AML and ASL are different languages though they are closely related.

All ACPI-compatible operating systems must support AML. A given user can define some arbitrary source
language (to replace ASL) and write a tool to translate it to AML. However, the ACPI group will support a
single translator for a single language, ASL.

19.1 Notation Conventions

The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 19-1 AML Grammar Notation Conventions

Notation Convention Description Example

0xdd
Refers to a byte value expressed as
2 hexadecimal digits.

0x21

Number in bold.
Denotes the encoding of the AML
term.

Term => Evaluated Type
Shows the resulting type of the
evaluation of Term.

Single quotes (‘ ’) Indicate constant characters. ‘A’ => 0x41

Term := Term Term …
The term to the left of := can be
expanded into the sequence of
terms on the right.

aterm := bterm cterm means that aterm can
be expanded into the two-term sequence of
bterm followed by cterm.

Term Term Term …
Terms separated from each other
by spaces form an ordered list.

Angle brackets (< >) Used to group items.
<a b> | <c d> means either

a b or c d.

656 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Notation Convention Description Example

Bar symbol (|) Separates alternatives.

aterm := bterm | [cterm dterm] means the
following constructs are possible:

bterm
cterm dterm

aterm := [bterm | cterm] dterm means the
following constructs are possible:

bterm dterm
cterm dterm

Dash character (-) Indicates a range.
1-9 means a single digit in the range 1 to 9
inclusive.

Parenthesized term
following another term.

The parenthesized term is the
repeat count of the previous term.

aterm(3) means aterm aterm aterm.

bterm(n) means n number of bterms.

19.2 AML Grammar Definition

This section defines the byte values that make up an AML byte stream.

The AML encoding can be categorized in the following groups:
 Table and Table Header encoding
 Name objects encoding
 Data objects encoding
 Package length encoding
 Term objects encoding
 Miscellaneous objects encoding

19.2.1 Table and Table Header Encoding

AMLCode := DefBlockHeader TermList

DefBlockHeader := TableSignature TableLength SpecCompliance CheckSum OemID
OemTableID OemRevision CreatorID CreatorRevision

TableSignature := DWordData // As defined in section 5.2.3.
TableLength := DWordData // Length of the table in bytes including

// the block header.
SpecCompliance := ByteData // The revision of the structure.
CheckSum := ByteData // Byte checksum of the entire table.
OemID := ByteData(6) // OEM ID of up to 6 characters. If the OEM

// ID is shorter than 6 characters, it
// can be terminated with a NULL
// character.

OemTableID := ByteData(8) // OEM Table ID of up to 8 characters. If
// the OEM Table ID is shorter than 8
// characters, it can be terminated with
// a NULL character.

OemRevision := DWordData // OEM Table Revision.
CreatorID := DWordData // Vendor ID of the ASL compiler.
CreatorRevision := DWordData // Revision of the ASL compiler.

19.2.2 Name Objects Encoding

LeadNameChar := ‘A’-‘Z’ | ‘_’
DigitChar := ‘0’-‘9’
NameChar := DigitChar | LeadNameChar
RootChar := ‘\’
ParentPrefixChar := ‘^’

ACPI Machine Language (AML) Specification 657

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

‘A’-‘Z’ := 0x41 - 0x5A
‘_’ := 0x5F
‘0’-‘9’ := 0x30 - 0x39
‘\’ := 0x5C
‘^’ := 0x5E

NameSeg := <LeadNameChar NameChar NameChar NameChar>
// Notice that NameSegs shorter than 4 characters are filled with
// trailing underscores (‘_’s).

NameString := <RootChar NamePath> | <PrefixPath NamePath>
PrefixPath := Nothing | <‘^’ PrefixPath>
NamePath := NameSeg | DualNamePath | MultiNamePath | NullName

DualNamePath := DualNamePrefix NameSeg NameSeg
DualNamePrefix := 0x2E
MultiNamePath := MultiNamePrefix SegCount NameSeg(SegCount)
MultiNamePrefix := 0x2F

SegCount := ByteData

Note: SegCount can be from 1 to 255. For example: MultiNamePrefix(35) is encoded as
0x2f 0x23 and followed by 35 NameSegs. So, the total encoding length will be 1 + 1 +
35*4 = 142. Notice that: DualNamePrefix NameSeg NameSeg has a smaller encoding than
the encoding of: MultiNamePrefix(2) NameSeg NameSeg

SimpleName := NameString | ArgObj | LocalObj
SuperName := SimpleName | DebugObj | Type6Opcode
NullName := 0x00
Target := SuperName | NullName

19.2.3 Data Objects Encoding

ComputationalData := ByteConst | WordConst | DWordConst | QWordConst | String |
ConstObj | RevisionOp | DefBuffer

DataObject := ComputationalData | DefPackage | DefVarPackage
DataRefObject := DataObject | ObjectReference | DDBHandle

ByteConst := BytePrefix ByteData
BytePrefix := 0x0A
WordConst := WordPrefix WordData
WordPrefix := 0x0B
DWordConst := DWordPrefix DWordData
DWordPrefix := 0x0C
QWordConst := QWordPrefix QWordData
QWordPrefix := 0x0E
String := StringPrefix AsciiCharList NullChar
StringPrefix := 0x0D

ConstObj := ZeroOp | OneOp | OnesOp
ByteList := Nothing | <ByteData ByteList>
ByteData := 0x00 - 0xFF
WordData := ByteData[0:7] ByteData[8:15]

// 0x0000-0xFFFF
DWordData := WordData[0:15] WordData[16:31]

// 0x00000000-0xFFFFFFFF
QWordData := DWordData[0:31] DWordData[32:63]

// 0x0000000000000000-0xFFFFFFFFFFFFFFFF
AsciiCharList := Nothing | <AsciiChar AsciiCharList>
AsciiChar := 0x01 - 0x7F
NullChar := 0x00
ZeroOp := 0x00
OneOp := 0x01
OnesOp := 0xFF
RevisionOp := ExtOpPrefix 0x30
ExtOpPrefix := 0x5B

658 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

19.2.4 Package Length Encoding

PkgLength := PkgLeadByte |
<PkgLeadByte ByteData> |
<PkgLeadByte ByteData ByteData> |
<PkgLeadByte ByteData ByteData ByteData>

PkgLeadByte := <bit 7-6: ByteData count that follows (0-3)>
<bit 5-4: Only used if PkgLength < 63>
<bit 3-0: Least significant package length nybble>

Note: The high 2 bits of the first byte reveal how many follow bytes are in the
PkgLength. If the PkgLength has only one byte, bit 0 through 5 are used to encode the
package length (in other words, values 0-63). If the package length value is more than
63, more than one byte must be used for the encoding in which case bit 4 and 5 of the
PkgLeadByte are reserved and must be zero. If the multiple bytes encoding is used,
bits 0-3 of the PkgLeadByte become the least significant 4 bits of the resulting
package length value. The next ByteData will become the next least significant 8 bits
of the resulting value and so on, up to 3 ByteData bytes. Thus, the maximum package
length is 2**28.

19.2.5 Term Objects Encoding

TermObj := NameSpaceModifierObj | NamedObj | Type1Opcode | Type2Opcode
TermList := Nothing | <TermObj TermList>

TermArg := Type2Opcode | DataObject | ArgObj | LocalObj
UserTermObj := NameString TermArgList
TermArgList := Nothing | <TermArg TermArgList>

ObjectList := Nothing | <Object ObjectList>
Object := NameSpaceModifierObj | NamedObj

19.2.5.1 Namespace Modifier Objects Encoding

NameSpaceModifierObj := DefAlias | DefName | DefScope

DefAlias := AliasOp NameString NameString
AliasOp := 0x06

DefName := NameOp NameString DataRefObject
NameOp := 0x08

DefScope := ScopeOp PkgLength NameString TermList
ScopeOp := 0x10

19.2.5.2 Named Objects Encoding

NamedObj := DefBankField | DefCreateBitField | DefCreateByteField |
DefCreateDWordField | DefCreateField | DefCreateQWordField |
DefCreateWordField | DefDataRegion | DefDevice | DefEvent |
DefField | DefIndexField | DefMethod | DefMutex | DefOpRegion |
DefPowerRes | DefProcessor | DefThermalZone

DefBankField := BankFieldOp PkgLength NameString NameString BankValue FieldFlags
FieldList

BankFieldOp := ExtOpPrefix 0x87
BankValue := TermArg => Integer

ACPI Machine Language (AML) Specification 659

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FieldFlags := ByteData // bit 0-3: AccessType
// 0 AnyAcc
// 1 ByteAcc
// 2 WordAcc
// 3 DWordAcc
// 4 QWordAcc
// 5 BufferAcc
// 6 Reserved
// 7-15 Reserved
// bit 4: LockRule
// 0 NoLock
// 1 Lock
// bit 5-6: UpdateRule
// 0 Preserve
// 1 WriteAsOnes
// 2 WriteAsZeros
// bit 7: Reserved (must be 0)

FieldList := Nothing | <FieldElement FieldList>
FieldElement := NamedField | ReservedField | AccessField
NamedField := NameSeg PkgLength
ReservedField := 0x00 PkgLength
AccessField := 0x01 AccessType AccessAttrib
AccessType := ByteData // Same as AccessType bits of FieldFlags.
AccessAttrib := ByteData // If AccessType is BufferAcc for the SMB

// OpRegion, AccessAttrib can be one of
// the following values:
// 0x02 SMBQuick
// 0x04 SMBSendReceive
// 0x06 SMBByte
// 0x08 SMBWord
// 0x0A SMBBlock
// 0x0C SMBProcessCall
// 0x0D SMBBlockProcessCall

DefCreateBitField := CreateBitFieldOp SourceBuff BitIndex NameString
CreateBitFieldOp := 0x8D
SourceBuff := TermArg => Buffer
BitIndex := TermArg => Integer

DefCreateByteField := CreateByteFieldOp SourceBuff ByteIndex NameString
CreateByteFieldOp := 0x8C
ByteIndex := TermArg => Integer

DefCreateDWordField := CreateDWordFieldOp SourceBuff ByteIndex NameString
CreateDWordFieldOp := 0x8A

DefCreateField := CreateFieldOp SourceBuff BitIndex NumBits NameString
CreateFieldOp := ExtOpPrefix 0x13
NumBits := TermArg => Integer

DefCreateQWordField := CreateQWordFieldOp SourceBuff ByteIndex NameString
CreateQWordFieldOp := 0x8F

DefCreateWordField := CreateWordFieldOp SourceBuff ByteIndex NameString
CreateWordFieldOp := 0x8B

DefDataRegion := DataRegionOp NameString TermArg TermArg TermArg
DataRegionOp := ExOpPrefix 0x88

DefDevice := DeviceOp PkgLength NameString ObjectList
DeviceOp := ExtOpPrefix 0x82

DefEvent := EventOp NameString
EventOp := ExtOpPrefix 0x02

DefField := FieldOp PkgLength NameString FieldFlags FieldList
FieldOp := ExtOpPrefix 0x81

DefIndexField := IndexFieldOp PkgLength NameString NameString FieldFlags FieldList
IndexFieldOp := ExtOpPrefix 0x86

660 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DefMethod := MethodOp PkgLength NameString MethodFlags TermList
MethodOp := 0x14
MethodFlags := ByteData // bit 0-2: ArgCount (0-7)

// bit 3: SerializeFlag
// 0 NotSerialized
// 1 Serialized
// bit 4-7: SyncLevel (0x00-0x0f)

DefMutex := MutexOp NameString SyncFlags
MutexOp := ExtOpPrefix 0x01
SyncFlags := ByteData // bit 0-3: SyncLevel (0x00-0x0f)

// bit 4-7: Reserved (must be 0)

DefOpRegion := OpRegionOp NameString RegionSpace RegionOffset RegionLen
OpRegionOp := ExtOpPrefix 0x80
RegionSpace := ByteData // 0x00 SystemMemory

// 0x01 SystemIO
// 0x02 PCI_Config
// 0x03 EmbeddedControl
// 0x04 SMBus
// 0x05 CMOS
// 0x06 PciBarTarget
// 0x07 IPMI
// 0x80-0xFF: User Defined

RegionOffset := TermArg => Integer
RegionLen := TermArg => Integer

DefPowerRes := PowerResOp PkgLength NameString SystemLevel ResourceOrder
ObjectList

PowerResOp := ExtOpPrefix 0x84
SystemLevel := ByteData
ResourceOrder := WordData

DefProcessor := ProcessorOp PkgLength NameString ProcID PblkAddr PblkLen
ObjectList

ProcessorOp := ExtOpPrefix 0x83
ProcID := ByteData
PblkAddr := DWordData
PblkLen := ByteData

DefThermalZone := ThermalZoneOp PkgLength NameString ObjectList
ThermalZoneOp := ExtOpPrefix 0x85

19.2.5.3 Type 1 Opcodes Encoding

Type1Opcode := DefBreak | DefBreakPoint | DefContinue | DefFatal | DefIfElse |
DefLoad | DefNoop | DefNotify | DefRelease | DefReset | DefReturn
| DefSignal | DefSleep | DefStall | DefUnload | DefWhile

DefBreak := BreakOp
BreakOp := 0xA5

DefBreakPoint := BreakPointOp
BreakPointOp := 0xCC

DefContinue := ContinueOp
ContinueOp := 0x9F

DefElse := Nothing | <ElseOp PkgLength TermList>
ElseOp := 0xA1

DefFatal := FatalOp FatalType FatalCode FatalArg
FatalOp := ExtOpPrefix 0x32
FatalType := ByteData
FatalCode := DWordData
FatalArg := TermArg => Integer

DefIfElse := IfOp PkgLength Predicate TermList DefElse
IfOp := 0xA0

ACPI Machine Language (AML) Specification 661

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Predicate := TermArg => Integer

DefLoad := LoadOp NameString DDBHandleObject
LoadOp := ExtOpPrefix 0x20
DDBHandleObject := SuperName

DefNoop := NoopOp
NoopOp := 0xA3

DefNotify := NotifyOp NotifyObject NotifyValue
NotifyOp := 0x86
NotifyObject := SuperName => ThermalZone | Processor | Device
NotifyValue := TermArg => Integer

DefRelease := ReleaseOp MutexObject
ReleaseOp := ExtOpPrefix 0x27
MutexObject := SuperName

DefReset := ResetOp EventObject
ResetOp := ExtOpPrefix 0x26
EventObject := SuperName

DefReturn := ReturnOp ArgObject
ReturnOp := 0xA4
ArgObject := TermArg => DataRefObject

DefSignal := SignalOp EventObject
SignalOp := ExtOpPrefix 0x24

DefSleep := SleepOp MsecTime
SleepOp := ExtOpPrefix 0x22
MsecTime := TermArg => Integer

DefStall := StallOp UsecTime
StallOp := ExtOpPrefix 0x21
UsecTime := TermArg => ByteData

DefUnload := UnloadOp DDBHandleObject
UnloadOp := ExtOpPrefix 0x2A

DefWhile := WhileOp PkgLength Predicate TermList
WhileOp := 0xA2

19.2.5.4 Type 2 Opcodes Encoding

Type2Opcode := DefAcquire | DefAdd | DefAnd | DefBuffer | DefConcat |
DefConcatRes | DefCondRefOf | DefCopyObject | DefDecrement |
DefDerefOf | DefDivide | DefFindSetLeftBit | DefFindSetRightBit |
DefFromBCD | DefIncrement | DefIndex | DefLAnd | DefLEqual |
DefLGreater | DefLGreaterEqual | DefLLess | DefLLessEqual | DefMid
| DefLNot | DefLNotEqual | DefLoadTable | DefLOr | DefMatch |
DefMod | DefMultiply | DefNAnd | DefNOr | DefNot | DefObjectType |
DefOr | DefPackage | DefVarPackage | DefRefOf | DefShiftLeft |
DefShiftRight | DefSizeOf | DefStore | DefSubtract | DefTimer |
DefToBCD | DefToBuffer | DefToDecimalString | DefToHexString |
DefToInteger | DefToString | DefWait | DefXOr | UserTermObj

Type6Opcode := DefRefOf | DefDerefOf | DefIndex | UserTermObj

DefAcquire := AcquireOp MutexObject Timeout
AcquireOp := ExtOpPrefix 0x23
Timeout := WordData

DefAdd := AddOp Operand Operand Target
AddOp := 0x72
Operand := TermArg => Integer

DefAnd := AndOp Operand Operand Target
AndOp := 0x7B

662 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DefBuffer := BufferOp PkgLength BufferSize ByteList
BufferOp := 0x11
BufferSize := TermArg => Integer

DefConcat := ConcatOp Data Data Target
ConcatOp := 0x73
Data := TermArg => ComputationalData

DefConcatRes := ConcatResOp BufData BufData Target
ConcatResOp := 0x84
BufData := TermArg => Buffer

DefCondRefOf := CondRefOfOp SuperName Target
CondRefOfOp := ExtOpPrefix 0x12

DefCopyObject := CopyObjectOp TermArg SimpleName
CopyObjectOp := 0x9D

DefDecrement := DecrementOp SuperName
DecrementOp := 0x76

DefDerefOf := DerefOfOp ObjReference
DerefOfOp := 0x83
ObjReference := TermArg => ObjectReference | String

DefDivide := DivideOp Dividend Divisor Remainder Quotient
DivideOp := 0x78
Dividend := TermArg => Integer
Divisor := TermArg => Integer
Remainder := Target
Quotient := Target

DefFindSetLeftBit := FindSetLeftBitOp Operand Target
FindSetLeftBitOp := 0x81

DefFindSetRightBit := FindSetRightBitOp Operand Target
FindSetRightBitOp := 0x82

DefFromBCD := FromBCDOp BCDValue Target
FromBCDOp := ExtOpPrefix 0x28
BCDValue := TermArg => Integer

DefIncrement := IncrementOp SuperName
IncrementOp := 0x75

DefIndex := IndexOp BuffPkgStrObj IndexValue Target
IndexOp := 0x88
BuffPkgStrObj := TermArg => Buffer, Package or String
IndexValue := TermArg => Integer

DefLAnd := LandOp Operand Operand
LandOp := 0x90

DefLEqual := LequalOp Operand Operand
LequalOp := 0x93

DefLGreater := LgreaterOp Operand Operand
LgreaterOp := 0x94

DefLGreaterEqual := LgreaterEqualOp Operand Operand
LgreaterEqualOp := LnotOp LlessOp

DefLLess := LlessOp Operand Operand
LlessOp := 0x95

DefLLessEqual := LlessEqualOp Operand Operand
LlessEqualOp := LnotOp LgreaterOp

DefLNot := LnotOp Operand
LnotOp := 0x92

ACPI Machine Language (AML) Specification 663

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DefLNotEqual := LnotEqualOp Operand Operand
LnotEqualOp := LnotOp LequalOp

DefLoadTable := LoadTableOp TermArg TermArg TermArg TermArg TermArg TermArg
LoadTableOp := ExtOpPrefix 0x1F

DefLOr := LorOp Operand Operand
LorOp := 0x91

DefMatch := MatchOp SearchPkg MatchOpcode Operand MatchOpcode Operand
StartIndex

MatchOp := 0x89
SearchPkg := TermArg => Package
MatchOpcode := ByteData // 0 MTR

// 1 MEQ
// 2 MLE
// 3 MLT
// 4 MGE
// 5 MGT

StartIndex := TermArg => Integer

DefMid := MidOp MidObj TermArg TermArg Target
MidOp := 0x9E
MidObj := TermArg => Buffer | String

DefMod := ModOp Dividend Divisor Target
ModOp := 0x85

DefMultiply := MultiplyOp Operand Operand Target
MultiplyOp := 0x77

DefNAnd := NandOp Operand Operand Target
NandOp := 0x7C

DefNOr := NorOp Operand Operand Target
NorOp := 0x7E

DefNot := NotOp Operand Target
NotOp := 0x80

DefObjectType := ObjectTypeOp SuperName
ObjectTypeOp := 0x8E

DefOr := OrOp Operand Operand Target
OrOp := 0x7D

DefPackage := PackageOp PkgLength NumElements PackageElementList
PackageOp := 0x12
DefVarPackage := VarPackageOp PkgLength VarNumElements PackageElementList
VarPackageOp := 0x13
NumElements := ByteData
VarNumElements := TermArg => Integer
PackageElementList := Nothing | <PackageElement PackageElementList>
PackageElement := DataRefObject | NameString

DefRefOf := RefOfOp SuperName
RefOfOp := 0x71

DefShiftLeft := ShiftLeftOp Operand ShiftCount Target
ShiftLeftOp := 0x79
ShiftCount := TermArg => Integer

DefShiftRight := ShiftRightOp Operand ShiftCount Target
ShiftRightOp := 0x7A

DefSizeOf := SizeOfOp SuperName
SizeOfOp := 0x87

DefStore := StoreOp TermArg SuperName
StoreOp := 0x70

664 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DefSubtract := SubtractOp Operand Operand Target
SubtractOp := 0x74

DefTimer := TimerOp
TimerOp := 0x5B 0x33

DefToBCD := ToBCDOp Operand Target
ToBCDOp := ExtOpPrefix 0x29

DefToBuffer := ToBufferOp Operand Target
ToBufferOp := 0x96

DefToDecimalString := ToDecimalStringOp Operand Target
ToDecimalStringOp := 0x97

DefToHexString := ToHexStringOp Operand Target
ToHexStringOp := 0x98

DefToInteger := ToIntegerOp Operand Target
ToIntegerOp := 0x99

DefToString := ToStringOp TermArg LengthArg Target
LengthArg := TermArg => Integer
ToStringOp := 0x9C

DefWait := WaitOp EventObject Operand
WaitOp := ExtOpPrefix 0x25

DefXOr := XorOp Operand Operand Target
XorOp := 0x7F

19.2.6 Miscellaneous Objects Encoding

Miscellaneous objects include:
 Arg objects
 Local objects
 Debug objects

19.2.6.1 Arg Objects Encoding

ArgObj := Arg0Op | Arg1Op | Arg2Op | Arg3Op | Arg4Op | Arg5Op | Arg6Op
Arg0Op := 0x68
Arg1Op := 0x69
Arg2Op := 0x6A
Arg3Op := 0x6B
Arg4Op := 0x6C
Arg5Op := 0x6D
Arg6Op := 0x6E

19.2.6.2 Local Objects Encoding

LocalObj := Local0Op | Local1Op | Local2Op | Local3Op | Local4Op | Local5Op |
Local6Op | Local7Op

Local0Op := 0x60
Local1Op := 0x61
Local2Op := 0x62
Local3Op := 0x63
Local4Op := 0x64
Local5Op := 0x65
Local6Op := 0x66
Local7Op := 0x67

19.2.6.3 Debug Objects Encoding

DebugObj := DebugOp
DebugOp := ExtOpPrefix 0x31

ACPI Machine Language (AML) Specification 665

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

19.3 AML Byte Stream Byte Values

The following table lists all the byte values that can be found in an AML byte stream and the meaning of
each byte value. This table is useful for debugging AML code.

Table 19-2 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x00 ZeroOp Data Object — —

0x01 OneOp Data Object — —

0x02-0x05 — — — —

0x06 AliasOp Term Object NameString NameString —

0x07 — — — —

0x08 NameOp Term Object NameString DataRefObject —

0x09 — — — —

0x0A BytePrefix Data Object ByteData —

0x0B WordPrefix Data Object WordData —

0x0C DWordPrefix Data Object DWordData —

0x0D StringPrefix Data Object AsciiCharList NullChar —

0x0E QWordPrefix Data Object QWordData —

0x0F — — — —

0x10 ScopeOp Term Object NameString TermList

0x11 BufferOp Term Object TermArg ByteList

0x12 PackageOp Term Object ByteData Package TermList

0x13 VarPackageOp Term Object TermArg Package TermList

0x14 MethodOp Term Object NameString ByteData TermList

0x15-0x2D — — — —

0x2E (‘.’) DualNamePrefix Name Object NameSeg NameSeg —

0x2F (‘/’) MultiNamePrefix Name Object ByteData NameSeg(N) —

0x30-0x40 — — — —

0x41-0x5A
(‘A’-‘Z’)

NameChar Name Object — —

0x5B (‘[’) ExtOpPrefix — ByteData —

0x5B 0x01 MutexOp Term Object NameString ByteData —

0x5B 0x02 EventOp Term Object NameString —

0x5B 0x12 CondRefOfOp Term Object SuperName SuperName —

0x5B 0x13 CreateFieldOp Term Object TermArg TermArg TermArg
NameString

—

0x5B 0x1F LoadTableOp Term Object TermArg TermArg TermArg
TermArg TermArg TermArg

—

0x5B 0x20 LoadOp Term Object NameString SuperName —

0x5B 0x21 StallOp Term Object TermArg —

666 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 19-2 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x5B 0x22 SleepOp Term Object TermArg —

0x5B 0x23 AcquireOp Term Object SuperName WordData —

0x5B 0x24 SignalOp Term Object SuperName —

0x5B 0x25 WaitOp Term Object SuperName TermArg —

0x5B 0x26 ResetOp Term Object SuperName —

0x5B 0x27 ReleaseOp Term Object SuperName —

0x5B 0x28 FromBCDOp Term Object TermArg Target —

0x5B 0x29 ToBCD Term Object TermArg Target —

0x5B 0x2A UnloadOp Term Object SuperName —

0x5B 0x30 RevisionOp Data Object — —

0x5B 0x31 DebugOp Debug
Object

— —

0x5B 0x32 FatalOp Term Object ByteData DWordData TermArg —

0x5B 0x33 TimerOp Term Object — —

0x5B 0x80 OpRegionOp Term Object NameString ByteData TermArg
TermArg

—

0x5B 0x81 FieldOp Term Object NameString ByteData FieldList

0x5B 0x82 DeviceOp Term Object NameString ObjectList

0x5B 0x83 ProcessorOp Term Object NameString ByteData
DWordData ByteData

ObjectList

0x5B 0x84 PowerResOp Term Object NameString ByteData WordData ObjectList

0x5B 0x85 ThermalZoneOp Term Object NameString ObjectList

0x5B 0x86 IndexFieldOp Term Object NameString NameString
ByteData

FieldList

0x5B 0x87 BankFieldOp Term Object NameString NameString TermArg
ByteData

FieldList

0x5B 0x88 DataRegionOp Term Object NameString TermArg TermArg
TermArg

—

0x5C (‘\’) RootChar Name Object — —

0x5D — — — —

0x5E (‘^’) ParentPrefixChar Name Object — —

0x5F(‘_’) NameChar— Name Object — —

0x60 (‘`’) Local0Op Local Object — —

0x61 (‘a’) Local1Op Local Object — —

0x62 (‘b’) Local2Op Local Object — —

0x63 (‘c’) Local3Op Local Object — —

0x64 (‘d’) Local4Op Local Object — —

0x65 (‘e’) Local5Op Local Object — —

ACPI Machine Language (AML) Specification 667

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 19-2 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

0x66 (‘f’) Local6Op Local Object — —

0x67 (‘g’) Local7Op Local Object — —

0x68 (‘h’) Arg0Op Arg Object — —

0x69 (‘i’) Arg1Op Arg Object — —

0x6A (‘j’) Arg2Op Arg Object — —

0x6B (‘k’) Arg3Op Arg Object — —

0x6C (‘l’) Arg4Op Arg Object — —

0x6D (‘m’) Arg5Op Arg Object — —

0x6E (‘n’) Arg6Op Arg Object — —

0x6F — — — —

0x70 StoreOp Term Object TermArg SuperName —

0x71 RefOfOp Term Object SuperName —

0x72 AddOp Term Object TermArg TermArg Target —

0x73 ConcatOp Term Object TermArg TermArg Target —

0x74 SubtractOp Term Object TermArg TermArg Target —

0x75 IncrementOp Term Object SuperName —

0x76 DecrementOp Term Object SuperName —

0x77 MultiplyOp Term Object TermArg TermArg Target —

0x78 DivideOp Term Object TermArg TermArg Target Target —

0x79 ShiftLeftOp Term Object TermArg TermArg Target —

0x7A ShiftRightOp Term Object TermArg TermArg Target —

0x7B AndOp Term Object TermArg TermArg Target —

0x7C NandOp Term Object TermArg TermArg Target —

0x7D OrOp Term Object TermArg TermArg Target —

0x7E NorOp Term Object TermArg TermArg Target —

0x7F XorOp Term Object TermArg TermArg Target —

0x80 NotOp Term Object TermArg Target —

0x81 FindSetLeftBitOp Term Object TermArg Target —

0x82 FindSetRightBitOp Term Object TermArg Target —

0x83 DerefOfOp Term Object TermArg —

0x84 ConcatResOp Term Object TermArg TermArg Target —

0x85 ModOp Term Object TermArg TermArg Target —

0x86 NotifyOp Term Object SuperName TermArg —

0x87 SizeOfOp Term Object SuperName —

0x88 IndexOp Term Object TermArg TermArg Target —

0x89 MatchOp Term Object TermArg ByteData TermArg —

668 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table 19-2 AML Byte Stream Byte Values

Encoding
Value

Encoding Name Encoding
Group

Fixed List Arguments Variable List
Arguments

ByteData TermArg TermArg

0x8A CreateDWordFieldOp Term Object TermArg TermArg NameString —

0x8B CreateWordFieldOp Term Object TermArg TermArg NameString —

0x8C CreateByteFieldOp Term Object TermArg TermArg NameString —

0x8D CreateBitFieldOp Term Object TermArg TermArg NameString —

0x8E ObjectTypeOp Term Object SuperName —

0x8F CreateQWordFieldOp Term Object TermArg TermArg NameString —

0x90 LandOp Term Object TermArg TermArg —

0x91 LorOp Term Object TermArg TermArg —

0x92 LnotOp Term Object TermArg —

0x92 0x93 LNotEqualOp Term Object TermArg TermArg —

0x92 0x94 LLessEqualOp Term Object TermArg TermArg —

0x92 0x95 LGreaterEqualOp Term Object TermArg TermArg —

0x93 LEqualOp Term Object TermArg TermArg —

0x94 LGreaterOp Term Object TermArg TermArg —

0x95 LLessOp Term Object TermArg TermArg —

0x96 ToBufferOp Term Object TermArg Target —

0x97 ToDecimalStringOp Term Object TermArg Target —

0x98 ToHexStringOp Term Object TermArg Target —

0x99 ToIntegerOp Term Object TermArg Target —

0x9A-0x9B — — — —

0x9C ToStringOp Term Object TermArg TermArg Target —

0x9D CopyObjectOp Term Object TermArg SimpleName —

0x9E MidOp Term Object TermArg TermArg TermArg
Target

—

0x9F ContinueOp Term Object — —

0xA0 IfOp Term Object TermArg TermList

0xA1 ElseOp Term Object — TermList

0xA2 WhileOp Term Object TermArg TermList

0xA3 NoopOp Term Object — —

0xA4 ReturnOp Term Object TermArg —

0xA5 BreakOp Term Object — —

0xA6-0xCB — — — —

0xCC BreakPointOp Term Object — —

0xCD-0xFE — — — —

0xFF OnesOp Data Object — —

ACPI Machine Language (AML) Specification 669

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

19.4 AML Encoding of Names in the Namespace

Assume the following namespace exists:

\
S0
MEM
SET
GET

S1
MEM
SET
GET

CPU
SET
GET

Assume further that a definition block is loaded that creates a node \S0.CPU.SET, and loads a block using
it as a root. Assume the loaded block contains the following names:

STP1
^GET
^^PCI0
^^PCI0.SBS
\S2
\S2.ISA.COM1
^^^S3
^^^S2.MEM
^^^S2.MEM.SET
Scope(\S0.CPU.SET.STP1) {

XYZ
^ABC
^ABC.DEF

}

This will be encoded in AML as:

'STP1'
ParentPrefixChar 'GET_'
ParentPrefixChar ParentPrefixChar 'PCI0'
ParentPrefixChar ParentPrefixChar DualNamePrefix 'PCI0' 'SBS_'
RootChar 'S2__'
RootChar MultiNamePrefix 3 'S2__' 'ISA_' 'COM1'
ParentPrefixChar ParentPrefixChar ParentPrefixChar 'S3__'
ParentPrefixChar ParentPrefixChar ParentPrefixChar DualNamePrefix 'S2__' 'MEM_'
ParentPrefixChar ParentPrefixChar ParentPrefixChar MultiNamePrefix 3 'S2__' 'MEM_'
'SET_'

670 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

After the block is loaded, the namespace will look like this (names added to the namespace by the loading
operation are shown in bold):

\
S0
MEM
SET
GET

CPU
SET
STP1
XYZ

ABC
DEF

GET
PCI0
SBS

S1
MEM
SET
GET

CPU
SET
GET

S2
ISA
COM1

MEM
SET

S3

A Device Class PM Specifications 671

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

APPENDIX A: Device Class Specifications

A Device Class PM Specifications

This section defines the behavior of devices as that behavior relates to power management and, specifically,
to the four device power states defined by ACPI. The goal is enabling device vendors to design power-
manageable products that meet the basic needs of OSPM and can be utilized by any ACPI-compatible
operating system.

A.1 Overview

The power management of individual devices is the responsibility of a policy owner in the operating
system. This software element will implement a power management policy that is appropriate for the type
(or class) of device being managed. Device power management policy typically operates in conjunction
with a global system power policy implemented in the operating system.

In general, the device-class power management policy strives to reduce power consumption while the
system is working by transitioning among various available power states according to device usage. The
challenge facing policy owners is to minimize power consumption without adversely impacting the
system’s usability. This balanced approach provides the user with both power savings and good
performance.

Because the policy owner has very specific knowledge about when a device is in use or potentially in use,
there is no need for hardware timers or such to determine when to make these transitions. Similarly, this
level of understanding of device usage makes it possible to use fewer device power states. Generally,
intermediate states attempt to draw a compromise between latency and consumption because of the
uncertainty of actual device usage. With the increased knowledge in the OS, good decisions can be made
about whether the device is needed at all. With this ability to turn devices off more frequently, the benefit
of having intermediate states diminishes.

The policy owner also determines what class-specific events can cause the system to transition from
sleeping to working states, and enables this functionality based on application or user requests. Notice that
the definition of the wake events that each class supports will influence the system’s global power policy in
terms of the level of power management a system sleeping state can attain while still meeting wake latency
requirements set by applications or the user.

A.2 Device Power States

The following definitions apply to devices of all classes:
 D0. State in which device is on and running. It is receiving full power from the system and is

delivering full functionality to the user.
 D1. Class-specific low-power state (defined in the following section) in which device context may or

may not be lost. Buses in D1 cannot do anything to the bus that would force devices on that bus to lose
context.

 D2. Class-specific low-power state (defined in the following section) in which device context may or
may not be lost. Attains greater power savings than D1. Buses in D2 can cause devices on that bus to
lose some context (for example, the bus reduces power supplied to the bus). Devices in D2 must be
prepared for the bus to be in D2 or higher.

 D3. State in which device is off and not running. Device context is lost. Power can be removed from
the device.

Device power-state transitions are typically invoked through bus-specific mechanisms (for example, ATA
Standby, USB Suspend, and so on). In some cases, bus-specific mechanisms are not available and device-
specific mechanisms must be used. Notice that the explicit command for entering the D3 state might be the
removal of power.

672 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

It is the responsibility of the policy owner (or other software) to restore any lost device context when
returning to the D0 state.

A.2.1 Bus Power Management

Policy owners for bus devices (for example, PCI, USB, Small Computer System Interface [SCSI]) have the
additional responsibility of tracking the power states of all devices on the bus and for transitioning the bus
itself to only those power states that are consistent with those of its devices. This means that the bus state
can be no lower than the highest state of one of its devices. However, enabled wake events can affect this
as well. For example, if a particular device is in the D2 state and set to wake the system and the bus can
only forward wake requests while in the D1 state, then the bus must remain in the D1 state even if all
devices are in a lower state.

Below are summaries of relevant bus power management specifications with references to the sources.

A.2.2 Display Power Management

Refer to the Display Power Management Signaling Specification (DPMS), available from:

Video Electronics Standards Association (VESA)
2150 North First Street
Suite 440
San Jose, CA 95131-2029

A DPMS-compliant video controller and DPMS-compliant monitor use the horizontal and vertical sync
signals to control the power mode of the monitor. There are 4 modes of operation: normal, standby,
suspend and off. DPMS-compliant video controllers toggle the sync lines on or off to select the power
mode.

A.2.3 PCMCIA/PCCARD/CardBus Power Management

Refer to the PCMCIA (Personal Computer Memory Card International Association) Web site, at
http://www.pcmcia.org.

PCMCIA and PCCARD devices do not have device power states defined. The only power states available
are on and off, controlled by the host bus controller. The CardBus specification is a superset of the
PCCARD specification, incorporating the power management specification for PCI bus. Power
management capabilities query, state transition commands and wake event reporting are identical.

A.2.4 PCI Power Management

Refer to the PCI Special Interest Group (PCISIG) Web site, at http://www.pcisig.com/.
 PCI Bus Power Management Capabilities Query. PCI Bus device capabilities are reported via the

optional Capabilities List registers, which are accessed via the Cap_Ptr.
 PCI Bus Power Management State Transition Commands. PCI Bus device power states are

controlled and queried via the standard Power Management Status/Control Register (PMCSR).
 PCI Bus Wakeup Event Reporting. PCI wake events are reported on the optional PME# signal, with

setting of the Wake_Int bit in the PMCSR. Wake event reporting is controlled by the Wake_En bit in
the PMCSR register.

A.2.5 USB Power Management

Refer to the Universal Serial Bus Implementers Forum (USB-IF) Web site, at http://www.usb.org/.
 USB Power Management Capabilities Query. USB device capabilities are reported to the USB Host

via the standard Power Descriptors. These address power consumption, latency time, wake support,
and battery support and status notification.

 USB Power Management State Transition Commands. USB device power states are controlled by
the USB Host via the standard SET_FEATURE command. USB device power states are queried via
the standard USB GET_STATUS command.

A Device Class PM Specifications 673

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 USB Wakeup Event Reporting. USB wake event reporting is controlled using the SET_FEATURE
command, with value DEVICE_REMOTE_WAKEUP. USB wake events are reported by sending
remote wake resume signaling.

A.2.6 Device Classes

Below is a list of the class-specific device power management definitions available in this specification.
Notice that there exists a default device class definition that applies to all devices, even if there is a
separate, class-specific section that adds additional requirements.
 Audio Device Class. Applies to audio devices.
 COM Port Device Class. Applies to COM ports devices.
 Display Device Class. Applies to CRT monitors, LCD panels, and video controllers for those devices.
 Input Device Class. Applies to standard types of input devices such as keyboards, keypads, mice,

pointing devices, joysticks, and game pads, plus new types of input devices such as virtual reality
devices.

 Modem Device Class. Applies to modem and modem-like (for example, ISDN terminal adapters)
devices.

 Network Device Class. Applies specifically to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

 PC Card Controller Device Class. Applies to PC Card controllers and slots.
 Storage Device Class. Applies specifically to ATA hard disks, floppy disks, ATAPI and SCSI CD-

ROMs, and the IDE channel.

A.3 Default Device Class

The requirements expressed in this section apply to all devices, even if there is a separate, class-specific
power management definition that identifies additional requirements.

A.3.1 Default Power State Definitions

State Definition

D0 Device is on and running. It is receiving full power from the system, and is delivering full
functionality to the user.

D1 This state is not defined and not used by the default device class.

D2 This state is not defined and not used by the default device class.

D3 Device is off and not running. Device context is assumed lost, and there is no need for any of it to
be preserved in hardware. This state should consume the minimum power possible. Its only
requirement is to recognize a bus-specific command to re-enter D0. Power can be removed from
the device while in D3. If power is removed, the device will receive a bus-specific hardware reset
upon reapplication of power, and should initialize itself as in a normal power on.

A.3.2 Default Power Management Policy

Present
State

Next
State

Cause

D0 D3 Device determined by the OS to not be needed by any applications or the user.

System enters a sleeping state.

D3 D0 Device determined by the OS to be needed by some application or the user.

674 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.3.3 Default Wake Events

There are no default wake events, because knowledge of the device is implicit in servicing such events.
Devices can expose wake capabilities to OSPM, and device-specific software can enable these, but there is
no generic application-level or OS-wide support for undefined wake events.

A.3.4 Minimum Power Capabilities

All devices must support the D0 and D3 states. Functionality available in D0 must be available after
returning to D0 from D3 without requiring a system reboot or any user intervention. This requirement
applies whether or not power is removed from the device during D3.

A.4 Audio Device Class

The requirements expressed in this section apply to audio devices.

A.4.1 Power State Definitions

State Status Definition

D0 Required Power is on. Device is operating.

D1 Optional Power consumption is less than D0 state. Device must be able to transition between
D0 and D1 states within 100 ms. No audio samples may be lost by entering and
leaving this state.

D2 Required Power consumption is less than D0 state. Device must be able to transition between
D0 and D2 states within 100 ms. Audio samples may be lost by entering and leaving
this state.

D3 Required The device is completely off or drawing minimal power. For example, a stereo will be
off, but a light-emitting diode (LED) may be on and the stereo may be listening to IR
commands.

If a device is in the D1 or D2 state it must resume within 100 ms. A device in the D3 state may take as long
as it needs to power up. It is the responsibility of the policy owner to advertise to the system how long a
device requires to power up.

All audio devices must be capable of D0, D2 and D3 states. It is desirable that an audio device be capable
of D1 state. The difference between D1 and D2 is that a device capable of D1 can maintain complete state
information in reduced power mode. The policy owner or other software must save all states for D2-
capable devices. Some audio samples may be lost in transitioning into and out of the D2 state.

Notice that the D1 state was added to allow digital signal processor (DSP)-equipped audio hardware to
exploit low-power modes in the DSP. For example, a DSP may be used to implement Dolby AC-3 Decode.
When paused it stops playing audio, but the DSP may contain thousands of bytes worth of state
information. If the DSP supports a low-power state, it can shut down and later resume from exactly the
audio sample where it paused without losing state information.

A.4.2 Power Management Policy

For the purpose of the following state transition policy, the following device-specific operational states are
defined:
 Playing. Audio is playing.

 Recording:
 Foreground. Normal application is recording. Recording is considered foreground unless

specifically designated low priority.

A Device Class PM Specifications 675

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

 Background. Speech recognition or speech activity detection is running. Recording may be
preempted by foreground recording or playing. Any audio recording may be designated as
background.

 Full Duplex. Device is simultaneously playing and recording.
 Paused. File handle is open. Only devices that are playing, foreground recording or in full duplex

operation may be paused. Background recording may not be paused. State is static and never lost. The
paused state assumes that a device must transition to the resumed state rapidly. Playing or recording
must be resumed within 100 ms. No audio samples may be lost between the device is paused and later
resumed.

 Closed. No file handle is open.

Present
State

Next
State Cause

D3 D0 Audio device moves from closed to open state or paused when the device receives the
resume command.

D0 D1 Audio device receives pause command. If device is D1 capable, this state is preferred. If
not, the device driver will preserve context, and the device will be set to D2.

D2/D1 D0 Audio device receives a resume command.

D0 D2 Audio device is closed. Audio inactivity timer started.

D2 D3 Audio inactivity timer expires.

D0 D3 Audio device is in background record mode and receives power-down command.

When an audio device is in the D0 state it will refuse system requests to transition to D3 state unless it is in
background record mode. When an audio device is paused (D1 or D2) and it receives a request to transition
to the D3 state, it will save the state of the audio device and transition to the D3 state.

Since multimedia applications often open and close audio files in rapid succession, it is recommended that
an inactivity timer be employed by the policy owner to prevent needless shutdowns (D3 transitions) of the
audio hardware. For example, frequent power cycling may damage audio devices powered by vacuum
tubes.

A.4.3 Wake Events

An audio device may be a wake device. For example, a USB microphone designed for security applications
might use the USB wake mechanism to signal an alarm condition.

A.4.4 Minimum Power Capabilities

All audio devices must be capable of D0, D2 and D3 power states. If the device is capable of maintaining
context while in a low-power state it should advertise support for D1. Transitional latency for the D2 or D3
states must be less than 100 ms. There are no latency restrictions for D3 transitions, but the policy owner
should advertise the amount of time required.

A.5 COM Port Device Class

The requirements expressed in this section apply to Universal Asynchronous Receiver/Transmitters
(UARTs) such as the common NS16550 buffered serial port and equivalents.

The two required states for any power-managed COM Port are full on (D0) and full off (D3). This in turn
requires that the COM port hardware be power-manageable by ACPI control methods for COM ports that
are on system boards, or by standard bus power management controls for COM ports that are on add-in
cards (for example, PCI). Because of this, ISA-based COM port add-in cards will not be able to meet this
requirement, and therefore cannot be compliant with this specification.

676 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.5.1 Power State Definitions

State Status Definition

D0 Required Line drivers are on. UART context is preserved.

D1 N/A This state is not defined for COM Ports. Use the D3 state instead.

D2 N/A This state is not defined for COM Ports. Use the D3 state instead.

D3 Required Line drivers are off (unpowered; outputs isolated from devices attached to the port).
UART context is lost. Latency to return to D0 is less than 1 second.

A.5.2 Power Management Policy

Present
State

Next
State Cause

D3 D0 Power-on reset

COM port opened by an application

D0 D3 COM port closed

System enters sleeping state while wake is disabled on this device.

System enters sleeping state while wake is enabled on this device and the device is
capable of generating wake to the system from state D3.

A.5.3 Wake Events

If the COM port is capable of generating wake events, asserting the “ring indicator” line (V.24 circuit 125)
will cause the COM port to assert a wake event. There are two common mechanisms that may be employed
(either one or both) for performing machine wake using COM ports.

The first provides a solution that is capable of waking the PC whether the UART is powered (D0) or not
(D3). Here, the “ring indicator” line (from V.24 circuit 125) is commonly connected directly to the system
wake device in addition to being connected to the UART. While this implementation is normative for COM
ports located on system motherboards (see the ACPI specification), it could also be done by add-in cards
with COM ports that reside on buses supporting system wake from devices in D3 (for example, PME#
signal on PCI).

The second mechanism requires that the UART be powered (D0) to use the UART’s interrupt output pin to
generate the wake event instead. When using this method, the OS COM port policy owner or power
management control methods are expected to configure the UART. Although any UART interrupt source
(for example, ‘data ready’) could theoretically be used to wake the system, these methods are beyond the
scope of this document.

A.5.4 Minimum Power Capabilities

A COM port conforming to this specification must support the D0 and D3 states.

A.6 Display Device Class

The requirements expressed in this section apply to all devices engaged in the display of program content,
which includes full screen display devices, display controllers, and graphics adapters. This class does not
include video capture devices unless they are children of the graphics adapter. This class does not include
edge displays or hardware indicators for device states.

A Device Class PM Specifications 677

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

While saving power from the display and adapter are primary goals of Display Device Class power
management definitions, the definitions are also intended to ensure that the user perceives the system as
"off" during system sleeping states, as required above. When the system enters a lower power state, the
screen must go black so the user knows the system is idle. This is important because devices that cannot
actually save power (standard televisions, for example) can still support the user notice of system idle by
going black.

A.6.1 Power State Definitions

A.6.1.1 CRT Monitors (not including other full screen displays)

State Status Definition

D0 Required This state is equivalent to the “On” state defined in the VESA DPMS specification (see
Related Documents) and is signaled to the display using the DPMS method.

Display is fully on

Video image is active

D1 Optional This state is equivalent to the “Standby” state defined in the VESA DPMS and is
signaled to the display using the DPMS method.

Display is functional but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 5 seconds

D2 Required This state is equivalent to the “Suspend” state defined in the VESA DPMS
specification and is signaled to the display using the DPMS method.

Display is functional and conserving energy

Video image is blank

Latency to return to D0 is less than 10 seconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification and
is signaled to the display using the DPMS method.

Display is non-functional

Video image is blank

CRT Monitors are a special case in power management. On the one hand, they support a common defined
method (DPMS) for changing power states. On the other hand, that procedure and the CRT support is
extremely slow and out of keeping with other faster power control methods used by other forms of display.
This definition should not preclude the use of faster and more effective methods of transitioning the CRT if
they are available and known to the controller. DPMS is not recommended as solution for new display
devices in the future.

678 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.6.1.2 Internal Flat Panel Devices

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
panel by the correct application of power and/or controller specific signaling.

Display is fully on

Backlight (if present) is fully on(subject to performance state requirements – see
below)

Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state.

Display retains internal state but may be conserving energy

Backlight(if present) is fully off

Video image is blank

Latency to return to D0 must be less than 500 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state.

Display retains state but is conserving energy

Backlight (if present) is fully off;

Video image is blank

Latency to return to D0 is less than 500 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It
is signaled by the removal of power or possibly by controller-specific signaling.

Display is non-functional

Backlight (if present) is fully off.

Video image is blank

Latency to return to D0 is less than 500 milliseconds

Internal flat panels (also known as local flat panels or sometimes as LCDs) do not normally support or
require DPMS signaling to change power states. Instead, controllers capable of managing such panels tend
to provide vendor-specific methods to control internal flat panels, often involving special sequencing of
power signals to the panel. Some may be managed only by the application or removal of power.

Backlight control for power management states is likewise controller and even platform specific. Note that
on-off backlight control for power management states is often unrelated to backlight intensity or brightness
control that is used while in the D0 state.

The 500 milliseconds is only to allow some existing hardware to function . The target for new devices
should be 100 milliseconds.

A Device Class PM Specifications 679

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.6.1.3 DVI Displays (Digital Flat Panels and DVI Monitors)

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
display by the correct application of power and/or controller specific signaling.

Display is fully on

Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled by
the removal of display output and time expiring. The physical state entered is no
different than D2.

Display retains internal state but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 250 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled by
the removal of display output and time expiring The physical state entered is no
different than D1.

Display retains state but is conserving energy

Video image is blank

Latency to return to D0 is less than 250 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It
is signaled by the removal of display output and time expiring

Display is non-functional

Video image is blank

Latency to return to D0 is less than 250 milliseconds

Although 250 milliseconds is shown here because not all devices in this group are fast now, the target
resume for a new device should be 100 milliseconds.

680 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.6.1.4 Standard TV Devices (and Analog HDTVs)

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device.

Display is fully on

Video image is active

D1 Optional Video image is blank

Latency to return to D0 must be less than 100 milliseconds

D2 Optional Video image is blank

Latency to return to D0 must be less than 100 milliseconds

D3 Required This state is not equivalent to the “Off” state defined in the VESA DPMS specification
because not power is actually saved.

Video image is blank

Latency to return to D0 is less than 100 milliseconds

A Device Class PM Specifications 681

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.6.1.5 Other (new) Full Screen Devices

Some devices not specifically defined here already exist, such as projectors that emulate CRTs or HDTVs.
Others may be coming. It is important for any device used for full screen display to support power
transitions and power management states, but the primary requirement for the method should be low
overhead.

State Status Definition

D0 Required This state is equivalent to the “On” state for a DPMS device, but is signaled to the
panel by the correct application of power and/or device specific signaling known to the
controller.

Display is fully on

Video image is active

D1 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled to
the panel by the correct application of power and/or device specific signaling known to
the controller.

Display retains internal state but may be conserving energy

Video image is blank

Latency to return to D0 must be less than 100 milliseconds

D2 Optional This state is not required to be physically different than a D3 state if the device is able
to meet the resume requirement and the driver is able to restore state. It is signaled to
the panel by the correct application of power and/or device specific signaling known to
the controller.

Display retains state but is conserving energy

Video image is blank

Latency to return to D0 is less than 100 milliseconds

D3 Required This state is equivalent to the “Off” state defined in the VESA DPMS specification. It
is signaled by the removal of display output and/or device specific methods known to
the controller.

Display is non-functional

Video image is blank

Latency to return to D0 is less than 250 milliseconds

Although 250 milliseconds is shown here because not all devices in this group are fast now, the target
resume for a new device should be 100 milliseconds.

682 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.6.1.6 Video Controllers (Graphics Adapters)

State Status Definition

D0 Required Back-end is on

Video controller context is preserved

Video memory contents are preserved

D1 Optional Back-end is off, except for CRT control signaling (DPMS)

Video controller context is preserved

Video memory contents is preserved

Latency to return to D0 is less than 100 milliseconds

D2 Optional Back-end is off, except for CRT control signaling (DPMS)

Video controller context is lost

Video memory contents is lost

Latency to return to D0 is less than 200 milliseconds

D3 Required Back-end is off

Video controller context is lost (power removed)

Video memory contents is lost (power removed)

Latency to return to D0 is less than 200 milliseconds

A.6.1.7 Display Codecs

Like the displays they control, display codecs are children of the adapter and cannot be in a higher state
than the adapter or a lower state than the displays they control . It is generally not helpful to deal with
codecs entirely separately from the adapter or the displays they control. While it may vary from device to
device, a codec will either be safely powered down when its display is powered down or it may require
power as long as the adapter receives power.

A.6.2 Power Management Policy for the Display Class

Present
State

Next
State Cause

D0 D1 User inactivity for a period of time (T1)

D1 D2 User inactivity for a period of time (T2 > T1)

D2 D3 User inactivity for a period of time (T3 > T2)

D1/D2/D3 D0 User activity or application UI change (for example, dialog pop-up)

These state transition definitions apply to both the full screen display and the video controller. However,
the control of the two devices is independent, except that a video controller will never be put into a lower
power state than its full screen display. Also, while full screen displays can transition directly from D1 to
D3 or from D2 to D3, the adapters require a transition to D0 from D1 or D2 before entering D3.

Transitions for the video controller are commanded via the bus-specific control mechanism for device
states. Monitor/LCD transitions are commanded by signaling from the video controller and are only
generated as a result of explicit commands from the policy-owner. Full screen display power control is
functionally independent from any other interface the monitor may provide (such as USB). For instance,
Hubs and HID devices in the monitor enclosure may be power-managed by their driver over the USB bus,

A Device Class PM Specifications 683

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

but the Monitor/LCD device itself may not; it must be power-managed from the video controller using the
methods above.

A.6.3 Wake Events

Display devices incorporating a system power switch should generate a wake event when the switch is
pressed while the system is sleeping.

A.6.4 Minimum Power Capabilities

A CRT monitor conforming to this specification must support the D0, D2, and D3 states. Other full screen
displays only need to support D0 and D3. Support for the D1 state is optional in all cases. Transitional
latencies for the D1 or D2 state must meet the requirements above.

A video controller conforming to this specification must support the D0 and D3 states. Support for the D1
and D2 states is optional. Transitional latencies for the D1 must be less than 100 milliseconds while D2 and
D3 must transition to D0 in less than 200 milliseconds.

A.6.5 Performance States for Display Class Devices

Performance states for display devices and adapters have one clear difference from defined power
management states. There is no display in any power management state higher than D0. However,
performance states are all applied within D0, which means they save power while continuing to display.
Not all display class devices will support performance states, but in all cases, they must allow continued
display where they exist.

A.6.5.1 Common Requirements for Display Class Performance States

The definition of each state (up the line toward the OSPM) must include maximum latency information on
transitions into the state and transitions out of the state. (For states other than DPS1, it may be necessary to
indicate whether the latency is the time from DPS0 to DPSx or only from DPSx-1 to DPSx.)

Each state has to have a relative weight indicator or a relative power savings indicator (i.e., it can make a
difference in OSPM policies whether DPS1 saves 2% power and DPS2 save 75% power even if latency is
longer.)

While ASL NameSpace structures may provide some of this information, it is recommended that display
class performance states be entered and exited by driver and not by control method wherever possible.

A.6.5.2 Performance states for Full Screen Displays

A.6.5.2.1 CRT Performance States

Some CRTs (in theory) have the capability for "reduced on" -- a mode which displays but uses less power
than full performance. Even without this capability, a CRT may be able to use reduced refresh or other
methods to reduce the total power of displaying.

A.6.5.2.2 Internal Flat Panel

In general, panels consume a fixed amount of power. However, some panels are also capable of supporting
reduced refresh. More important, the amount of backlight brightness is a major factor in system power.
This clearly needs to be coordinated with direct ASL control methods for brightness and with ambient light
sensing when present. However, a performance state may be achieved by offsetting the brightness value
computed by other methods, either by a fixed amount or a fixed percentage.

684 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.6.5.2.3 DVI Full Screen Devices

DVI Devices are normally capable of frequency control and may be able to benefit by frequency control.
However, because of sensitivity to signal loss, DVI devices may have limitations on other types of
performance control.

A.6.5.2.4 Standard TV and Analog HDTVs

Standard TV and Analog HDTVs do not appear capable of performance states. Codecs controlling them
may be capable of power saving, however.

A.6.5.2.5 New Devices

The ability to reduce power while continuing to display will be increasingly important.

A.6.5.3 Performance States for Video Controllers/Display Adapters

Adapters are somewhat limited during performance states because they have to continue to support display
on one or more full screen devices. However, they can still do a number of things to support performance
states, including

 Changes to basic display and render capabilities, including speed or frequency range supported.

 Feature/Capability/Quality Control – limiting specific hardware features, limiting refresh rates,
limiting resolutions.

The limiting factor on what can be supported may sometimes be in the OSPM. If the OSPM support
dynamic changes in these features during a performance state change (even if no other time), more
opportunities arise.

Once again, the latency on transitions and the power saved by specific states have to be made available to
the OSPM in order to use these options effectively.

A Device Class PM Specifications 685

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.7 Input Device Class

The requirements expressed in this section apply to standard types of input devices such as keyboards,
keypads, mice, pointing devices, joysticks, game pads, to devices that combine these kinds of input
functionality (composite devices, and so on), and to new types of input devices such as virtual reality
devices, simulation devices, and so on.

A.7.1 Power State Definitions

State Status Definition

D0 Required Device is receiving full power from its power source, delivering full functionality to
the user, and preserving applicable context and state information.

D1 Optional Input device power consumption is greatly reduced. In general, device is in a power
management state and is not delivering any functionality to the user except wake
functionality if applicable. Device status, state, or other information indicators (for
example, LEDs, LCD displays, and so on) are turned off to save power.

The following device context and state information should be preserved by the policy
owner or other software:

Keyboard. Num, caps, scroll lock states (and Compose and Kana states if applicable)
and associated LED/indicator states, repeat delay, and repeat rate.

Joystick. Forced feedback effects (if applicable).

Any input device. All context and state information that cannot be preserved by the
device when it’s conserving power.

D2 N/A This state is not defined for input devices, use D1 as the power management state
instead.

D3 Required Input device is off and not running. In general, the device is not delivering any
functionality to the user except wake functionality if applicable. Device context and
state information is lost.

A.7.2 Power Management Policy

Present
State

Next
State Cause

D3 D0 Requested by the system

D0 D1/D3* Requested by the system (for example, system goes to sleep with wake enabled)

D0/D1 D3 Requested by the system (for example, system goes to sleep with wake disabled)

Power is removed

D1/D3 D0 Device with enabled wake capability requests transition by generating a wake event

Requested by the system

*Depends on capability of device (if it features D1 or D3 wake capability or not); device will be put in state
with the lowest possible power consumption.

686 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.7.3 Wake Events

It is recommended, but not required, that input devices implement and support bus-specific wake
mechanisms if these are defined for their bus type. This is recommended because a user typically uses an
input device of some kind to wake the system when it is in a power management state (for example, when
the system is sleeping).

The actual input data (particular button or key pressed) that’s associated with a wake event should never be
discarded by the device itself, but should always be passed along to the policy owner or other software for
further interpretation. This software implements a policy for how this input data should be interpreted, and
decides what should be passed along to higher-level software, and so on.

It is recommended that the device button(s) or key(s) used for power management purposes are clearly
labeled with text and/or icons. This is recommended for keyboards and other input devices on which all
buttons or keys are typically labeled with text and/or icons that identify their usage.

For example, a keyboard could include a special-purpose power management button (for example,
“Power”) that, when pressed during a system sleeping state, generates a wake event. Alternatively, the
button(s) on mice and other pointing devices could be used to trigger a wake event.

Examples of more advanced wake events include keyboard wake signaling when any key is pressed, mouse
wake signaling on detection of X/Y motion, joystick wake signaling on X/Y motion, and so on. However,
in order to avoid accidental or unintentional wake of the system, and to give the user some control over
which input events will result in a system wake, it’s suggested that more advanced types of wake events are
implemented as features that can be turned on or off by the user (for example, as part of the OSPM user
interface).

A.7.4 Minimum Power Capabilities

An input device conforming to this specification must support the D0 and D3 states. Support for the D1
state is optional.

A.8 Modem Device Class

The requirements expressed in this section apply to modems and similar devices, such as USB controlled
ISDN Terminal Adapters (“digital modems”) and computer-connected telephone devices ("CT phones").
This specification will refer to these devices as “modems; the same considerations apply to digital modems
and CT phones unless explicitly stated otherwise.

The scope of this section is further restricted to modems that support power management using methods
defined by the relevant PC-modem connection bus. These include PCI, USB, PCCARD (PCMCIA),
CardBus, and modems on the system motherboard described by ACPI BIOS control methods. The scope
does not include bus-specific means for devices to alert the host PC (for example, how to deliver a
”ringing”’ message), nor does it address how those alerting operations are controlled.

A.8.1 Technology Overview

Modems are traditionally serial devices, but today modems may be attached to a PC by many different
means. Further, many new modems expose a software serial interface, where the modem controller
function is implemented in software. This specification addresses three different connection types:
 Traditional connections without power-managed connections (for example, COM, LPT, ISA)
 Power managed connections (for example, PCCARD, CardBus, PCI, USB)
 Motherboard modems

For some of the above modem connection types mentioned, there are three different modem architectures
possible:
 Traditional modem (DAA, DSP, and controller in hardware)
 Controller-less design (DAA and DSP in hardware)
 "Soft modem" design (DAA and CODEC only in hardware)

A Device Class PM Specifications 687

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The hardware components of the modem shall be controlled by the relevant bus commands, where
applicable (USB, PCI, CardBus). The software components are dependent on the power state of the CPU.

A.8.1.1 Traditional Connections

In older methods (COM, LPT, ISA) the modem is controlled primarily by serialized ASCII command
strings (for example, V.25ter) and traditional V.24 (RS-232) out-of-band leads. In these legacy devices,
there are no common means for power management other than the power switch for the device, or the
entire system unit.

An external modem connected to a COM port or LPT port typically has its own power supply. An LPT port
modem might run from the current on the LPT port +5V supply. For COM or LPT port modems, power is
typically controlled by a user switch.

The most common modem type is an ISA card with an embedded COM port. From a software standpoint,
they are logically identical to external modems, but the modems are powered by the PC system unit. Power
is drawn from the ISA bus without independent power switching.

A.8.1.2 Power-Managed Connections

PCMCIA, PCCARD and CardBus slots are powered and power-managed by the system, using means
defined in the relevant bus specifications. For PCMCIA and PCCARD devices, only D0 and D3 states are
available, via Socket Services in the OS and/or ACPI BIOS. CardBus adds intermediate states, using the
same mechanisms defined for PCI Bus.

PCI bus slots are powered and power-managed by the system, using means defined in the PCI
specification.

USB devices may be powered by the USB itself (100mA or 500mA), or have their own external power
supply. All USB devices are power-managed by the USB bus master, using means defined in the USB
specification.

A.8.1.3 Motherboard Modems

A modem embedded in the motherboard is powered by controls on the motherboard. It should be power-
managed by using control methods exposed via ACPI BIOS tables.

A.8.2 Power State Definitions

State Status Definition

D0 Required Phone interface is on (may be on or off hook)

Speaker is on

Controller Context is preserved

D1 N/A Not defined (do not use)

D2 Optional Phone interface is not powered by the host (on hook)

Speaker is off

Controller context is preserved

2 seconds maximum restore time

D3 Required Phone interface is not powered by host (on hook)

Speaker is off

Controller context may be lost

5 seconds maximum restore time

688 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.8.3 Power Management Policy

Present
State

Next
State Cause

D2/D3 D0 System issues a bus command to enter the D0 state (for example, an application is
answering or originating a call).

D0 D2 System issues a bus command to enter the D2 state. (for example, an application is
listening for an incoming call).

D0 D3 System issues a bus command to enter the D3 state (for example, all applications have
closed the Modem device).

A.8.4 Wake Events

For any type of modem device, wake events (if supported and enabled) are only generated in response to
detected “ringing” from an incoming call. All other events associated with modems (V.8bis messages, and
so on) require that the PC be in the “working” state to capture them. The methods and signals used to
generate the wake may vary as a function of the modem connection (bus) type and modem architecture.

Machine wake is allowed from any modem power state (D0, D2, and D3), and is accomplished by methods
described in the appropriate bus power management specification (PCI, USB, PCCARD), or by ACPI
system board control methods (for Modem on Motherboard implementations).

If the specific modem implementation or connection type does not enable it to assert system wake
signaling, these modems will not be able to wake the machine. The OS modem policy owner will have to
retain the PC in the “working” state to perform all types of event detection (including ringing).

A.8.5 Minimum Power Capabilities

A modem or similar device conforming to this specification must support the D0 and D3 states. Support of
the D2 state is optional.

A Device Class PM Specifications 689

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.9 Network Device Class

The requirements expressed in this section apply to Ethernet and token ring adapters. ATM and ISDN
adapters are not supported by this specification.

A.9.1 Power State Definitions

For the purpose of the following state definitions “no bus transmission” means that transmit requests from
the host processor are not honored, and “no bus reception” means that received data are not transferred to
host memory.

State Status Definition

D0 Required Device is on and running and is delivering full functionality and performance to the
user

Device is fully compliant with the requirements of the attached network

D1 Optional No bus transmission allowed

No bus reception allowed

No interrupts can occur

Device context may be lost

D2 Optional No bus transmission allowed

No bus reception allowed

No interrupts can occur

Device context may be lost

D3 Required Device context is assumed to be lost

No bus transmission allowed

No bus reception allowed

No interrupts can occur

This document does not specify maximum power and maximum latency requirements for the sleeping
states because these numbers are very different for different network technologies. The device must meet
the requirements of the bus that it attaches to.

Although the descriptions of states D1 and D2 are the same, the choice of whether to implement D1 or D2
or both may depend on bus services required, power requirements, or time required to restore the physical
layer. For example, a device designed for a particular bus might include state D1 because it needs a bus
service such as a bus clock to support Magic Packet™ wake, and that service is available in the bus
device’s D1 power state but not in D2. Also, a device might include both state D1 and state D2 to provide a
choice between lower power and lower latency.

690 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.9.2 Power Management Policy

Present
State

Next
State Cause

D0 Dx System enters sleep state. If wake is enabled, Dx is the lowest power state (for
example, D1, D2, D3) from which the network device supports system wake.

An appropriate time-out has elapsed after a “link down” condition was detected. Dx is
the lowest power state in which the network device can detect “link up.”

D0 D3 System initiated network shutdown.

System enters sleep state and wake is either not enabled or the network device is
capable of waking from D3.

D1/D2/D3 D0 System wake (transition to S0), including a wake caused by a network wake event.

A.9.3 Wake Events

Network wake events are generally the result of either a change in the link status or the reception of a wake
frame from the network.

A.9.3.1 Link Status Events

Link status wake events are useful to indicate a change in the network’s availability, particularly when this
change may impact the level at which the system should re-enter the sleeping state. For example, a
transition from “link off” to “link on” may trigger the system to re-enter sleep at a higher level (for
example, S2 versus S3) so that wake frames can be detected. Conversely, a transition from “link on” to
“link off” may trigger the system to re-enter sleep at a deeper level (for example, S3 versus S2) since the
network is not currently available. The network device should implement an internal delay to avoid
unnecessary transitions when the link status toggles on or off momentarily.

A.9.3.2 Wake Frame Events

Wake frame events are used to wake the system whenever meaningful data is presented to the system over
the network. Examples of meaningful data include the reception of a Magic Packet™, a management
request from a remote administrator, or simply network traffic directly targeted to the local system. In all of
these cases the network device was pre-programmed by the policy owner or other software with
information on how to identify wake frames from other network traffic. The details of how this information
is passed between software and network device depend on the OS and therefore are not described in this
specification.

A.9.4 Minimum Power Capabilities

A network device conforming to this specification must support the D0 and D3 states. Support for the D1
and D2 states is optional.

A.10 PC Card Controller Device Class

The requirements expressed in this section apply to PC Card controller devices and the PC Card slots.

Power management of PC Cards is not defined by this specification. PC Card power management is
defined by the relevant power management specification for the card’s device class (for example, network,
modem, and so on), in conjunction with the PC Card standard (for 16-bit cards) or the PCI Power
Management Specification (for CardBus cards).

A Device Class PM Specifications 691

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.10.1 Power State Definitions

State Status Definition

D0 Required Card status change interrupts are fully functional.

Card functional interrupts are fully functional.

Controller context (for example, memory, I/O windows) is fully functional.

Controller interface is fully functional (processor can access cards).

Power to cards (slots) is available (may be on or off under software control).

The controller is at its highest power consumption level.

Bus command response time is at its fastest level.

PC Cards can be in any Dx power state (D0-D3).

Note: In D0 state, CSTSCHG interrupts can be passed to a system from a powered
down PC Card (for more detail, refer to section 5.2.11.2 of PC Card Standard,
Electrical Specification).

D1 Optional Card status change interrupts are disabled. CSTSCHG interrupt events are still
detectable by the controller and cause the bus-specific wake signal to be asserted if
wake is enabled on the controller.

Card functional interrupts are disabled.

Controller context is preserved (all register contents must be maintained but memory
and I/O windows need not be functional).

Controller interface is non-functional (processor cannot access cards).

Power to cards (slots) is available (may be on or off; retains power setting it had at
time of entry to D1).

Power-level consumption for the controller is high but less than D0.

The time required to restore the function from the D1 state to the D0 state is quicker
than resumption from D3.

Bus command response time is equal to or slower than in D0.

PC Cards can be in the D1, D2, or D3 power states (not D0).

Note: In D1 state, CSTSCHG interrupts can be passed to a system from a powered-
down PC Card (for more detail, refer to section 5.2.11.2 of PC Card Standard,
Electrical Specification).

D2 Optional Functionally the same as D1 (may be implemented instead of D1 in order to allow
bus and/or system to enter a lower-power state).

D3 Required Card status change interrupt: Disabled and need not be detected.

Card functional interrupt: Disabled and need not be detected.

Controller context (for example, memory, I/O windows): Lost.

Controller interface: Non-functional (processor can not access cards).

Clock to controller: Off.

Power to cards (slots): Off (card context lost).

Note: If Vcc is removed (for example, PCI Bus B3) while the device is in the D3
state, a bus-specific reset (for example, PCI RST#) must be asserted when power is
restored and functions will then return to the D0 state with a full power-on reset
sequence. Whenever the transition from D3 to D0 is initiated through assertion of a
bus-specific reset, the power-on defaults will be restored to the function by hardware
just as at initial power up. The function must then be fully initialized and
reconfigured by software.

692 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.10.2 Power Management Policy

The PC Card controller is a bus controller. As such, its power state is dependent on the devices plugged
into the bus (child devices). OSPM will track the state of all devices on the bus and will put the bus into the
best possible power state based on the current device requirements on that bus. For example, if the PC Card
cards are all in the D1 state, OSPM will put the PC Card controller in the D1 state.

Present
State

Next
State Cause

D2/D3 D0 Any card in any slot needing to transition to state D0 due to a wake event or because of
system usage.

D0 D1 No card in any slot is in state D0.

D0 D2 No card in any slot is in state D0 or D1.

D0 D3 All cards in all slots are in state D3.

A.10.3 Wake Events

A wake event is any event that would normally assert the controller’s status change interrupt (for example,
card insertion, card battery state change, card ReqAttn event, and so on) or ring-indicate signal.

A.10.4 Minimum Power Capabilities

A PC Card controller device conforming to this specification must support the D0 and D3 states. Support
for the D1 or D2 states is optional.

A Device Class PM Specifications 693

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.11 Storage Device Class

The requirements expressed in this section apply to ATA hard disks, floppy disks, ATAPI and SCSI CD-
ROMs, and the IDE channel.

A.11.1 Power State Definitions

A.11.1.1 Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is functional.

Interface mode context (for example, communications timings) is programmed.

D1 Optional Drive controller (for example, interface and control electronics) is functional.

Interface mode context (for example, communications timings) is preserved.

Drive motor (for example, spindle) is stopped, with fast-start mode enabled, if
available.

Laser (if any) is off.

Recommended latency to return to D0 is less than 5 seconds.

Power consumption in D1 should be no more than 80% of power consumed in D0.

Note: For ATA devices, this state is invoked by the Standby Immediate command.

D2 N/A This state is not defined for storage devices.

D3 Required Drive controller (for example, interface and control electronics) is not functional;
context is lost.

Interface mode (for example, communications timings) is not preserved.

Drive motor (for example, spindle) is stopped.

Laser (if any) is off.

Power consumption in D3 is no more than 10% of power consumed in D0.

Note: For ATA devices, this state is invoked by the “sleep” command.

A.11.1.2 Floppy Disk Devices

State Status Definition

D0 Required Drive controller (for example, interface and control electronics) is functional.

Drive motor (for example, spindle) is turning.

D1 N/A This state is not defined for floppy disk drives.

D2 N/A This state is not defined for floppy disk drives.

D3 Required Drive controller (for example, interface and control electronics) is not functional;
context is lost.

Drive motor (for example, spindle) is stopped.

694 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

A.11.1.3 IDE Channel Devices

State Status Definition

D0 Required Adapter is functional.

Adapter interface mode (for example, communications timings) is programmed.

Power is applied to the bus (and all devices connected to it).

D1 N/A This state is not defined for the IDE Channel.

D2 N/A This state is not defined for the IDE Channel.

D3 Required Adapter is non-functional.

Adapter interface mode (for example, communications timings) is not preserved.

Power to the bus (and all devices connected to it) may be off.

A.11.2 Power Management Policy

A.11.2.1 Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable
Storage Devices

Present
State

Next
State Cause

D3 D0 Device usage (high-priority I/O).

D0 D1* Device inactivity (no high-priority I/O) for some period of time (T1).

D0 D3 Device inactivity (no high-priority I/O) for a period of time (T2=>T1).

System enters sleeping state.

D1* D0 Device usage (High-priority I/O).

* If supported. Note: For ATA, the D3-to-D0 transition requires a reset of the IDE channel. This means
that both devices on a channel must be placed into D3 at the same time.

A.11.2.2 IDE Channel Devices

Present
State

Next
State Cause

D3 D0 Any device on the channel needing to transition to a state other than state D3.

D0 D3 All devices on the channel in state D3.

A.11.3 Wake Events

Storage devices with removable media can, optionally, signal wake upon insertion of media using their bus-
specific notification mechanism. There are no other wake events defined for Storage devices.

A.11.4 Minimum Power Capabilities

A hard disk, CD-ROM or IDE/ATAPI removable storage device conforming to this specification must
support the D0 and D3 states. Support for the D1 state is optional.

A floppy disk and IDE channel device conforming to this specification must support the D0 and D3 states.

695

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

APPENDIX B: Video Extensions

B ACPI Extensions for Display Adapters

B.1 Introduction

This section of the document describes a number of specialized ACPI methods to support motherboard
graphics devices.

In many cases, system manufacturers need to add special support to handle multiple output devices such as
panels and TV-out capabilities, as well as special power management features. This is particularly true for
notebook manufacturers. The methods described here have been designed to enable interaction between the
system BIOS, video driver, and OS to smoothly support these features.

Systems containing a built-in display adapter are required to implement the ACPI Extensions for Display
Adapters.

Table B-1 Video Extension Object Requirements

Method Description Requirement

_DOS Enable/Disable output switching Required if system supports display switching
or LCD brightness levels

_DOD Enumerate all devices attached to display
adapter

Required if integrated controller supports
output switching

_ROM Get ROM Data Required if ROM image is stored in
proprietary format

_GPD Get POST Device Required if _VPO is implemented

_SPD Set POST Device Required if _VPO is implemented

_VPO Video POST Options Required if system supports changing post
VGA device

_ADR Return the unique ID for this device Required

_BCL Query list of brightness control levels
supported

Required if embedded LCD supports
brightness control

_BCM Set the brightness level Required if _BCL is implemented

_DDC Return the EDID for this device Required if embedded LCD does not support
return of EDID via standard interface

_DCS Return status of output device Required if the system supports display
switching (via hotkey)

_DGS Query graphics state Required if the system supports display
switching (via hotkey

_DSS Device state set Required if the system supports display
switching (via hotkey).

696 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

B.2 Definitions
 Built-in display adapter. This is a graphics chip that is built into the motherboard and cannot be

replaced. ACPI information is valid for such built-in devices.
 Add-in display adapter. This is a graphics chip or board that can be added to or removed from the

computer. Because the system BIOS cannot have specific knowledge of add-in boards, ACPI
information is not available for add-in devices.

 Boot-up display adapter. This is the display adapter programmed by the system BIOS during
machine power-on self-test (POST). It is the device upon which the machine will show the initial
operating system boot screen, as well as any system BIOS messages.

 The system can change the boot-up display adapter, and it can switch between the built-in adapter and
the add-in adapter.

 Display device. This is a synonym for the term display adapter discussed above.
 Output device. This is a device, which is a recipient of the output of a display device. For example, a

CRT or a TV is an output device.

B.3 ACPI Namespace

This is an example of the display-related namespace on an ACPI system:

GPE // ACPI General-purpose HW event
_L0x // Notify(VGA, 0x80) to tell OSPM of the event, when user presses

// the hot key to switch the output status of the monitor.
// Notify(VGA, 0x81) to tell the event to OSPM, when there are any
// changes on the sub-devices for the VGA controller

SB
|- PCI

|- VGA // Define the VGA controller in the namespace
|- _PS0 / PR0
|- _PS1 / PR1
|- _PS3
|- _DOS // Method to control display output switching
|- _DOD // Method to retrieve information about child output devices
|- _ROM // Method to retrieve the ROM image for this device
|- _GPD // Method for determining which VGA device will post
|- _SPD // Method for controlling which VGA device will post
|- _VPO // Method for determining the post options
|- CRT // Child device CRT

|- _ADR // Hardware ID for this device
|- _DDC // Get EDID information from the monitor device
|- _DCS // Get current hardware status
|- _DGS // Query desired hardware active \ inactive state
|- _DSS // Set hardware active \ inactive state
|- _PS0 \
|- _PS1 - Power methods
|- _PS2 - for the output device
|- _PS3 /

|- LCD // Child device LCD
|- _ADR // Hardware ID for this device
|- _DDC // Get EDID information from the monitor device
|- _DCS // Get current hardware status
|- _DGS // Query desired hardware active \ inactive state
|- _DSS // Set hardware active \ inactive state
|- _BCL // Brightness control levels
|- _BCM // Brightness control method
|- _BQC // Brightness Query Current Level
|- _PS0 \
|- _PS1 - Power methods
|- _PS2 - for the output device
|- _PS3 /

|- TV // Child Device TV
|- _ADR // Hardware ID for this device
|- _DDC // Get EDID information from the monitor device
|- _DCS // Get current hardware status
|- _DGS // Query desired hardware active \ inactive state
|- _DSS // Set hardware active \ inactive state

B ACPI Extensions for Display Adapters 697

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The LCD device represents the built-in output device. Mobile PCs will always have a built-in LCD display,
but desktop systems that have a built-in graphics adapter generally don’t have a built-in output device.

B.4 Display-specific Methods

The methods described in this section are all associated with specific display devices. This device-specific
association is represented in the namespace example in the previous section by the positioning of these
methods in a device tree.

B.4.1 _DOS (Enable/Disable Output Switching)

Many ACPI machines currently reprogram the active display output automatically when the user presses
the display toggle switch on the keyboard. This is done because most video device drivers are currently not
capable of being notified synchronously of such state changes. However, this behavior violates the ACPI
specification, because the system modifies some graphics device registers.

The existence of the _DOS method indicates that the system BIOS is capable of automatically switching
the active display output or controlling the brightness of the LCD. If it exists at all, the _DOS method must
be present for all display output devices. This method is required if the system supports display switching
or LCD brightness control.

Arguments: (1)
Arg0 – An Integer containing the encoded switching controls (see below)

Return Value:
None

Additional Argument Information:

Bits 1:0
0 – The system BIOS should not automatically switch (toggle) the active display output, but

instead just save the desired state change for the display output devices in variables associated
with each display output, and generate the display switch event. OSPM can query these state
changes by calling the _DGS method.

1 – The system BIOS should automatically switch (toggle) the active display output, with no
interaction required on the OS part. The display switch event should not be generated in this
case.

2 – The _DGS values should be locked. It’s highly recommended that the system BIOS do nothing
when hotkey pressed. No switch, no notification.

3 – The system BIOS should not automatically switch (toggle) the active display output, but
instead generate the display switch event notify codes 0x82, 0x83, or 0x84. OSPM will
determine what display output state should be set, and change the display output state without
further involvement from the system BIOS.

Bit 2
0 – The system BIOS should automatically control the brightness level of the LCD when the

power changes from AC to DC.
1 – The system BIOS should not automatically control the brightness level of the LCD when the

power changes from AC to DC.

The _DOS method controls this automatic switching behavior. This method should do so by saving the
parameter passed to this method in a global variable somewhere in the BIOS data segment. The system
BIOS then checks the value of this variable when doing display switching. This method is also used to
control the generation of the display switching Notify(VGA, 0x80/0x81).

The system BIOS, when doing switching of the active display, must verify the state of the variable set by
the _DOS method. The default value of this variable must be 1.

698 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)

This method is used to enumerate devices attached to the display adapter. This method is required if
integrated controller supports output switching.

On many laptops today, a number of devices can be connected to the graphics adapter in the machine.
These devices are on the motherboard and generally are not directly enumerable by the video driver; for
this reason, all motherboard VGA attached devices are listed in the ACPI namespace.

These devices fall into two categories:
 Video output devices. For example, a machine with a single display device on the motherboard can

have three possible output devices attached to it, such as a TV, a CRT, or a panel.
 Non-video output devices. For example, TV Tuner, DVD decoder, Video Capture. They just attach to

VGA and their power management closely relates to VGA.

Both ACPI and the video driver have the ability to program and configure output devices. This means that
both ACPI and the video driver must enumerate the devices using the same IDs. To solve this problem, the
_DOD method returns a list of devices attached to the graphics adapter, along with device-specific
configuration information. This information will allow the cooperation between ACPI components and the
video driver.

Every child device enumerated in the ACPI namespace under the graphics adapter must be specified in this
list of devices. Each display device must have its own ID, which is unique with respect to any other
attachable devices enumerated.

Arguments:
None

Return Value:
A Package containing a variable-length list of Integers, each of which contains the 32-bit device
attribute of a child device (See table B-2)

Example:

Method (_DOD, 0) {
Return (

Package()
{

0x00000110, // Primary LCD panel, not detectable by BIOS
0x80000100, // CRT type display, not detectable by BIOS
0x80000220, // TV type display, not detectable by the BIOS
0x80000411, // Secondary LCD panel, not detectable by BIOS

}
)

}

B ACPI Extensions for Display Adapters 699

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table B-2: Video Output Device Attributes

Bits Definition

Device ID. The device ID must match the ID’s specified by Video Chip Vendors. They must also
be unique under VGA namespace.

Bit 3:0

Display Index

A zero-based instance of the Display, when multiple displays of the same type are
attached, regardless of where it is associated. Starting from the first adapter and its
first display of the type on the first integrated internal device and then incrementing
per device-function according to its relative port number.

Bit 7:4

Display Port Attachment

This field differentiates displays of the same type attached at different points of one
adapter. The zero-based number scheme is specific to each Video Chip Vendors’
implementation.

Bit 11:8

Display Type

Describes the specific type of Display Technology in use.

0 – Other
1 – VGA* CRT or VESA* Compatible Analog Monitor
2 – TV/HDTV or other Analog-Video Monitor
3 – External Digital Monitor (See Note 1.)
4 – Internal/Integrated Digital Flat Panel (See Note 2.)
5~15 – Reserved for future use

15:0

Bit 15:12 Chipset Vendor Specific.

16 BIOS can detect the device.

17
Non-VGA output device whose power is related to the VGA device. This can be used when
specifying devices like TV Tuner, DVD decoder, Video Capture … etc.

20:18
For VGA multiple-head devices, this specifies head or pipe ID e.g. for Dual-Pipe*, Dual-Display*,
Duo-View*, TwinView*, Triple-View* … etc, beginning with 0 for head 0 or single-head device
and increasing for each additional head.

30:21 Reserved (must be 0)

31

Device ID Scheme

1 – Uses the bit-field definitions above (bits 15:0)

0 – Other scheme, contact the Video Chip Vendor

As mentioned in the above table, a “Pipe” or “Head” refers to a unique display content stream e.g. at a
particular color-depth, resolution, and refresh-rate. The “Port” refers to the display output device
attachment and may include a DAC, encoder or other mechanism required to support a given display end-
point. The “Display Type” describes the generalized class of display output technology, and the means of
integration. The “Display Index” is then an index that assists in creating a unique identifier display end-
points in scenarios where other attributes are the same.

700 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Pipe 0Primary Desktop

Secondary
Desktop

= 1

= 4

= 3

= 2

= 1

Port 1

Pipe 1

Port 0

Port 2

Port 3

Port 4

Dual-Port

Dual - Link

0 = 1st CRT

0 = 1st LCD

0 = 1st DVI

Pipe / Head Ports Display Types Display Index

Figure B-1 Example Display Architecture

B ACPI Extensions for Display Adapters 701

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table B-3: Example Device Ids

Bits Definition

0x000xyyyy Bit 31 = 0. Other proprietary scheme - 0x110 Device ID is an exception. (See Note 3)

0x00000110 Integrated LCD Panel #1 using a common, backwards compatible ID

0x80000100 Integrated VGA CRT or VESA compatible Monitor #1 on Port0

0x80000240 Integrated TV #1 on Port4

0x80000410 Integrated Internal LCD Panel #1 on Port1

0x80000421 LVDS Panel #2 Dual-Link using Port2 & 3. (See Note 4)

0x80000131 VGA CRT or VESA compatible Monitor #2 on Port3

0x80000121 Dual-Link VGA CRT or VESA compatible Monitor #2 using Port2 & 3. (See Note 4.)

0x80000320 DVI Monitor #1 on Port2 (shares Port2 with a Dual-Function DVI/TV Encoder). (See Note
5)

0x80000331 DVI Monitor #2 on Port3

0x80000330 Dual-Link DVI Monitor #1 using Port2 & 3

0x80000231 TV #2 on Port2 (shares Port2 with a Dual-Function DVI/TV Encoder). (See Note 5)

Notes:

1. An “External Digital Monitor” is an external display device attachable via a user-accessible
connector standard (e.g. DFP* or DVI* Compatible Monitors).

2. An “Internal Flat Panel” is a non-detachable fixed pixel display device, including a backlight, and
is internally associated, without user-accessible connectors, to the Video Chip (e.g. TFT LCD via
TMDS*, LVDS* interface).

3. When Bit 31 is 0, no assumptions can be made on which ID will be used for any particular display
type. Contact the Video Chip vendor for details of the ID scheme employed.

4. In certain cases multiple Displays Ports may be combined to increase bandwidth for a particular
Display in higher-resolution modes. In this situation, the Display Type and Port Number should
remain the same in order to retain a consistent ID for the same device, regardless of the selected
display mode.

5. In certain cases, more than one type of display (and connector) may be supportable on a single
Port (e.g. DVI + TV + CRT on a single Display Encoder device), while only one display is
selectable at any time. In this case the Port Number field of the ID may be the same as other
Display ID’s however the other fields (e.g. Display Type) provide uniqueness.

B.4.3 _ROM (Get ROM Data)

This method is used to get a copy of the display devices’ ROM data. This method is required when the
ROM image is stored in a proprietary format such as stored in the system BIOS ROM. This method is not
necessary if the ROM image can be read through standard PCI interface (using ROM BAR).

The video driver can use the data returned by this method to program the device. The format of the data
returned by this function is a large linear buffer limited to 4 KB. The content of the buffer is defined by the
graphics independent hardware vendor (IHV) that builds this device. The format of this ROM data will
traditionally be compatible with the ROM format of the normal PCI video card, which will allow the video
driver to program its device, independently of motherboard versus add-in card issues.

702 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The data returned by the _ROM method is implementation-specific data that the video driver needs to
program the device. This method is defined to provide this data as motherboard devices typically don’t
have a dedicated option ROM. This method will allow a video driver to get the key implementation specific
data it needs so that it can fully control and program the device without BIOS support.

Arguments: (2)
Arg0 – An Integer containing the offset of the display device ROM data
Arg1 – An Integer containing the size of the buffer to fill in (up to 4K).

Return Value:
A Buffer containing the requested ROM data

B.4.4 _GPD (Get POST Device)

This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to query a CMOS value that determines which VGA device
will be posted at boot. A zero return value indicates the motherboard VGA will be posted on the next boot,
a 1 indicates a PCI VGA device will be posted, and a 2 indicates an AGP VGA device will be posted.

Arguments:
None

Return Value:
An Integer containing encoded post information (32 bits valid)

Bits 1:0
00 – Post the motherboard VGA device
01 – Post an add-in PCI VGA device
10 – Post an add-in AGP VGA device
11 – Post an add-in PCI-Express VGA device

Bits 31:2 – Reserved (must be 0)

B.4.5 _SPD (Set POST Device)

This method is required if the _VPO method is implemented.

This method is used as a mechanism for the OS to update a CMOS value that determines which video
device will be posted at boot. A zero argument will cause the “motherboard” to be posted on the next boot,
a 1 will cause an add-in PCI device to be posted, and a 2 will cause an add-in AGP device to be posted.

Arguments: (1)
Arg0 – An Integer containing encode post information (32 bits valid)

Bits 1:0

00 – Post the motherboard VGA device

01 – Post an add-in PCI VGA device

10 – Post an add-in AGP VGA device

11 – Post an add-in PCI-Express VGA device

Bits 31:2 – Reserved (must be 0)

Return Value:
An Integer containing the status of the operation

0 – Operation was successful
Non-zero – Operation failed

B ACPI Extensions for Display Adapters 703

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Example

Method (_SPD, 1) { // Make the motherboard device the device to post }

B.4.6 _VPO (Video POST Options)

This method is required for systems with video devices built onto the motherboard and support changing
post-VGA device.

This method is used as a mechanism for the OS to determine what options are implemented. This method
will be used in conjunction with _GPD and _SPD.

Arguments:
None

Return Value:
An Integer containing the options that are implemented and available

Bit 0 – Posting the motherboard VGA device is an option. (Bit 0 should always be set)

Bit 1 – Posting a PCI VGA device is an option.

Bit 2 – Posting an AGP VGA device is an option.

Bit 3 – Posting a PCI-Express VGA device is an option.

Bits 31:4 – Reserved (must be zero)

B.5 Notifications for Display Devices

Display devices may need to know about external, asynchronous events. In order to accommodate that, the
following notifications are defined.

The event number is standardized because the event will be handled by the OS directly under certain
circumstances (see _DOS method in this specification).

These notifications are valid for Display Devices.

Value Description

0x80 Cycle Output Device. Used to notify OSPM whenever the state of one of the output devices
attached to the VGA controller has been switched or toggled. This event will, for example, be
generated when the user presses a hotkey to switch the active display output from the LCD panel to
the CRT.

0x81 Output Device Status Change. Used to notify OSPM whenever the state of any output devices
attached to the VGA controller has been changed. This event will, for example, be generated when
the user plugs-in or remove a CRT from the VGA port. In this case, OSPM will re-enumerate all
devices attached to VGA

0x82 Cycle Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed the
Cycle display hotkey.

0x83 Next Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed the
Next display hotkey.

0x84 Previous Display Output Hotkey Pressed. Used to notify OSPM whenever the user has pressed
the Previous display hotkey.

B.6 Output Device-specific Methods

The methods in this section are methods associated with the display output device.

704 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

B.6.1 _ADR (Return the Unique ID for this Device)

This method returns a unique ID representing the display output device. All output devices must have a
unique hardware ID. This method is required for all The IDs returned by this method will appear in the list
of hardware IDs returned by the _DOD method.

Arguments:
None

Return Value:
An Integer containing the device ID (32-bits)

Example:

Method (_ADR, 0) {
return(0x0100) // device ID for this CRT

}

This method is required for all output display devices.

B.6.2 _BCL (Query List of Brightness Control Levels Supported)

This method allows the OS to query a list of brightness level supported by built-in display output devices.
(This method in not allowed for externally connected displays.) This method is required if an integrated
LCD is present and supports brightness levels.

Each brightness level is represented by a number between 0 and 100, and can be thought of as a percentage.
For example, 50 can be 50% power consumption or 50% brightness, as defined by the OEM.

The OEM may define the number 0 as "Zero brightness" that can mean to turn off the lighting (e.g. LCD
panel backlight) in the device. This may be useful in the case of an output device that can still be viewed
using only ambient light, for example, a transflective LCD. If Notify(Output Device, 0x85) for “Zero
brightness” is issued, OSPM may be able to turn off the lighting by calling _BCM(0).

Arguments:
None

Return Value:
A variable-length Package containing a list of Integers representing the the supported brightness
levels. Each integer has 8 bits of significant data.

Example:

Method (_BCL, 0) {
// List of supported brightness levels
Return (Package(7){

80, // level when machine has full power
50, // level when machine is on batteries

// other supported levels:
20, 40, 60, 80, 100}

}

The first number in the package is the level of the panel when full power is connected to the machine. The
second number in the package is the level of the panel when the machine is on batteries. All other numbers
are treated as a list of levels OSPM will cycle through when the user toggles (via a keystroke) the
brightness level of the display.

These levels will be set using the _BCM method described in the following section.

B.6.3 _BCM (Set the Brightness Level)

This method allows OSPM to set the brightness level of a built-in display output device.

B ACPI Extensions for Display Adapters 705

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

The OS will only set levels that were reported via the _BCL method. This method is required if _BCL is
implemented.

Arguments: (1)
Arg0 – An Integer containing the new brightness level

Return Value:
None

Example:

Method (_BCM, 1) { // Set the requested level }

The method will be called in response to a power source change or at the specific request of the end user,
for example, when the user presses a function key that represents brightness control.

B.6.4 _BQC (Brightness Query Current level)

This method returns the current brightness level of a built-in display output device.

Arguments:
None

Return Value:
An Integer containing the current brightness level (must be one of the values returned from the _BCL
method)

B.6.5 _DDC (Return the EDID for this Device)

This method returns an EDID (Extended Display Identification Data) structure that represents the display
output device. This method is required for integrated LCDs that do not have another standard mechanism
for returning EDID data.

Arguments:
Arg0 – An Integer containing a code for the return data length:

1 – Return 128 bytes of data
2 – Return 256 bytes of data

Return Value:
Either a Buffer containing the requested data (of the length specified in Arg0), or an Integer (value 0)
if Arg0 was invalid

Example:

Method (_DDC, 2) {
If (LEqual (Arg0, 1)) { Return (Buffer(128){ ,,,, }) }
If (LEqual (Arg0, 2)) { Return (Buffer(256){ ,,,, }) }
Return (0)

}

The buffer will later be interpreted as an EDID data block. The format of this data is defined by the VESA
EDID specification.

B.6.6 _DCS (Return the Status of Output Device)

This method is required if hotkey display switching is supported.

Arguments:
None

Return Value:
An Integer containing the device status (32 bits) (See table B-4)

706 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table B-4 Device Status

Bits Definition

0 Output connector exists in the system now

1 Output is activated

2 Output is ready to switch

3 Output is not defective (it is functioning properly)

4 Device is attached (this is optional)

5-31 Reserved (must be zero)

Example:
 If the output signal is activated by _DSS, _DCS returns 0x1F or 0x0F.
 If the output signal is inactivated by _DSS, _DCS returns 0x1D or 0x0D.
 If the device is not attached or cannot be detected, _DCS returns 0x0xxxx and should return 0x1xxxx if

it is attached.
 If the output signal cannot be activated, _ DCS returns 0x1B or 0x0B.
 If the output connector does not exist (when undocked), _DCS returns 0x00.

B.6.7 _DGS (Query Graphics State)

This method is used to query the state (active or inactive) of the output device. This method is required if
hotkey display switching is supported.

Arguments:
None

Return Value:
An Integer containing the device state (32 bits) (See table B-5)

Table B-5 Device State for _DGS

Bits Definition

0 0 – Next desired state is inactive

1 – Next desired state is active

1-31 Reserved (must be zero)

The desired state represents what the user wants to activate or deactivate, based on the special function
keys the user pressed. OSPM will query the desired state when it receives the display toggle event
(described earlier).

B.6.8 _DSS (Device Set State)

OSPM will call this method when it determines the outputs can be activated or deactivated. OSPM will
manage this to avoid flickering as much as possible. This method is required if hotkey display switching is
supported.

Arguments: (1)
Arg0 – An Integer containing the new device state (32 bits) (See table B-6)

Return Value:
None

B ACPI Extensions for Display Adapters 707

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Table B-6 Device State for _DSS

Bits Definition

0 0 – Set output device to inactive state

1 – Set output device to active state

30 0 – Do whatever Bit 31 requires

1 – Don’t do actual switching, but need to change _DGS to next state

31 0 – Don’t do actual switching, just cache the change

1 – If Bit 30 = 0, commit actual switching, including any _DSS with MSB=0 called before

If Bit 30 = 1, don’t do actual switching, change _DGS to next state

1-29 Reserved (must be zero)

Example Usage:

OS may call in such an order to turn off CRT, and turn on LCD

CRT._DSS(0);
LCD._DSS(80000001L);

or
LCD._DSS(1);
CRT._DSS(80000000L);

OS may call in such an order to force BIOS to make _DGS jump to next state without actual CRT, LCD
switching

CRT._DSS(40000000L);
LCD._DSS(C0000001L);

B.7 Notifications Specific to Output Devices

Output devices may need to know about external, asynchronous events. In order, each of these events
corresponds to accommodate that, pressing a key or button on the following machine. Using these
notifications is not appropriate if no physical device exists that is associated with them. OSPM may ignore
any of these notifications if, for example the current user does not have permission to change the state of
the output device.

These notifications are only valid for Output Devices.

Table B-7 Notification Values for Output Devices

Value Description

0x85 Cycle Brightness. Used to notify OSPM that the output device brightness should be increased by
one level. Used to notify OSPM that the user pressed a button or key that is associated with cycling
brightness. A useful response by OSPM would be to increase output device brightness by one or
more levels. (Levels are defined in _BCL.) If the brightness level is currently at the maximum
value, it should be set to the minimum level.

0x86 Increase Brightness. Used to notify OSPM that the output device brightness should be increased
by one or more levels as defined by the _BCL object. Used to notify OSPM that the user pressed a
button or key that is associated with increasing brightness. If the brightness level is currently at the
maximum value, OSPM may should ignore the notification.

708 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Value Description

0x87 Decrease Brightness. Used to notify OSPM that the output device brightness should be decreased
by one or more levels as defined by the _BCL object. Used to notify OSPM that the user pressed a
button or key that is associated with decreasing device brightness. If the brightness level is
currently at the minimum value, OSPM may should ignore the notification.

0x88 Zero Brightness. Used to notify OSPM that the output device brightness should be zeroed,
effectively turning off any lighting that is associated with the device. Used to notify OSPM that the
user pressed a button or key associated with zeroing device brightness. This is not to be confused
with putting the device in a D3 state. While the brightness may be decreased to zero, the device
may still be displaying, using only ambient light.

0x89 Display Device Off. Used to notify OSPM that the device should be put in an off state, one that is
not active or visible to the user, usually D3, but possibly D1 or D2. Used to notify OSPM that the
user pressed a low power button or key associated with putting the device in an off state. There is
no need for a corresponding “device on” notification, for two reasons. First, OSPM may choose to
toggle device state when this event is pressed multiple times. Second, OSPM may (and probably
will) choose to turn the monitor on whenever the user types on the keyboard, moves the mouse, or
otherwise indicates that he or she is attempting to interact with the machine.

B.8 Notes on State Changes

It is possible to have any number of simultaneous active output devices. It is possible to have 0, 1, 2 ... and
so on active output devices. For example, it is possible for both the LCD device and the CRT device to be
active simultaneously. It is also possible for all display outputs devices to be inactive (this could happen in
a system where multiple graphics cards are present).

The state of the output device is separate from the power state of the device. The “active” state represents
whether the image being generated by the graphics adapter would be sent to this particular output device. A
device can be powered off or in a low-power mode but still be the active output device. A device can also
be in an off state but still be powered on.

Example of the display-switching mechanism:

The laptop has three output devices on the VGA adapter. At this moment in time, the panel and the TV are
both active, while the CRT is inactive. The automatic display-switching capability has been disabled by
OSPM by calling _DOS(0), represented by global variable display_switching = 0.

The system BIOS, in order to track the state of these devices, will have three global variable to track the
state of these devices. There are currently initialized to:

crt_active – 0
panel_active – 1
tv_active – 1

The user now presses the display toggle switch, which would switch the TV output to the CRT.

The system BIOS first updates three temporary variables representing the desired state of output devices:

want_crt_active – 1
want_panel_active – 1
want_tv_active – 0

Then the system BIOS checks the display_switching variable. Because this variable is set to zero, the
system BIOS does not do any device reprogramming, but instead generates a Notify(VGA, 0x80/0x81)
event for the display. This event will be sent to OSPM.

B ACPI Extensions for Display Adapters 709

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

OSPM will call the _DGS method for each enumerated output device to determine which devices should
now be active. OSPM will determine whether this is possible, and will reconfigure the internal data
structure of the OS to represent this state change. The graphics modes will be recomputed and reset.

Finally, OSPM will call the _DSS method for each output device it has reconfigured.

Note: OSPM may not have called the _DSS routines with the same values and the _DGS routines returned,
because the user may be overriding the default behavior of the hardware-switching driver or operating
system-provided UI. The data returned by the _DGS method (the want_XXX values) are only a hint to the
OS as to what should happen with the output devices.

If the display-switching variable is set to 1, then the BIOS would not send the event, but instead would
automatically reprogram the devices to switch outputs. Any legacy display notification mechanism could
also be performed at this time.

710 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Index
_EJx..243
AC adapter

device ID..184
power source objects..................................398

AC status notification......................................381
access types, Operation Region604
access, device ...462
AccessAs term..470
acoustics ..See noise
ACPI

definition ..33
device ID..183, 194
goals ...21

ACPI Hardware See hardware
ACPI Machine Language See AML
ACPI mode

entering ..494
exiting ..498

ACPI Namespace
AML encoding ...669
control method access166
definition ..33
display adapters..696
embedded controller device definition462
generic hardware registers............................97
Modifier Objects encoding, AML..............658
naming conventions160
Processor statements314
root namespaces ...162
SMBus host controller objects467

ACPI Source LanguageSee ASL
ACPI System Description tablesSee tables
ACPI-compatible hardware See hardware
Acquire (Acquire a Mutex).............................579
Acquire terms ...624
active cooling

_ACx object409, 422
control methods..412
definition ..64, 408
engaging...412
preferences ...64, 415
threshold values..415

active line printer (LPT) ports55
Active List (_ALx) object422
Add (Integer Add) ..579
add-in display adapter, definition696
Address (_ADR) object200
Address Range types477
address register (SMB_ADDR)......................455
Address Space Descriptors

DWORD resource descriptor format..........263
Extended ..267
QWORD resource descriptor format.260, 632,

634, 635
resource specific flags271

WORD resource descriptor format............ 265
Address Space Resource Descriptors

valid combinations 259
addresses

alarm fields.. 87
BARs (Base Address Registers)................ 167
blocking, BIOS.. 477
bus types.............200, 203, 207, 237, 238, 239
control methods... 166
decoding .. 358
FACS... 129
format .. 110
functional fixed hardware............................ 66
Generic Address Structure (GAS)............. 110
generic hardware66, 72
I/O (S)APIC143, 277
map interfaces ... 477
map samples .. 481
mixed, preventing...............................143, 277
registers ... 78
reset register .. 97
slave ...380, 465
SMBus... 465
system description tables........................... 105

Advanced Configuration and Power Interface See
ACPI

Advanced Programmable Interrupt ControllerSee
APIC

alarm address register (SMB_ALRM_ADDR)
... 456

alarm data register (SMB_ALRM_DATA) ... 456
alarm events... 86
Alias (Declare Name Alias)........................... 580
allocation, device resources 239
Ambient Light Sensor devices....................... 184
AML

Arg Objects encoding................................ 664
battery events .. 385
byte values... 665
code event handler....................................... 68
compiling .. 66
Control Method Battery 386
data buffers, SMBus.................................. 471
Data Objects encoding 657
Debug Objects encoding 664
definition ... 33
grammar .. 656
Local Objects encoding............................. 664
Name Objects encoding 656
Named Objects encoding 658
Namespace encoding................................. 669
Namespace Modifier Objects encoding..... 658
notation conventions 655
Package Length encoding.......................... 658
purpose of.. 66

711

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

sleep button code example84
SMBus device access protocols472
specification ...655
Term Objects encoding658
Type 1 Opcodes encoding..........................660
Type 2 Opcodes encoding..........................661

And (Integer Bitwise And)580
angle brackets

AML...655
ASL notation ..536

answering phones
modem example ...53
waking computer..55

APIC
_MAT (Multiple APIC Table Entry)224
definition ..33
I/O ..35, 139
local..36
multiple description table (MADT)36
NMI..142
Processor Local139, 159
structure types ..138
support..136, 140

APM BIOS ...45
appliance PCs ...127
ARB_DIS ...95
architecture, system description tables105
Arg Objects encoding, AML664
arguments, control methods............................165
Argx (Method Argument Data Objects)580
arrow symbol

ASL notation ..536
ASL

_FIX usage example...................................215
_HPP example..218
AML, relation to ..535
case sensitivity ...558
CMOS protocols ..167
comments ...536
converting to AML.......................................66
data and constant terms539
data types ...563
definition ..33
Definition Block terms...............................588
EC-SMB-HC device code464
embedded controller device code...............463
grammar ...535
grammar notation536
index with buffers example code609
IPMI data buffer code171
IPMI devices ..169
lid status code example101
macros ..562
modifiers ..558
multiple Smart Battery subsystem code385
name and pathname terms..........................538

nested packages sample code 608
object names.. 558
objects, declaring....................................... 164
opcode terms ... 541
opcodes.. 541
operator reference...................................... 579
operator summary...................................... 574
operator summary by type......................... 576
parameter keyword terms 551
parameters ... 565
power button code example......................... 82
Power Resource statements 283
primary terms .. 542
reserved object names 558
resource template terms............................. 552
root and secondary terms........................... 538
SMBBlock code .. 474
SMBBlockProcessCall code 475
SMBByte code .. 473
SMBProcessCall code 475
SMBQuick code .. 472
SMBSendReceive code 472
SMBus data buffer code............................ 471
SMBus devices.. 469
SMBWord code... 473
storing results .. 565
strings .. 536
thermal zone examples 434
virtual register code............................170, 470

AT interrupt model .. 148
ATA hard disks......................See storage devices
audible output See noise
audio devices, power management673, 674
aware device drivers 177
Back From Sleep (_BFS)............................... 296
BankField (Declare Bank/Data Field) 580
bar symbol

AML notation.. 656
ASL notation ... 536

BARs (Base Address Registers) 167
Base Bus Number (_BBN) object.................. 279
batteries..........................See also Smart Batteries

capacity ... 59
Control Method Batteries 385
emergency shutdown................................... 61
events .. 385
low-level warnings 59
management .. 58
multiple ... 58
power status information............................. 51
remaining capacity 394
types supported.. 51

Battery Charge Time (_BCT) object 395
Battery Information (_BIF) object................. 387
Battery Information Extended(_BIX) object . 388
Battery Maintenance Control (_BMC) object 397

712 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Battery Maintenance Data (_BMD) object.....395
Battery Measurement Averaging Interval

(_BMA) object ...392
Battery Measurement Sampling Time (_BMS)

object..392
Battery Status (_BST) object..........................393
Battery Time (_BTM) object..........................394
Battery Trip Point (_BTP) object394
bay devices ...410
BIOS

address range types477
configuring boot devices57
determining ACPI support88
Device Objects ...589
devices, switching708
Dock Name (_BDN)277
initialization ...493
legacy functions ...45
legacy specifications31
limitations on power management22
memory initialization495
relation to ACPI ...24
resetting enable bits......................................99
S4 Sleeping state transition490

bits
alarm ..87
child ...72, 97
child status ...99
control ..97
diagram legend...68
enable ...75
general-purpose events.................................99
generic hardware registers............................97
ignored ...35, 72
interrupt status..72
lid status ...101
parent..72, 97
PM timer ..95
PM1 Control registers94
PM1 Enable registers93
PM1 Status registers.....................................90
PM2 Control register....................................95
processor control register96
processor LVL2..96
processor LVL3..97
register notation..69
reserved ..37, 72, 109
reset register ...97
SMBus protocol encoding..........................466
status ..75, 97
system event signals.....................................57
wake enabled..52
write-only...73

blanks ...536
block count register (SMB_BCNT)................455
block devices, GPE...352

Block Write-Read Block Process Call
(SMBBlockProcessCall) protocol 475

blocking, control methods 165
blocks, register... 76
BM_RLD... 94
BM_STS.. 90
bold

AML notation.. 655
ASL notation ... 537

boot architecture flags, IA-PC 128
boot devices ... 57
boot resources, embedded controller 149
bootstrap ROM .. 496
boot-up... 492
boot-up display adapter, definition 696
brackets, angle

AML notation.. 655
ASL notation ... 536

Break (Break from While) 581
BreakPoint (Execution Break Point).............. 582
bridges

Base Bus Number (_BBN)........................ 279
DWORD.. 264
flags... 273
ISA bus device344, 589
power states... 51
purpose .. 107
QWORD...262, 269
WORD .. 266

Brightness Control Levels Supported, Query List
of (_BCL) .. 704

brightness control, LCDs 695
Brightness Level, Set (_BCM) 704
Buffer (Declare Buffer Object)...................... 582
Buffer field data type, ASL563, 567
buffers, IPMI ... 170
buffers, SMBus.. 471
built-in display adapter, definition................. 696
Burst Disable Embedded Controller (BD_EC)

... 449
Burst Enable Embedded Controller (BE_EC) 449
Burst flags.. 447
burst mode ... 449
Bus/Device packages 589
buses

power management standards49, 672
segment locations 279
setting power states 51

button control models 81
buttonsSee power button; sleep button
byte values, AML .. 665
C0 processor power state

definition ... 43
implementation.. 309

C1 processor power state
definition ... 43

713

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

implementation...311
C2 processor power state

definition ..43
implementation...311

C3 processor power state
definition ..43
implementation...311

cache controller configuration494
caches, flushing312, 491
capacity, battery

calculating ..59
low-level warnings61
remaining ...394
status information...51

CardBus mode ..277
Case (Conditional Execution).........................582
case sensitivity, ASL558
category names ...25
Celsius scale ...411
centenary value, RTC alarm87
Central Processing Unit See CPU
CENTURY ...87
channels, DMA...250
chemistry independence381
child bits ...72, 97
child objects, ASL statements536
child status bits ...99
CLK_VAL..96
clock logic ..309
CMOS protocols...167
cold boots ...97, 494
cold insertion and removal240
COM port devices, power management ..53, 673,

675
command protocols, SMBus...........................465
command register (SMB_CMD)455
commands, embedded controller interface448
comments, ASL ..536
compatibility memory496
compatibility, compiler...................................642
Compatible ID (_CID) object201
compiling, ASL to AML66, 642
composite battery ...58
Concatenate (Concatenate Data)583
ConcatenateResTemplate (Concatenate Resource

Templates)..583
CondRefOf (Conditional Reference Of).........583
configuration objects, device..........................210
configuring

BIOS initialization494
boot devices ...57
modem example ...57
Plug and Play devices56

context, device..34
context, system

definition ..37

during emergency shutdown 62
restoring .. 40
S4 sleeping state .. 489
sleep states lost in.. 42

contiguous RAM.. 496
Continue (Continue Innermost Enclosing While)

... 584
control bits

functions.. 97
symbol... 68

Control Method Battery....58, 180, 182, 183, 385
control methods See also objects, See also

objects, See also objects, See also objects, See
also objects, See also objects, See also objects
_ADR (Return the Unique ID for this Device)

.. 704
_BCL (Query List of Brightness Control

Levels Supported) 704
_BCM (Set the Brightness Level) 704
_BDN (BIOS Dock Name) 277
_BFS (Back From Sleep) 296
_DCK (Dock) .. 277
_DCS (Return the Status of Output Device)

.. 705
_DDC (Return the EDID for this Device) . 705
_DDS (Device Set State)........................... 706
_DGS (Query Graphics State) 706
_DOD (Enumerate All Devices Attached to

the Display Adapter) 698
_DOS (Enable/Disable Output Switching) 697
_FDM (Floppy Disk Drive Mode) 352
_GPD (Get POST Device) 702
_GTF (Get Task File)................................ 345
_GTM (Get Timing Mode) 347
_GTS (Going To Sleep) 297
_LID (lid device).......337, 338, 342, 343, 372,

375, 376, 377
_MSG (Message) 335
_OFF ... 284
_ON... 285
_PS0 (Power State 0)................................. 287
_PS1 (Power State 1)................................. 288
_PS2 (Power State 2)................................. 288
_PS3 (Power State 3)................................. 288
_PSC (Power State Current)...................... 288
_PSW .. 291
_PTS (Prepare To Sleep)........................... 297
_REG (Region).. 277
_ROM (Get Rom Data) 701
_SCP (Set Cooling Policy) 427
_SPD (Set POST Device).......................... 702
_SST (System Status)................................ 335
_STM (Set Timing Mode)......................... 348
_TMP (Temperature)..........................409, 430
_VPO (Video POST OPtions)................... 703
_WAK (System Wake).............................. 303

714 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

arguments ...165
ASL, writing ..535
battery ..386
definition ..33
device identification...................................199
device removal ...240
initialization (_INI)276
lid device....................333, 336, 343, 371, 373
OEM-supplied..296
overview...165
power button ..82, 343
Power Resource objects284
power source398, 400
reserved names...185
resources ..210
sleep button ..84, 343
system indicators..335
thermal management421
video extensions...695

control registers ..75
controllers, embedded

definition ..34
interface..34

conversion, data types563
cooling modes...64, 408
cooling preferences...................................64, 415
CopyObject (Copy an Object)584
core logic, system events57
CPU

boot configuration494
boot-up ...492
cache flushing ..312
clock logic ..309
definition ..34
fixed hardware control65, 66
multiple performance state control.............326
non-symmetric power state support308
passive cooling...412
performance states..43
power management56
processor power states..........................42, 307
thermal management63
throttling...309, 320
waking operations ..51

crashed systems ..81, 82
CreateBitField (Create 1-Bit Buffer Field).....584
CreateByteField (Create 8-Bit Buffer Field) ..585
CreateDWordField (Create 32-Bit Buffer Field)

...585
CreateField (Create Arbitrary Length Buffer

Field) ..585
CreateQWordField (Create 64-Bit Buffer Field)

...585
CreateWordField (Create 16-Bit Buffer Field)

...586
Critical battery state.......................................61

Critical Temperature (_CRT) object.......414, 425
critical temperature shutdowns408, 414
Cross Device Dependency............................... 73
CRT monitors, power management 676
C-States (processor power).....................312, 316
CT phones...See modems
Current Resource Settings (_CRS) objects... 212,

366
Cx states..................... See processor power states
D0-Fully On

control method .. 287
definition ... 41
In Rush Current (_IRC) object 292
power resource object................................ 289
transitioning to .. 289

D1 Device State
control methods... 288
definition ... 41
power resource objects 289
transitioning to .. 289

D2 Device State
control methods... 288
definition ... 41
power resource objects 290
transitioning to .. 290

D3-Off
control methods... 288
definition ... 41
transitioning to .. 285

dash character
AML notation.. 656
ASL notation ... 537

data buffers, IPMI.. 170
data buffers, SMBus 471
Data Objects encoding, AML........................ 657
data objects, ASL

Buffer .. 582
Package ... 629

data register array (SMB_DATA) 455
data types

ASL ... 563
concatenate.........................571, 572, 573, 583

data types, resource......... See resource data types
DataTableRegion (Create Data Table Operation

Region).. 586
day alarm ... 87
day mode ... 49
DAY_ALRM... 87
DDB Handle data type, ASL563, 567
DDT, Plug and Play devices............................ 56
Debug (Debugger Output) 587
Debug Object data type, ASL.................563, 567
Debug Objects encoding, AML..................... 664
Debug Port Specification, Microsoft 115
debugging

requirements for .. 535

715

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

decimals, notation...536
Decrement (Integer Decrement)587
Default (Default Execution Path in Switch) ...587
Definition Blocks

ASL code ...558
definition ..34
encoding...162
loading..107, 134, 616
loading from XSDT617
unloading..648

DefinitionBlock (Declare Definition Block) ..588
definitions...................................See terminology
degrees, Kelvin ...411
dependencies, device73, 251
DerefOf (Dereference an Object Reference) ..588
description tablesSee tables
design guides ..25, 27
desktop PCs

power management48
profile system type127

Device (Declare Bus/Device Package)588
device and processor performance states....43, 56
Device Class Power Management specifications

...50
Device data type, ASL............................563, 567
device drivers, ACPI-Aware...........................177
Device Name (_DDN) object201
device power

management ...49, 671
modem example ...53
objects ..285
requirements...673
resources ..50
specifications..671
standards ..49, 50
states...41, 42
status ..51

Device Set State (_DSS).................................706
devices

audio, power management674
class-specific objects..................................183
COM port, power management..................675
configuration objects..................................210
context, definition ..34
definition ..34
graphics ..695
identification objects199
input, power management685
insertion and removal objects.....................239
interference ..73
modems, power management.....................686
network, power management689
object notification178
PC Card controllers, power management...690
Plug and Play IDs.......................................183
power states..41, 42

resource allocation 239
resource control method 210
SMBus, declaring...................................... 467
storage, power management 693
waking system... 290

Devices Attached to the Display Adapter
(_DOD) ... 698

diagram legends... 68
Differentiated Definition Block

Bus/Device packages................................. 589
definition ... 34
determining device power capabilities 50
modem example .. 54

Differentiated Description Block
isolation logic .. 54

Differentiated System Description TableSee
DSDT

digital modemsSee modems
Direct Memory Access (_DMA) object......... 212
Disable (_DIS) object 212
Disable Output Switching (_DOS) 697
display adapters

ACPI Namespace 696
control methods... 695
definitions.. 696
requirements for .. 695
switching devices 708

display devices, power management673, 676
Display Power Management Signaling

Specification (DPMS) 672
Divide (Integer Divide) 590
DMA resource descriptor format................... 250
DMA Resource Descriptor Macro................. 590
Dock (_DCK) control method 277
docking

control methods..................................239, 277
event signals .. 57
objects ... 241
query events .. 98

documentation
organization... 29
supplemental ... 31

drain rates, battery ... 59
drivers

interference.. 73
restoration.. 42

DSDT
definition ..34, 135
location.. 106
purpose .. 107

dual 8259 ... 140
dual-button model.. 81
duty cycle... 309
DVD decoders ... 698
DWORD.. 96
DWORD resource descriptor format 263

716 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

DWordIO (DWord IO Resource Descriptor
Macro)..591

DWordMemory (DWord Memory Resource
Descriptor Macro)592

DWordSpace (DWord Space Resource
Descriptor Macro)594

dynamic insertion and removal.......................239
dynamic objects..166
dynamic Operation Regions628
dynamic transitioning69
E_TMR_VAL...95
E820 mapping...477
EC_DATA (embedded controller data register)

...448
EC_SC (R) (embedded controller status register)

...447
EC_SC (W) (embedded controller command

register) ..448
ECDT ...149
ECISee embedded controller interface
EC-SMB-HC ..452, 463
EDID control methods (_DDC)......................705
EFI

definition ..34
GetMemoryMap interface480
RSDP location..112

EISA ID..202
EISAID (EISA ID String To Integer Conversion

Macro)..595
Eject (_EJx) object ...243
Eject Device List (_EDL) object241
Ejection Dependent Device (_EJD) object241
ejection mechanisms.......................................239
Else (Alternate Execution)595
ElseIf (Alternate/Conditional Execution)596
embedded controller

address space..72
boot resources table....................................149
burst mode..449
definition ..34
device ID..183
device object ..344
event control example98
multiple ..443
operations...102
queuing events..176
region control method278

embedded controller interface
ACPI Namespace objects...........................462
algorithms ..451
ASL code, device463
bi-directional communications...................443
Burst flag..447
command interrupt model451
command register (EC_SC (W))................448
command set ..448

commands, restricted................................. 462
configurations, additional.......................... 446
data register (EC_DATA) 448
definition ... 34
device access ... 462
firmware requirements 450
Input Buffer Full (IBF) flag447, 452
interrupt model .. 450
objects ... 462
OEM-definable values............................... 452
Output Buffer Full (OBF) flag447, 452
registers ... 446
shared ...444, 446
SMBus host controller............................... 452
SMBus notification header (OS_SMB_EVT)

.. 450
SMBus protocol descriptions 456
SMBus registers .. 453
SMI event flags ... 447
specifications... 443
status register (EC-SC (W)) 447

emergency shutdown 61
enable bits

corresponding status bits 99
resetting... 99
symbol... 68

enable register.. 57
Enable/Disable Output Switch (_DOS) 697
encoding

AML.. 656
Definition Blocks 162
object names, ASL 558
tables ... 109

End Dependent Functions resource descriptor
format .. 252

end tag resource descriptor format................. 254
EndDependentFn End Dependent Functions

Descriptor Macro) 597
energy conservation........See power management
Enterprise servers .. 127
Enumerate All Devices Attached to the Display

Adapter (_DOD).. 698
enumeration, enabling 467
errors, fatal... 602
Ethernet adapters See network devices
Event (Declare Event Synchronization Object)

... 597
Event data type, ASL..............................563, 567
events

alarm.. 86
AML code handler 68
battery.. 385
button .. 81
enable register ... 57
fixed feature .. 35
fixed handling.. 174

717

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

general model...57
general-purpose registers35, 97
hardware...70
interrupt..70, 88
link status ...690
OS-transparent ...71
power button ..82
power button override83
programming model172
query ..98
shared ...72
status register ...57
synchronization objects..............................639
synchronization, waiting for.......................649
user-initiated ..81
wake frame...690

exiting ACPI mode...498
extended I/O bus...183
Extended Interrupt resource descriptor format

...273
Extended IO Resource Descriptor Macro.......597
Extended Memory Resource Descriptor Macro

...599
Extended resource descriptor format267
Extended Root Systems Description Table See

XSDT
Extended Space Resource Descriptor Macro..600
Extensible Firmware Interface................. See EFI
External (Declare External Objects)...............601
FACS

definition ..35
flags..132
Global Lock ...132
table fields ..128

FADT
alarm bits..86
cache flushing312, 492
definition ..35
flags..124
location...106
optional feature bits......................................89
Plug and Play IDs.......................................215
processor power states................................308
purpose...106
reset register location97
SCI interrupt mapping..................................88
table fields ..118

fans
active cooling64, 412
device operations..417
noise preferences..64
Plug and Play ID ..103
thermal zone example435

Fatal (Fatal Error Check)................................602
fatal errors...602
features

fixed .. 35
generic ... 35
generic hardware ... 99

Field (Declare Field Objects)......................... 602
fields

alarm.. 87
cache flushing.. 492
declaring objects.. 602
embedded controller boot resources.......... 149
FACS... 128
FADT ...118, 215
I/O APIC ... 140
I/O SAPIC ... 143
IPMI .. 169
MADT..137, 157
NMI... 141
Processor Local APIC139, 146, 159
reserved ... 109
RSDT .. 116
SBST ... 149
SMBus... 469
Start Dependent Functions 251
XSDT .. 117

FindSetLeftBit (Find First Set Left Bit) 605
FindSetRightBit (Find First Set Right Bit) 605
firmware

ACPI System... 25
embedded controller requirements 450
OSPM controls .. 46
SMM functional fixed hardware

implementation 66
Firmware ACPI Control Structure....... See FACS
Fixed ACPI Description TableSee FADT
fixed event handling 174
fixed features

definition ... 35
events .. 35
registers ... 35

fixed hardware
definition ... 65
feature control bits....................................... 94
feature enable bits 92
feature status bits... 89
features .. 73
functional implementation........................... 65
interfaces ... 65
power button.. 82
programming model 65
register blocks ... 76
registers ..75, 89
sleep button ... 84

fixed location I/O port descriptor resource
descriptor format 253

Fixed Register Resource Provider (_FIX) 215
fixed width registers 275
FixedIO (Fixed IO Resource Descriptor) 605

718 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FixedList...536
flags

Burst...447
DWORD ..264
FACS..132
FADT ...124
I/O resource..272
IA-PC boot architecture128
Input Buffer Full (IBF).......................447, 452
interrupt vector...274
local APIC..139
MADT..138
memory resource..271
MPS INTI...141
Output Buffer Full (OBF)447, 452
QWORD ..261, 268
SMI event (SMI_EVT)447
system type...128
WORD ...266

floppy controller device objects350
Floppy Disk Drive Mode (_FDM) control

method..352
Floppy Disk Enumerate (_FDE) object350
Floppy Disk Information (_FDI) object351
floppy disksSee storage devices
flushing caches312, 491
frequency mismatch..179
FromBCD (Convert BCD To Integer)606
Function (Declare Control Method)606
functional device configuration494
functional fixed hardware.................................65
functions

End Dependent ...252
Start Dependent..251

G0 Working state
behavior during ..486
definition ..39
properties..40
transitioning to ...69
transitioning to Sleeping state491
transitioning to Soft-Off.............................491

G1 Sleeping state
definition ..39
properties..40
transitioning to ...486

G2 Soft Off
definition ..39
properties..40
transitioning to ...70

G3 Mechanical Off
definition ..39
properties..40
transitioning from...69
transitioning to ...48

game pads See input devices
GAS..................... See Generic Address Structure

GBL_EN.. 93
GBL_RLS.. 94
GBL_STS .. 90
general event model... 57
general-purpose event registers

addresses ..78, 97
blocks ...80, 99
definition ... 35
event 0 ... 99
event 0 enable.. 100
event 0 status ... 100
event 1 ... 100
event 1 enable.. 101
event 1 status ... 100
grouping .. 77
wake events, role in................................... 178

general-purpose events
_Exx, _Lxx, and _Qxx methods................ 175
handling... 175
wake .. 177

generic address space, SMBus....................... 465
Generic Address Structure (GAS) 110
generic events

example ..98, 305
top-level .. 98

generic feature, definition................................ 35
generic hardware

definition ... 65
features ...74, 99
power button control 82
programming model 66
registers ..66, 75, 97
sleep button control 84

generic ISA bus device 344
generic register resource descriptor format.... 275
Get POST Device (_GPD)............................. 702
Get Power Status ... 51
Get ROM Data (_ROM) 701
Get Task File (_GTF) control method 345
Get Timing Mode (_GTM) control method... 347
GetMemoryMap .. 480
Global Lock ... 132
Global Lock (_GLK) object........................... 281
Global Lock Mutex.. 193
Global Lock Structure 133
global standby timer .. 72
global system interrupts..........................140, 147
global system states

definition ..35, 39
terminology ... 39
transitioning............47, 70, 204, 206, 209, 700

goals
ACPI.. 21
OSPM.. 21
power management 22

Going To Sleep (_GTS) control method........ 297

719

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

GPE
block devices......................................184, 352
control method ...177

grammar
AML...656
ASL..535

grammar notation
AML...655
ASL..536

graphics devices, requirements for695
Graphics State, Query (_DGS)706
Green PCs, power management for48
groupings, register See register groupings
guides, design ...25, 27
hardwareSee also fixed hardware; generic

hardware
ACPI interfaces ..24
ACPI specifications......................................65
definition ..33
events ...70
features...73
fixed ...65
generic..66
ignored bits...72
interfaces ..25
legacy ...72
legacy vs. ACPI..23
OEM implementation...................................23
OS-independent......................................66, 67
OSPM model..69
register definitions..66
registers ..75
reserved bits ...72
value-added ..67

hardware ID (_HID) object.....................202, 382
headers, long...117
headers, table ..105, 113
heat managementSee thermal management
hexadecimals, notation536
holes, compatibility ..496
home PCs, power management for...................48
host controller objects, SMBus.......................467
hot insertion and removal240, 243
Hot Plug Memory Table Specification, Microsoft

...115
Hot Plug Parameters (_HPP) object217, 220, 222
Hot Temperature (_HOT) object425
hung systems ..81, 82
hysteresis ..410
I/O APIC

_MAT (Multiple APIC Table Entry...........224
definition ..35
Global System Interrupts............................148
mixed addresses, preventing143, 277
structure..139

I/O operations, lazy ..22

I/O port resource descriptor format 252
I/O resource flag .. 272
I/O SAPIC

definition ... 35
mixed addresses, preventing143, 277
Platform Interrupt Source structure ...144, 145,

146
structure... 143

I/O space...72, 107
IA (Intel Architecture) specifications 31
IA processors ... 312
IA-32 systems.. 66
IA-PC

boot architecture flags 128
definition ... 35
interrupt models .. 140
memory map system.................................. 477
memory mapping 495
RSDP location... 111

ID, Compatible (_CID object) 201
IDE

controller device.. 346
drives... 67

IDE devicesSee storage devices
identification objects, device 199
idle loops, CPU.. 56
idle timers, legacy.. 72
IDs, Plug and Play183, 199
If (Conditional Execution) 607
ignored bits

definition ..35, 72
PM1 Status register 91

implementation requirements
OEM.. 23
OS ... 29
OSPM.. 28

In Rush Current (_IRC) object 292
Include (Include Additional ASL File) 607
Increment (Integer Increment) 608
independence, OS

ACPI.. 22
functional fixed hardware............................ 66
generic hardware ... 67

Independent Hardware Vendors (IHVs)
power management standards 49

Index (Indexed Reference To Member Object)
... 608

Index with Buffers ... 609
Index with Packages 608
Index with Strings.. 610
IndexField (Declare Index/Data Fields) 610
indicators, system .. 335
initialization

BIOS.. 493
boot-up .. 492
OS ... 497

720 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

initialization object (_INI)276
Input Buffer Full (IBF) flag....................447, 452
input devices, power management..........673, 685
Input/Output ...See I/O
insertion and removal objects239
insertion and removal, batteries......................385
INT 15 mapping ...477
Integer data type, ASL............................563, 567
Integers ...558
Intel Architecture specifications31
Intel Architecture-Personal Computer .See IA-PC
interdependent resources251
interfaces

ACPI ..24
battery ..58
BIOS, legacy ..45
Control Method Battery386
design guides..25
EC-SMB-HC..452
embedded controller.....................................34
extensible firmware (EFI)34
fixed hardware..65
hardware...25
mapping..477
sharing protocols ..446
SMBus..37, 465

interference, device...73
Interrupt (Extended Interrupt Descriptor Macro)

...611
interrupt events

logic ...70
SCI ...88
shareable ..88
SMI ..88

Interrupt Source Overrides140
interrupt sources, non-maskable (NMIs)141
interrupt status bits ...72
interrupts

embedded controller interface....................450
Extended Interrupt resource descriptor format

...273
models136, 140, 147, 157
Platform Interrupt Source structure............144
PMIs...144

invocation, control methods166
IO (I/O Port Resource Descriptor Macro)612
IPMI

data buffers...170
fields, declaring..169
operation regions..168

IRQ (Interrupt Resource Descriptor Macro....613
IRQNoFlags (Interrupt Resource Descriptor

Macro)..613
IRQs

mapping..140, 141
PCI routing...235

resource descriptor format......................... 250
ISA

bus device...................................183, 194, 344
Device Objects code.................................. 589
interrupt sources .. 140
old cards .. 252

ISDN Terminal Adapters..................See modems
isolation logic .. 54
italics, ASL notation 537
joysticks....................................See input devices
Kelvin scale ... 411
kernel ... 24
key, logic diagrams.. 68
keyboard controllers 443
keyboards..................................See input devices
LAnd (Logical And) 614
large resource resource descriptor format...... 254
latency

acceptable.....................47, 204, 206, 209, 700
global power states 40
processor power states............................... 307

lazy I/O operations... 22
LCD panels

brightness control 695
power management 676

legacy BIOS interfaces 45
legacy hardware

BIOS specification 31
boot flags... 128
converting to fixed 65
definition ... 36
interrupt handlers .. 88
support... 23

legacy OS, definition 36
legacy systems

definition ... 36
memory mapping 495
power button functions................................ 48
power management 71
power state transitions................................. 69
switching devices out of 277
transitioning to ACPI 88

legends, logic diagrams 68
LEqual (Logical Equal) 614
LGreater (Logical Greater) 614
LGreaterEqual (Logical Greater Than Or Equal)

... 615
lid device ... 183
lid status notification values181, 182
lid switch ... 101
life, battery... 59
link status events.. 690
LINT.. 142
LLess (Logical Less) 615
LLessEqual (Logical Less Than Or Equal) ... 615
LNot (Logical Not) .. 616

721

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

LNotEqual (Logical Not Equal)616
Load (Load Definition Block)616
loading Definition Blocks.......107, 134, 616, 617
LoadTable (Load Definition Block From XSDT)

...617
local APIC, definition.......................................36
Local Objects encoding, AML664
Localx (Method Local Data Objects)618
Lock (_LCK) object243
Lock, Global ...132
logic

fixed power button82
generic hardware event example98
lid switch..101
sleep button ..84
sleeping/wake control85

logic diagram legends.......................................68
LOr (Logical Or) ..618
low-level warnings, battery59
LPT ports..55
macros, ASL

24-bit Memory Resource Descriptor..........619
32-bit Fixed Memory Resource Descriptor621
32-bit Memory Resource Descriptor..........620
coding...562
DMA Resource Descriptor.........................590
DWordIO Resource Descriptor..................591
DWordMemory Resource Descriptor592
DWordSpace Resource Descriptor.............594
EISAID Conversion595
End Dependent Functions Resource

Descriptor ..597
Extended Interrupt Resource Descriptor611
ExtendedIO Resource Descriptor...............597
ExtendedMemory Resource Descriptor599
ExtendedSpace Resource Descriptor600
FixedIO Resource Descriptor.....................605
I/O Port Resource Descriptor612
IRQ Interrupt Resource Descriptor613
IRQNoFlags Interrupt Resource Descriptor

...613
QWordIO Resource Descriptor..................631
QWordMemory Resource Descriptor632
QWordSpace Resource Descriptor.............634
Register Resource Descriptor.....................635
ResourceTemplate......................................637
Start Dependent Function NoPri Resource

Descriptor ..641
Start Dependent Function Resource

Descriptor ..640
Unicode Conversion...................................648
UUID Conversion647
VendorLong Resource Descriptor..............648
VendorShort Resource Descriptor649
WordBusNumber Resource Descriptor......650
WordIO Resource Descripto651

WordSpace Resource Descriptor............... 652
MADT

_MAT object ... 224
definition... 36
flags... 138
interrupt models136, 157
table fields ..137, 157

Magic Packet wake.. 689
management......See power management; thermal

management
mapping

E820 .. 477
EFI GetMemoryMap 480
INT 15... 477
interfaces for.. 477
IRQs ...140, 141
PCI interrupt pins 233
physical memory 495
Query System Address Map function 483
samples.. 481

Match (Find Object Match) 618
Mechanical Off

definition ... 39
properties... 40
transitioning from.. 69
transitioning to .. 48

memory
BIOS initialization 495
controller configuration............................. 494
descriptor macros 621
devices... 357
map interfaces ... 477
map sample.. 481
NVS... 495
physical mapping 495
resource flag .. 271

memory device .. 184
memory range descriptors

24-Bit .. 256
32-Bit .. 257
32-Bit Fixed Location 259
purpose .. 256

memory space .. 72
Memory24 (Memory Resource Descriptor

Macro)... 619
Memory32 (Memory Resource Descriptor

Macro)... 620
Memory32Fixed (Memory Resource Descriptor

Macro)... 621
Message (_MSG) control method.................. 335
Method (Declare Control Method) 621
Method data type, ASL...........................563, 567
methods, control See control methods
mice ..See input devices
Microsoft Device Class Power Management

specifications... 50

722 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

Mid (Extract Portion of Buffer or String).......623
mobile PCs

lid switch..101
power management48
profile system type127

Mod (Integer Modulo)....................................623
modems

configuration example..................................57
power management673, 686
power management example........................53

modifiers
ASL names...558

Module Device184, 353
MON-ALRM..87
monitors.................................See display devices
month alarm..87
motherboard device configurations

ACPI goals ...21
controlled by OSPM.....................................45
modems ..687

MPS INTI flags ..141
Multiple APIC Description Table See MADT
Multiple APIC Table Entry (_MAT) object ...224
multiple Smart Battery Subsystem384
Multiply (Integer Multiply)623
multiprocessor PCs

performance control326
power management for.................................48

mutex
acquiring ..579
Global Lock ...193
release synchronization objects..................636

Mutex (Declare Synchronization/Mutex Object)
...624

Mutex data type, ASL.............................563, 567
Name (Declare Named Object)624
Name Objects encoding, AML.......................656
name terms, ASL..538
Named Objects encoding, AML.....................658
names, object ..36
Namespace.........................See ACPI Namespace
naming conventions..160
NAnd (Integer Bitwise Nand).........................625
nested packages ..608
network devices, power management.....673, 689
NMIs...141, 142
noise, active cooling ...64
non-linear address spaces168, 465
Non-Maskable Interrupt Sources (NMIs)141,

142
non-visible states, device power.......................41
Non-Volatile Sleep state, definition40
Non-Volatile Sleeping memory (NVS)495
NoOp Code (No Operation)625
NOr (Integer Bitwise Nor)..............................625
Not (Integer Bitwise Not)625

notation
AML.. 655
ASL ... 536
numeric constants...................................... 536
register bits .. 69

Nothing .. 536
notification

battery removal.. 385
power button control 82
Smart Battery status 381
temperature changes.................................. 411

Notification Temperature Threshold (_NTT)
object... 426

Notify (Notify Object of Event) 626
numeric constants, notation 536
NVS files

checking validity 497
restoring from.. 40

NVS memory... 495
object name, definition 36
Object Reference data type, ASL563, 567
objectsSee also control methods, See also control

methods, See also control methods, See also
control methods, See also control methods,
See also control methods, See also control
methods
_ BMC (Battery Maintenance Control)..... 397
_ACx (Active Cooling)409, 422
_ADR (Address).. 200
_ALx (Active List) 422
_BBN (Base Bus Number) 279
_BCT (Battery Charge Time).................... 395
_BIF (Battery Information) 387
_BIX (Battery Information Extended)....... 388
_BMA (Battery Measurement Averaging

Interval)... 392
_BMD (Battery Maintenance Data) 395
_BMS (Battery Measurement Sampling Time)

.. 392
_BST (Battery Status) 393
_BTM (Battery Time) 394
_BTP (Battery Trip Point)......................... 394
_CID (Compatible ID) 201
_CRS (Current Resource Settings).....212, 366
_CRT (Critical Temperature)414, 425
_CST (C States)... 316
_DDN (Device Name 201
_DIS (Disable) .. 212
_DMA (Direct Memory Access) 212
_EDL (Eject Device List).......................... 241
_EJD (Ejection Dependent Device) 241
_EJx (Eject)... 243
_FDE (Floppy Disk Enumerate)................ 350
_FDI (Floppy DIsk Information)............... 351
_FIX (Fixed Register Resource Provider). 215
_GLK (Global Lock) 281

723

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

_HID (hardware ID)...........................202, 382
_HOT (Hot Temperature)425
_HPP (Hot Plug Parameters)......217, 220, 222
_INI (Init)...276
_IRC (In Rush Current)..............................292
_LCK (Lock)..243
_MAT (Multiple APIC Table Entry)224
_NTT (Notification Temperature Threshold)

...426
_PCL (Power Consumer List)399
_PCT (Performance Control)327
_PPC (Performance Present Capabilities)..328
_PR0 (Power Resources for D0)289
_PR1 (Power Resources for D1)289
_PR2 (Power Resources for D2)290
_PRS (Possible Resource Settings)233
_PRT (PCI Routing Table).........................233
_PRW (Power Resources for Wake) ..178, 290
_PSL (Passive List)426
_PSR (Power Source).................................398
_PSS (Performance Supported States)318,

323, 327, 330
_PSV (Passive)...................................409, 426
_PTC (Processor Throttling Control)320
_PXM (Proximity)211, 236
_RMV (Remove)..248
_S1D ..292
_S2D ..293
_S3D ..293
_S4D ..294
_SBS (Smart Battery Subsystem)382
_SEG (Segment) ..279
_SRS (Set Resource Settings)239
_STA (Status).....................................248, 285
_STR (String)...209
_SUN (Slot User Number)210
_TC1 (Thermal Constant 1)429
_TC2 (Thermal Constant 2)430
_TSP (Thermal Sampling Period)431
_TZD (Thermal Zone Devices)..................432
_TZP (Thermal Zone Polling)...342, 359, 372,

375, 432
_UID (Unique ID)......................................210
ASL encoding ..558
ASL statements ..536
ASL, declaring ...164
control methods..165
definition ..36
device configuration...................................210
device identification...................................199
device insertion and removal239
device power resource................................289
device-specific ...335
dynamic..166
EC-SMB-HC..463
embedded controller interface....................462

floppy controller.. 350
global scope... 162
initialization... 276
Module Device .. 353
names, reserved ... 558
Notify operator .. 178
OS-defined .. 193
Power Resource... 283
processor ... 313
reserved and predefined 185
revision data .. 197
Smart Battery .. 382
SMBus host controller............................... 467
static .. 166
thermal management 421
unnamed .. 163

ObjectType .. 536
ObjectType (Get Object Type) 626
OEM implementation 23
OEM-supplied control methods..................... 296
off See Mechanical Off; Soft-Off
OFF.. 284
ON ... 285
One (Constant One Object) 627
Ones (Constant Ones Object) 627
opcodes

Type 1, AML... 660
Type 2, AML... 661

Operating SystemSee OS
Operating System-directed Power Management

.. See OSPM
Operation Region data type, ASL...........563, 567
Operation Region Field Unit data type, ASL 563,

567
operation regions

IPMI .. 168
IPMI .. 168
SMBus..465, 468

OperationRegion (Declare Operation Region)
..166, 627

OperationRegion term
access types ... 604

operator reference, ASL................................. 579
operator summary by type, ASL.................... 576
operator summary, ASL 574
operators, ASL... 563
Or (Integer Bitwise Or).................................. 629
organization, document 29
original equipment manufacturer.......... See OEM
OS

AML support, required.............................. 535
boot flags... 128
compatibility requirements.......................... 29
defined object names................................. 193
device power management 50
drivers, embedded controller interface 443

724 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

functional fixed hardware implementation...66
independent generic hardware......................67
legacy hardware interaction23
loading..497
name object ..196
policy owner, device power management ..671
power management22
Query System Address Map.......................483
S4 Sleeping state transition490
transparent events...71

OSPM
caches, flushing..491
cooling policy changes...............................409
cooling preferences64
definition ..36
device insertion and removal239
event handlers ..72
exclusive controls...46
fixed hardware access65
fixed hardware registers89
functions...45
general-event register access........................99
generic hardware model67
Get Power Status..51
goals ...21
hardware model..69
implementation requirements.......................28
passive cooling...412
performance states..56
power management vs. performance..........283
power state control46
Real Time Clock Alarm (RTC)....................86
resetting system..97
Set Power State operation50
SMBus registration467
thermal management63, 407
transitioning to sleeping states487
transitioning working to sleeping states491
transitioning working to soft-off state491

Output Buffer Full (OBF) flag................447, 452
output devices

control methods..705
definition ..696
switching ..708
types of...698

override, power button......................................83
P_BLK..96
P_LVL2..96
P_LVL3..97
P0 performance state, definition.......................43
P1 performance state, definition.......................43
Package (Declare Package Object).................629
Package data type, ASL..........................563, 567
packages

definition ..36
length..162

length encoding, AML 658
nested .. 608

packet error checking (PEC).......................... 466
parameters, ASL .. 565
parent bits ...72, 97
parent objects, ASL statements...................... 536
parentheses, AML notation............................ 656
Passive (_PSV) object409, 426
passive cooling

definition ..64, 408
preferences ...64, 415
processor clock throttling 412
threshold values... 415

Passive List (_PSL) object............................. 426
PC Card controllers, power management 673,

690
PC keyboard controllers 443
PCCARD ... 672
PCI

BAR target operations............................... 167
bus number .. 279
buses, address space translation 108
Device Objects code.................................. 589
device power management 672
interrupt pins ... 233
IRQ routing ... 235
power management 672

PCI configuration space..............................65, 72
PCI Interrupt Link device 184
PCI Routing Table (_PRT) object 233
PCISIG .. 672
PCMCIA.. 672
PEC (packet error checking)...................454, 466
Performance Control (_PCT) object 327
Performance Present Capabilities (_PPC) object

... 328
performance states

definitions.. 43
device .. 56

Performance Supported States (_PSS) object318,
323, 327, 330

performance, energy conservation vs.64, 283
Persistent System Description Table (PSDT) 136
phones, answering

modem example .. 53
waking computer ... 55

PIC method.. 197
pins

general event model 57
GPE ... 99

platform
implementation.. 25
independence... 22

Platform Interrupt Source structure 144, 145, 146
Platform Management Interrupts (PMIs)....... 144
Plug and Play devices

725

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

ACPI control ..56
IDs..183, 199
large resource items255
resource control method.............................210
small resource items...................................249
specifications..31

PM timer
bits..95
function ..72
idle time, determining56
operations...80
register address...78
register blocks ..79

PM1 Control registers
addresses ..78
bits..94
blocks ...79
grouping ...77, 93

PM1 Enable registers..92
PM1 Event registers

addresses ..78
blocks ...79
grouping ...77, 89

PM1 Status registers ...89
PM2 Control registers

addresses ..78
bits..95
blocks ...79

PM2 Controller register grouping.....................77
PMIs ...144
Pn performance state, definition.......................43
PNPBIOS ...45
Polarity flags...141
policy owner ...671
polling, thermal410, 411
port descriptors, I/O..252
portability See independence, OS
Possible Resource Settings (_PRS) object......233
POST Device control methods702
power button

ASL code example82
control methods....................................82, 343
definition ..36
device ID..183
dual-button model ..81
fixed hardware..82
functions...48
object notification values181
override ..83, 85
single-button model......................................81

Power Consumer List (_PCL) object..............399
power consumption

device and processor performance states43
device power states42
global power states.......................................40

power loss

Mechanical Off.. 69
S4 Non-Volatile Sleep state 40

power management
audio devices... 674
BIOS.. 22
buses.. 672
COM port devices 675
cooling, relationship to................................ 64
definition ... 36
desktop PCs... 48
device ...49, 671, 673
device objects .. 285
display devices .. 676
display standards 672
goals .. 22
input devices.. 685
lazy I/O operations 22
legacy .. 71
mobile PCs .. 48
modem devices.. 686
modem example .. 53
multiprocessor PCs...................................... 48
network devices... 689
PC Card controllers 690
PCI .. 672
PCMCIA ... 672
performance states....................................... 56
performance vs. energy conservation ...64, 283
Plug and Play devices.................................. 56
preferred system types............................... 127
processor ... 56
servers ... 48
setting device power states 51
standards.. 49
storage devices .. 693

power management (PM) timer
bits... 95
function ... 72
idle time, determining 56
operations .. 80
register address.. 78
register blocks ... 79

Power Resource data type, ASL563, 567
power resources

battery management 379
child objects .. 284
definition ... 36
device objects .. 289
devices, turning off...................................... 51
Differentiated Definition Block................... 50
isolation logic .. 54
objects ... 283
shared .. 55
wake system object 290

Power Source (_PSR) object 398
power sources

726 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

AC adapter ...398
definition ..36
object notification values180, 182

power states
control methods..287
controlled by OSPM.....................................46
device ...41
global..39
non-symmetric processor308
objects ..287
processor ..42, 307
sleeping ..42
transitioning ...69
user-visible ...47

PowerResource (Declare Power Resource)630
predefined ACPI names..................................185
preferences, user

performance vs. energy conservation...64, 415
power button ..48

preferred PM profile system...........................127
Prepare to Sleep (_PTS) control method297
Process Call (SMBProcessCall) protocol475
processor.. See CPU
Processor (Declare Processor)630
processor and device performance states..........43
processor control block.....................................80
processor control registers

addresses ..78
bits..96

Processor data type, ASL563, 567
processor device notification values.......181, 182
Processor devices ...184
Processor Local APIC139, 142, 159
Processor Local SAPIC143
processor LVL2 register96, 308
processor LVL3 register97, 308
processor objects ..313
processor register block....................................96
Processor Throttling Control (_PTC) object...320
programming models

events ...172
feature summary...74
fixed ...65
generic..66

protocol register (SMB_PRTCL)454
protocols

BARs (Base Address Registers).................167
CMOS ..167
SMBus..456, 465, 472

Proximity (_PXM) object211, 236
PSDT ..136
pseudocode language............................ See AML
pulsed interrupts ...450
PWRBTN_EN..93
PWRBTN_STS ..90
Query Embedded Controller (QR_EC)449

query events... 98
Query System Address Map function............ 483
query value, definition..................................... 68
quotes

AML notation.. 655
ASL notation ... 537

QWord IO Resource Descriptor Macro 631
QWord Memory Resource Descriptor Macro 632
QWORD resource descriptor format260, 632,

634, 635
QWord Space Resource Descriptor Macro.... 634
Read Embedded Controller (RD_EC) 448
Read/Write Block (SMBBlock) protocol 474
Read/Write Byte (SMBByte) protocol 473
Read/Write Quick (SMBQuick) protocol 472
Read/Write Word (SMBWord) protocol 473
Real Time Clock Alarm (RTC) 86
reclaim memory... 495
RefOf (Create Object Reference) 635
Region (_REG) control method..................... 277
register bits, notation 69
register blocks.. 76
register definitions, hardware 66
Register Generic Register Descriptor Macro) 635
register groupings

definition ..37, 76
list of ... 77

registers
BARs (Base Address Registers)................ 167
control ... 75
EC-SMB-HC... 452
embedded controller interface 446
enable .. 57
fixed feature .. 35
fixed hardware... 89
general-purpose event 35
reset ... 97
SMB-HC ... 460
status.. 57
status/enable .. 75
virtual ...170, 466, 470

related device interference............................... 73
Release (Release a Mutex Synchronization

Object)... 636
Release terms... 624
Remaining Battery Percentage59, 394
removal objects.. 239
removal, batteries... 385
Remove (_RMV) object 248
requirements, implementation

OS ... 29
OSPM.. 28

reserved ACPI names 185
reserved bits

definition ... 37
hardware.. 72

727

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

PM1 Control registers94
PM1 Enable registers...................................93
PM1 Status register................................90, 91
software requirements109

reserved object names.....................................558
reserved SMBus protocol values465
Reset (Reset an Event Synchronization Object)

...636
reset register ...97
resource data types

Address Space Resource Descriptors.........259
control methods..249
DMA ..250
End Dependent Functions252
end tag..254
IRQ...250
large ...254
large vendor defined...................................257
memory range descriptors256
small...249
small vendor defined254
Start Dependent Functions251
vendor defined..257

resources
allocation..239
control method ...210
interdependencies.......................................251

resources, power See power resources
ResourceTemplate Resource To Buffer

Conversion Macro)637
restoring system context40, 489
results, storing ..565
Return (Return from Method Execution)637
Revision (Constant Revision Object)637
revision data object...197
RISC processors ...259
RISC systems ...48
ROM control methods701
Root System Description Pointer See RSDP
Root System Description Table...........See RSDT
RSDP

definition ..37
location...111
table structure...112

RSDT
definition ..37
location...106
table fields ..116

RTC (Real Time Clock Alarm)86
RTC/CMOS protocols167
RTC_EN...93
RTC_STS ...91
S0 State (Working) ...300
S1 Sleeping state

_S1D object..292
behavior during ..300

definition ... 42
implementation.. 488
transitioning... 298
waking using RTC....................................... 86

S2 Sleeping state
_S2D object... 293
behavior during ... 300
definition ... 42
implementation.. 488
transitioning... 298
waking using RTC....................................... 86

S3 Sleeping state
_S3D object... 293
behavior during ... 301
definition ... 42
implementation.. 489
transitioning... 298
waking using RTC....................................... 86

S4 Sleeping state
_S4D object... 294
behavior during ... 301
definition ..40, 42
implementation.. 489
low-level battery.. 61
waking using RTC....................................... 86

S5 Soft-Off
behavior during302, 490
definition ..39, 42
properties... 40
transitioning to .. 491

SAPIC
definition ... 37
I/O ..35, 143
local... 36
NMI... 141
Processor Local ... 143
support... 136

SATA
controller device.. 349

saving system context
during emergency shutdown 62
S4 Non-Volatile Sleep state40, 489

SBST ... 149
SCI

battery status information............................ 51
definition ... 37
embedded controller events....................... 451
enable bits ... 52
interrupt handlers71, 88

SCI_EN...88, 89, 94
Scope (Open Named Scope).......................... 637
SCSI, power management 672
Secondary System Description Table .. See SSDT
Segment (_SEG) object 279
Send/Receive Byte (SMBSendReceive) protocol

... 472

728 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

separators, ASL ..536
Serialized methods..................................606, 622
server machines, power management48
Set Cooling Policy (SCP) control method427
Set POST Device (_SPD)...............................702
Set Power State...50
Set Resource Settings (_SRS) object..............239
Set the Brightness Level (_BCM)704
Set Timing Mode (_STM) control method.....348
settings, user

performance vs. energy conservation...64, 415
power button ..48

shareable interrupts...88
shared interface, embedded controller444, 446
ShiftLeft (Integer Shift Left)638
ShiftRight (Integer Shift Right)......................639
Short Vendor-Defined Resource Descriptor

macro..649
shutdown, emergency61, 414
shutting downSee Mechanical Off; Soft-Off
Signal (Signal a Synchronization Event)639
signatures

collisions, avoiding114, 115
interpreting...106, 116
values, storing ..109

Simple Boot Flag Specification, Microsoft115
single quotes

AML notation...655
ASL notation ..537

single-button model ..81
SizeOf (Get Data Object Size)........................639
slave addresses, SMBus..........................380, 465
Sleep (Milliseconds Sleep)639
sleep button

ASL code example84
control methods....................................84, 343
definition ..37
device ID..184
fixed hardware..84
object notification values181
support..83

Sleeping states
behavior during ..300
button logic ..84
control methods..296
definitions ..39, 42
entering ..487
logic controlling ...85
non-volatile ..40
objects ..293
packages, system state................................298
power consumption40
power loss ..40
properties..40
transitioning47, 204, 206, 209, 298, 700
transitioning to ...486

user settings... 48
waking using RTC....................................... 86

Slot User Number (_SUN) object.................. 210
SLP_EN..94, 487
SLP_EN field... 85
SLP_TYPx..94, 487
SLP_TYPx field ...76, 85
SLPBTN_EN... 93
SLPBTN_STS ... 90
small resource data type 249
Smart Batteries

(_SBS object.. 382
definition ... 37
device ID ... 184
multiple battery subsystem........................ 384
objects ... 382
single battery subsystem............................ 383
SMBus data buffers................................... 471
SMBus devices.. 468
specifications... 31
status notification 381
subsystem ...58, 379
supported... 51
table... 37
table formats.. 149

Smart Battery Charger
functions.. 381
status notification 381

Smart Battery Selector................................... 382
Smart Battery System Manager

functions.. 380
status notification 382

SMB-HC...380, 384, 460
SMBus

address register (SMB_ADDR)................. 455
address space... 465
alarm address register (SMB_ALRM_ADDR)

.. 456
alarm data register (SMB_ALRM_DATA)456
block count register (SMB_BCNT) 455
Block Write-Read Block Process Call

(SMBBlockProcessCall) protocol......... 475
command register (SMB_CMD) 455
commands, restricted................................. 462
data buffers.. 471
data register array (SMB_DATA)............. 455
definition ... 37
device access, embedded controller interface

.. 462
device enumeration, enabling.................... 467
device ID ... 184
embedded controller interface 452
encoding, bit .. 466
fields, declaring ... 469
generic hardware addresses 72

729

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

host controller notification header
(OS_SMB_EVT)450

host controller objects, declaring467
interface..37
operation regions................................465, 468
PEC (packet error checking)466
Process Call (SMBProcessCall) protocol...475
protocol register (SMB_PRTCL)454
protocols.....................................456, 465, 472
Read/Write Block (SMBBlock) protocol ...474
Read/Write Byte (SMBByte) protocol.......473
Read/Write Quick (SMBQuick).................472
Read/Write Word (SMBWord) protocol....473
Send/Receive Byte (SMBSendReceive)

protocol..472
slave addresses380, 465
specifications..31
status codes ..466
status register (SMB_STS).........................453
transactions ..466
virtual registers...466

SMBus devices ...184
SMI

definition ..37
embedded controller firmware450
event flags (SMI_EVT)..............................447
interrupt events.......................................71, 88

SMM firmware ...66
Soft-Off

behavior during302, 490
definition ..39, 42
properties..40
transitioning crashed systems to...................82
transitioning to70, 491

SOHO servers...127
sources, power See power sources
SSDT ..37, 136
Stall (Stall for a Short Time)640
standards

device power states50
power management49

Start Dependent functions resource descriptor
format...251

StartDependentFn Start Dependent Function
Resource Descriptor Macro)640

StartDependentFnNoPri Start Dependent
Function Resource Descriptor Macro)641

statements
ElseIf ..595
If 595
Power Resource..283
Processor ..313

statements, ASL..536
states .. See power states
static objects ...166
Status (_STA) ...285

Status (_STA) object 248
status bits

corresponding enable bits............................ 99
functions.. 97
symbol... 68

status codes, SMBus 466
status notification, Smart Battery.................... 381
status register ... 57
status register (SMB_STS) 453
status, battery... 51
status/enable registers 75
sticky status bit, definition............................... 68
storage devices, power management673, 693
Store (Store an Object) 641
storing results, ASL operators 565
Streamlined Advanced Programmable Interrupt

ControllerSee SAPIC
String (_STR) object...................................... 209
String data type, ASL563, 567
strings, ASL..536, 559
Subtract (Integer Subtract)............................. 641
supplemental documentation 31
surprise-style removal.............................239, 248
Switch (Select Code To Execute Based On

Expression).. 642
switching, output devices............................... 708
Sx states See Sleeping states
symbols, logic diagrams 68
syntax

OperationRegion169, 468
Power Resource statements 283

syntax, ASL ... 535
system context

definition ... 37
during emergency shutdown 62
restoring .. 40
S4 Sleeping state 489
sleep states lost in.. 42

System Control InterruptSee SCI
system description tablesSee tables
system events, general model 57
system indicators ... 335
System Management Bus See SMBus
System Management Interrupt................See SMI
System Management ModeSee SMM
system memory space 72
system states, global See global system states
System Status (_SST) control method 335
System Wake (_WAK) control method......... 303
tables

address format ... 110
compatibility ... 110
DSDT .. 135
embedded controller boot resources.......... 149
encoding format .. 109
FACS... 128

730 Advanced Configuration and Power Interface Specification

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

FADT ...118
headers ...105, 113
MADT..137, 157
overview...105
RSDP..112
RSDT ...116
SBST (Smart Battery Description).............149
signatures ...114, 115
SSDT..136
XSDT ...117

Temperature (_TMP) control method.....409, 430
temperature changes, detecting.......................410
temperature management................... See thermal

management
Term Objects encoding, AML........................658
terminology

design guides..25, 27
device power states41
general..33
global system states......................................39
performance states..43
processor power states..................................42
sleeping states ..42

terms
AML...655
ASL notation ..536

Thermal Constant 1 (_TC1) object.................429
Thermal Constant 2 (_TC2) object.................430
thermal management

control methods..421
energy conservation, optimizing64
notification of temperature changes411
objects ..421
OSPM controlled..407
overview...63
performance, optimizing64
polling ..410, 411
temperature changes, detecting410
threshold settings, dynamically changing ..409
trip points ...411

Thermal Sampling Period (_TSP) object........431
thermal states, definition38
Thermal Zone data type, ASL563, 567
Thermal Zone Devices (_TZD) object432
Thermal Zone Polling (_TZP) object342, 359,

372, 375, 432
thermal zones

basic configuration.............................434, 436
examples ..434, 436
mobile PC example63
multiple ..65
multiple-speed fan example435
object notification values180
object requirements433

ThermalZone (Declare Thermal Zone)...........644

thirty-two bit fixed location memory range
resource descriptor format......................... 259

thirty-two bit memory range resource descriptor
format .. 257

throttling ...309, 320
THT_EN.. 96
Timer (Get 64-Bit Timer Value).................... 644
timers

global standby ... 72
idle... 72
power management (PM)72, 80

TMR- field... 81
TMR_EN ... 93
TMR_STS.. 90
TMR_VAL .. 95
ToBCD (Convert Integer to BCD) 645
ToBuffer (Convert Data to Buffer)................ 645
ToDecimalString (Convert Data to Decimal

String).. 645
ToHexString (Convert Data to Hexadecimal

String).. 646
ToInteger (Convert Data to Integer) 646
token ring adapters............... See network devices
top of memory ... 496
ToString (Convert Buffer To String) 646
transactions, SMBus

data buffers.. 471
status codes.. 466

transitioning
crashed systems......................................81, 82
device power states 671
Legacy mode to ACPI 88
power states............47, 69, 204, 206, 209, 700
working to sleeping states 491
working to soft-off states........................... 491

transparent events .. 71
transparent switching, device power states...... 42
trap monitors.. 72
Trigger Mode flags .. 141
trip points, thermal... 411
turning off............ See Mechanical Off; Soft-Off;

transitioning
TVs .. 698
twenty-four bit memory range resource

descriptor format 256
Type 1 Opcodes, AML encoding................... 660
Type 2 Opcodes, AML encoding................... 661
UARTs, power management 675
Unicode (String To Unicode Conversion Macro)

... 648
Uninitialzed data type, ASL563, 567
Unique ID (_UID) object............................... 210
Unload (Unload Definition Block) 648
unnamed objects .. 163
unrelated device interference 73
upper case, ASL names 558

731

Hewlett-Packard/Intel/Microsoft/Phoenix/Toshiba

USB, power management672
user preferences

performance vs. energy conservation...64, 415
power button ..48

user-visible power states...................................47
UUID (Convert String to UUID Macro)647
value-added hardware

enabling OSPM..67
registers ..97

Variable List ...536
VCR-style ejection mechanism239
vendor defined large resource descriptor format

...257
vendor defined resource data types257
vendor defined small resource descriptor format

...254
VendorLong Long Vendor-Defined Descriptor

macro) ..648
VendorShort Vendor Defined Resource

Descriptor Macro)649
VESA specifications.......................................672
VGA ...698, 702
video controllers, power management............676
Video Electronics Standards Associations

(VESA) ..672
video extensions, requirements for695
Video POST Options (_VPO)703
virtual data objects..587
virtual registers170, 466, 470
visible states

global system ...39
power..47

Wait (Wait for a Synchronization Event)649
WAK_STS (Wake Status)86, 91
wake frame events ..690
waking

_BFS (Back From Sleep) control method ..296
_WAK control method...............................303
audio devices..675
COM ports ...676
device power resource object (_PRW).......290
devices..674
disabling system-waking devices291
display devices ...683
initialization ...492
input devices ..686
latency time..................47, 204, 206, 209, 700
lid switch..101
logic controlling ...85

modem devices.. 688
modem example53, 55
network devices... 690
OS operations .. 51
PC Card controllers 692
Real Time Clock Alarm (RTC) 86
resetting lost enable bits 99
storage devices .. 694

warm insertion and removal240, 243
warnings, battery ... 59
WBINVD..312, 492
web sites

Intel Architecture .. 31
Microsoft ... 31
PCISIG.. 672
PCMCIA ... 672
Smart Battery System.................................. 31
SMBus specification 465
USB-IF .. 672

While (Conditional Loop).............................. 649
WORD resource descriptor format 265
WordBusNumber (Word Bus Number Resource

Descriptor Macro) 650
WordIO (Word IO Resource Descriptor Macro)

... 651
WordSpace (Word Space Resource Descriptor

Macro)... 652
Working state

behavior during ... 486
definition ... 39
properties... 40
transitioning to .. 69
transitioning to Sleeping state 491
transitioning to Soft-Off 491

workstations... 127
Write Embedded Controller (WR_EC).......... 448
write-only bits

control ... 68
definition ... 73

XOr (Integer Bitwise Xor)............................. 654
XSDT

definition ... 38
loading Definition Block........................... 617
location.. 106
table fields ... 117

Zero (Constant Zero Object).......................... 654
Zero, One, Ones data type, ASL.............563, 567
zones, thermal..........................See thermal zones

	1 Introduction
	1.1 Principal Goals
	1.2 Power Management Rationale
	1.3 Legacy Support
	1.4 OEM Implementation Strategy
	1.5 Power and Sleep Buttons
	1.6 ACPI Specification and the Structure Of ACPI
	1.7 OS and Platform Compliance
	1.7.1 Platform Implementations of ACPI-defined Interfaces
	1.7.1.1 Recommended Features and Interface Descriptions for Design Guides
	1.7.1.2 Terminology Examples for Design Guides
	1.7.2 OSPM Implementations
	1.7.3 OS Requirements
	1.8 Target Audience
	1.9 Document Organization
	1.9.1 ACPI Introduction and Overview
	1.9.2 Programming Models
	1.9.3 Implementation Details
	1.10 Related Documents
	2 Definition of Terms
	2.1 General ACPI Terminology
	2.2 Global System State Definitions
	2.3 Device Power State Definitions
	2.4 Sleeping State Definitions
	2.5 Processor Power State Definitions
	2.6 Device and Processor Performance State Definitions
	 ACPI Overview
	3.1 System Power Management
	3.2 Power States
	3.2.1 Power Button
	3.2.2 Platform Power Management Characteristics
	3.2.2.1 Mobile PC
	3.2.2.2 Desktop PCs
	3.2.2.3 Multiprocessor and Server PCs
	3.3 Device Power Management
	3.3.1 Power Management Standards
	3.3.2 Device Power States
	3.3.3 Device Power State Definitions
	3.4 Controlling Device Power
	3.4.1 Getting Device Power Capabilities
	3.4.2 Setting Device Power States
	3.4.3 Getting Device Power Status
	3.4.4 Waking the Computer
	3.4.5 Example: Modem Device Power Management
	3.4.5.1 Obtaining the Modem Capabilities
	3.4.5.2 Setting the Modem Power State
	3.4.5.3 Obtaining the Modem Power Status
	3.4.5.4 Waking the Computer
	3.5 Processor Power Management
	3.6 Device and Processor Performance States
	3.7 Configuration and “Plug and Play”
	3.7.1 Device Configuration Example: Configuring the Modem
	3.7.2 NUMA Nodes
	3.8 System Events
	3.9 Battery Management
	3.9.1 Battery Communications
	3.9.2 Battery Capacity
	3.9.3 Battery Gas Gauge
	3.9.4 Low Battery Levels
	3.9.4.1 Emergency Shutdown
	3.9.5 Battery Calibration
	3.10 Thermal Management
	3.10.1 Active and Passive Cooling Modes
	3.10.2 Performance vs. Energy Conservation
	3.10.3 Acoustics (Noise)
	3.10.4 Multiple Thermal Zones
	4 ACPI Hardware Specification
	4.1 Fixed Hardware Programming Model
	4.1.1 Functional Fixed Hardware
	4.2 Generic Hardware Programming Model
	4.3 Diagram Legends
	4.4 Register Bit Notation
	4.5 The ACPI Hardware Model
	4.5.1 Hardware Reserved Bits
	4.5.2 Hardware Ignored Bits
	4.5.3 Hardware Write-Only Bits
	4.5.4 Cross Device Dependencies
	4.5.4.1 Example 1: Related Device Interference
	4.5.4.2 Example 2: Unrelated Device Interference
	4.6 ACPI Hardware Features
	4.7 ACPI Register Model
	4.7.1 ACPI Register Summary
	4.7.1.1 PM1 Event Registers
	4.7.1.2 PM1 Control Registers
	4.7.1.3 PM2 Control Register
	4.7.1.4 PM Timer Register
	4.7.1.5 Processor Control Block (P_BLK)
	4.7.1.6 General-Purpose Event Registers
	4.7.2 Fixed Hardware Features
	4.7.2.1 Power Management Timer
	4.7.2.2 Console Buttons
	4.7.2.2.1 Power Button
	4.7.2.2.1.1 Fixed Power Button
	4.7.2.2.1.2 Control Method Power Button
	4.7.2.2.1.3 Power Button Override
	4.7.2.2.2 Sleep Button
	4.7.2.2.2.1 Fixed Hardware Sleeping Button
	4.7.2.2.2.2 Control Method Sleeping Button
	4.7.2.3 Sleeping/Wake Control
	4.7.2.4 Real Time Clock Alarm
	4.7.2.5 Legacy/ACPI Select and the SCI Interrupt
	4.7.2.6 Processor Control
	4.7.3 Fixed Hardware Registers
	4.7.3.1 PM1 Event Grouping
	4.7.3.1.1 PM1 Status Registers
	4.7.3.1.2 PM1 Enable Registers
	4.7.3.2 PM1 Control Grouping
	4.7.3.2.1 PM1 Control Registers
	4.7.3.3 Power Management Timer (PM_TMR)
	4.7.3.4 PM2 Control (PM2_CNT)
	4.7.3.5 Processor Register Block (P_BLK)
	4.7.3.5.1 Processor Control (P_CNT): 32
	4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8
	4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8
	4.7.3.6 Reset Register
	4.7.4 Generic Hardware Registers
	4.7.4.1 General-Purpose Event Register Blocks
	4.7.4.1.1 General-Purpose Event 0 Register Block
	4.7.4.1.1.1 General-Purpose Event 0 Status Register
	4.7.4.1.1.2 General-Purpose Event 0 Enable Register
	4.7.4.1.2 General-Purpose Event 1 Register Block
	4.7.4.1.2.1 General-Purpose Event 1 Status Register
	4.7.4.1.2.2 General-Purpose Event 1 Enable Register
	4.7.4.2 Example Generic Devices
	4.7.4.2.1 Lid Switch
	4.7.4.2.2 Embedded Controller
	4.7.4.2.3 Fan
	 ACPI Software Programming Model
	5.1 Overview of the System Description Table Architecture
	5.1.1 Address Space Translation
	5.2 ACPI System Description Tables
	5.2.1 Reserved Bits and Fields
	5.2.1.1 Reserved Bits and Software Components
	5.2.1.2 Reserved Values and Software Components
	5.2.1.3 Reserved Hardware Bits and Software Components
	5.2.1.4 Ignored Hardware Bits and Software Components
	5.2.2 Compatibility
	5.2.3 Address Format
	5.2.3.1 Generic Address Structure
	5.2.4 Universal Uniform Identifiers (UUID)
	5.2.5 Root System Description Pointer (RSDP)
	5.2.5.1 Finding the RSDP on IA-PC Systems
	5.2.5.2 Finding the RSDP on UEFI Enabled Systems
	5.2.5.3 RSDP Structure
	5.2.6 System Description Table Header
	5.2.7 Root System Description Table (RSDT)
	5.2.8 Extended System Description Table (XSDT)
	5.2.9 Fixed ACPI Description Table (FADT)
	5.2.9.1 Preferred PM Profile System Types
	5.2.9.2 System Type Attributes
	5.2.9.3 IA-PC Boot Architecture Flags
	5.2.10 Firmware ACPI Control Structure (FACS)
	5.2.10.1 Global Lock
	5.2.11 Definition Blocks
	5.2.11.1 Differentiated System Description Table (DSDT)
	5.2.11.2 Secondary System Description Table (SSDT)
	5.2.11.3 Persistent System Description Table (PSDT)
	5.2.12 Multiple APIC Description Table (MADT)
	5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order
	5.2.12.2 Processor Local APIC Structure
	5.2.12.3 I/O APIC Structure
	5.2.12.4 Platforms with APIC and Dual 8259 Support
	5.2.12.5 Interrupt Source Override Structure
	5.2.12.6 Non-Maskable Interrupt Source Structure
	5.2.12.7 Local APIC NMI Structure
	5.2.12.8 Local APIC Address Override Structure
	5.2.12.9 I/O SAPIC Structure
	5.2.12.10 Local SAPIC Structure
	5.2.12.11 Platform Interrupt Source Structure
	5.2.12.12 Processor Local x2APIC Structure
	5.2.12.13 Local x2APIC NMI Structure
	5.2.13 Global System Interrupts
	 Smart Battery Table (SBST)
	5.2.15 Embedded Controller Boot Resources Table (ECDT)
	5.2.16 System Resource Affinity Table (SRAT)
	5.2.16.1 Processor Local APIC/SAPIC Affinity Structure
	5.2.16.2 Memory Affinity Structure
	5.2.16.3 Processor Local x2APIC Affinity Structure
	5.2.17 System Locality Distance Information Table (SLIT)
	5.2.18 Corrected Platform Error Polling Table (CPEP)
	5.2.18.1 Corrected Platform Error Polling Processor Structure
	5.2.19 Maximum System Characteristics Table (MSCT)
	5.2.19.1 Maximum Proximity Domain Information Structure
	5.3 ACPI Namespace
	5.3.1 Predefined Root Namespaces
	5.3.2 Objects
	5.4 Definition Block Encoding
	5.5 Using the ACPI Control Method Source Language
	5.5.1 ASL Statements
	5.5.2 Control Method Execution
	5.5.2.1 Arguments
	5.5.2.2 Method Calling Convention
	5.5.2.3 Local Variables and Locally Created Data Objects
	5.5.2.4 Access to Operation Regions
	5.5.2.4.1 CMOS Protocols
	5.5.2.4.2 PCI Device BAR Target Protocols
	5.5.2.4.2.1 Declaring a PCI BAR Target Operation Region
	5.5.2.4.2.2 PCI Header Types and PCI BAR Target Operation Regions
	5.5.2.4.3 Declaring IPMI Operation Regions
	5.5.2.4.3.1 Declaring IPMI Fields
	5.5.2.4.3.2 Declaring and Using IPMI Request and Response Buffer
	5.5.2.4.3.3 IPMI Status Code
	5.6 ACPI Event Programming Model
	5.6.1 ACPI Event Programming Model Components
	5.6.2 Types of ACPI Events
	5.6.3 Fixed Event Handling
	 General-Purpose Event Handling
	5.6.4.1 _Exx, _Lxx, and _Qxx Methods for GPE Processing
	5.6.4.1.1 Queuing the Matching Control Method for Execution
	5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver
	5.6.4.2 GPE Wake Events
	5.6.4.2.1 Managing a Wake Event Using Device _PRW Objects
	5.6.4.2.2 Determining the System Wake Source Using _Wxx Control Methods
	5.6.5 Device Object Notifications
	5.6.6 Device Class-Specific Objects
	5.6.7 Predefined ACPI Names for Objects, Methods, and Resources
	5.7 Predefined Objects
	5.7.1 _GL (Global Lock Mutex)
	5.7.2 _OSI (Operating System Interfaces)
	5.7.3 _OS (OS Name Object)
	5.7.4 _REV (Revision Data Object)
	5.8 System Configuration Objects
	5.8.1 _PIC Method
	6 Device Configuration
	6.1 Device Identification Objects
	6.1.1 _ADR (Address)
	6.1.2 _CID (Compatible ID)
	6.1.3 _DDN (DOS Device Name)
	6.1.4 _HID (Hardware ID)
	6.1.5 _MLS (Multiple Language String)
	6.1.6 _PLD (Physical Device Location)
	6.1.7 _STR (String)
	6.1.8 _SUN (Slot User Number)
	6.1.9 _UID (Unique ID)
	6.2 Device Configuration Objects
	6.2.1 _CDM (Clock Domain)
	6.2.2_CRS (Current Resource Settings)
	6.2.3 _DIS (Disable)
	6.2.4 _DMA (Direct Memory Access)
	 _FIX (Fixed Register Resource Provider)
	6.2.6 _GSB (Global System Interrupt Base)
	6.2.7 _HPP (Hot Plug Parameters)
	6.2.7.1 Example: Using _HPP
	6.2.8 _HPX (Hot Plug Parameter Extensions)
	6.2.8.1 PCI Setting Record (Type 0)
	6.2.8.2 PCI-X Setting Record (Type 1)
	6.2.8.3 PCI Express Setting Record (Type 2)
	6.2.8.4 _HPX Example
	6.2.9 _MAT (Multiple APIC Table Entry)
	6.2.10 _OSC (Operating System Capabilities)
	Rules for Evaluating _OSC
	6.2.10.1.1 Query Flag
	6.2.10.1.2 Evaluation Conditions
	6.2.10.1.3 Sequence of _OSC calls
	6.2.10.2 Platform-Wide OSPM Capabilities
	6.2.10.3 _OSC Implementation Example for PCI Host Bridge Devices
	6.2.10.4 ASL Example
	6.2.11 _PRS (Possible Resource Settings)
	6.2.12 _PRT (PCI Routing Table)
	6.2.12.1 Example: Using _PRT to Describe PCI IRQ Routing
	6.2.13 _PXM (Proximity)
	6.2.14 _SLI (System Locality Information)
	6.2.15 _SRS (Set Resource Settings)
	6.3 Device Insertion, Removal, and Status Objects
	6.3.1 _EDL (Eject Device List)
	6.3.2 _EJD (Ejection Dependent Device)
	6.3.3 _EJx (Eject)
	6.3.4 _LCK (Lock)
	6.3.5 _OST (OSPM Status Indication)
	 _RMV (Remove)
	6.3.7 _STA (Status)
	6.4 Resource Data Types for ACPI
	6.4.1 ASL Macros for Resource Descriptors
	6.4.2 Small Resource Data Type
	6.4.2.1 IRQ Descriptor
	6.4.2.2 DMA Descriptor
	6.4.2.3 Start Dependent Functions Descriptor
	6.4.2.4 End Dependent Functions Descriptor
	6.4.2.5 I/O Port Descriptor
	6.4.2.6 Fixed Location I/O Port Descriptor
	6.4.2.7 Vendor-Defined Descriptor
	6.4.2.8 End Tag
	6.4.3 Large Resource Data Type
	 24-Bit Memory Range Descriptor
	6.4.3.2 Vendor-Defined Descriptor
	6.4.3.3 32-Bit Memory Range Descriptor
	6.4.3.4 32-Bit Fixed Memory Range Descriptor
	6.4.3.5 Address Space Resource Descriptors
	6.4.3.5.1 QWord Address Space Descriptor
	6.4.3.5.2 DWord Address Space Descriptor
	6.4.3.5.3 Word Address Space Descriptor
	6.4.3.5.4 Extended Address Space Descriptor
	6.4.3.5.4.1 Type Specific Attributes
	6.4.3.5.5 Resource Type Specific Flags
	6.4.3.6 Extended Interrupt Descriptor
	6.4.3.7 Generic Register Descriptor
	6.5 Other Objects and Control Methods
	6.5.1 _INI (Init)
	6.5.2 _DCK (Dock)
	6.5.3 _BDN (BIOS Dock Name)
	6.5.4 _REG (Region)
	6.5.5 _BBN (Base Bus Number)
	6.5.6 _SEG (Segment)
	6.5.6.1 Example
	6.5.7 _GLK (Global Lock)
	 Power and Performance Management
	7.1 Declaring a Power Resource Object
	7.1.1 Defined Child Objects for a Power Resource
	7.1.2 _OFF
	7.1.3 _ON
	7.1.4 _STA (Status)
	7.2 Device Power Management Objects
	7.2.1 _DSW (Device Sleep Wake)
	7.2.2 _PS0 (Power State 0)
	7.2.3 _PS1 (Power State 1)
	7.2.4 _PS2 (Power State 2)
	7.2.5 _PS3 (Power State 3)
	7.2.6 _PSC (Power State Current)
	7.2.7 _PR0 (Power Resources for D0)
	7.2.8 _PR1 (Power Resources for D1)
	7.2.9 _PR2 (Power Resources for D2)
	7.2.10 _PR3 (Power Resources for D3hot)
	7.2.11 _PRW (Power Resources for Wake)
	7.2.12 _PSW (Power State Wake)
	7.2.13 _IRC (In Rush Current)
	7.2.14 _S1D (S1 Device State)
	7.2.15 _S2D (S2 Device State)
	7.2.16 _S3D (S3 Device State)
	7.2.17 _S4D (S4 Device State)
	7.2.18 _S0W (S0 Device Wake State)
	7.2.19 _S1W (S1 Device Wake State)
	7.2.20 _S2W (S2 Device Wake State)
	7.2.21 _S3W (S3 Device Wake State)
	7.2.22 _S4W (S4 Device Wake State)
	7.3 OEM-Supplied System-Level Control Methods
	7.3.1 _BFS (Back From Sleep)
	7.3.2 _PTS (Prepare To Sleep)
	7.3.3 _GTS (Going To Sleep)
	7.3.4 System _Sx states
	7.3.4.1 System _S0 State (Working)
	7.3.4.2 System _S1 State (Sleeping with Processor Context Maintained)
	7.3.4.3 System _S2 State
	7.3.4.4 System _S3 State
	7.3.4.5 System _S4 State
	7.3.4.6 System _S5 State (Soft Off)
	7.3.5 _SWS (System Wake Source)
	7.3.6 _TTS (Transition To State)
	7.3.7 _WAK (System Wake)
	7.4 OSPM usage of _GTS, _PTS, _TTS, _WAK, and _BFS
	8 Processor Configuration and Control
	8.1 Processor Power States
	8.1.1 Processor Power State C0
	8.1.2 Processor Power State C1
	8.1.3 Processor Power State C2
	8.1.4 Processor Power State C3
	8.1.5 Additional Processor Power States
	8.2 Flushing Caches
	8.3 Power, Performance, and Throttling State Dependencies
	8.4 Declaring Processors
	8.4.1 _PDC (Processor Driver Capabilities)
	8.4.2 Processor Power State Control
	8.4.2.1 _CST (C States)
	8.4.2.2 _CSD (C-State Dependency)
	8.4.3 Processor Throttling Controls
	8.4.3.1 _PTC (Processor Throttling Control)
	8.4.3.2 _TSS (Throttling Supported States)
	8.4.3.3 _TPC (Throttling Present Capabilities)
	8.4.3.4 _TSD (T-State Dependency)
	8.4.3.5 _TDL (T-state Depth Limit)
	8.4.4 Processor Performance Control
	8.4.4.1 _PCT (Performance Control)
	8.4.4.2 _PSS (Performance Supported States)
	8.4.4.3 _PPC (Performance Present Capabilities)
	8.4.4.3.1 OSPM _OST Evaluation
	8.4.4.4 Processor Performance Control Example
	8.4.4.5 _PSD (P-State Dependency)
	8.4.4.6 _PDL (P-state Depth Limit)
	8.4.5 _PPE (Polling for Platform Errors)
	8.5 Processor Aggregator Device
	8.5.1 Logical Processor Idling
	8.5.1.1 _PUR (Processor Utilization Request)
	8.5.1.1.1 OSPM _OST Evaluation
	9 ACPI-Defined Devices and Device Specific Objects
	9.1 _SI System Indicators
	9.1.1 _SST (System Status)
	9.1.2 _MSG (Message)
	9.1.3 _BLT (Battery Level Threshold)
	9.2 Ambient Light Sensor Device
	9.2.1 Overview
	9.2.2 _ALI (Ambient Light Illuminance)
	9.2.3 _ALT (Ambient Light Temperature)
	9.2.4 _ALC (Ambient Light Color Chromaticity)
	9.2.5 _ALR (Ambient Light Response)
	9.2.6 _ALP (Ambient Light Polling)
	9.2.7 Ambient Light Sensor Events
	9.2.8 Relationship to Backlight Control Methods
	9.3 Battery Device
	9.4 Control Method Lid Device
	9.4.1 _LID
	9.5 Control Method Power and Sleep Button Devices
	9.6 Embedded Controller Device
	9.7 Generic Container Device
	9.8 ATA Controller Devices
	9.8.1 Objects for Both ATA and SATA Controllers
	9.8.1.1 _GTF (Get Task File)
	9.8.2 IDE Controller Device
	9.8.2.1 IDE Controller-specific Objects
	9.8.2.1.1 _GTM (Get Timing Mode)
	9.8.2.1.2 _STM (Set Timing Mode)
	9.8.3 Serial ATA (SATA) Controller Device
	9.8.3.1 Definitions
	9.8.3.2 Overview
	9.8.3.3 SATA controller-specific control methods
	9.8.3.3.1 _SDD (Set Device Data)
	9.9 Floppy Controller Device Objects
	9.9.1 _FDE (Floppy Disk Enumerate)
	9.9.2 _FDI (Floppy Disk Information)
	9.9.3 _FDM (Floppy Disk Drive Mode)
	9.10 GPE Block Device
	9.10.1 Matching Control Methods for General-Purpose Events in a GPE Block Device
	9.11 Module Device
	9.11.1 Describing PCI Bus and Segment Group Numbers under Module Devices
	9.12 Memory Devices
	9.12.1 Address Decoding
	9.12.2 Memory Bandwidth Monitoring and Reporting
	9.12.2.1 _MBM (Memory Bandwidth Monitoring Data)
	9.12.2.2 _MSM (Memory Set Monitoring)
	9.12.3 _OSC Definition for Memory Device
	9.12.4 Example: Memory Device
	9.13 _UPC (USB Port Capabilities)
	9.13.1 USB 2.0 Host Controllers and _UPC and _PLD
	9.14 Device Object Name Collision
	9.14.1 _DSM (Device Specific Method)
	9.15 PC/AT RTC/CMOS Devices
	9.15.1 PC/AT-compatible RTC/CMOS Devices (PNP0B00)
	9.15.2 Intel PIIX4-compatible RTC/CMOS Devices (PNP0B01)
	9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNP0B02)
	9.16 User Presence Detection Device
	9.16.1 _UPD (User Presence Detect)
	9.16.2 _UPP (User Presence Polling)
	9.16.3 User Presence Sensor Events
	9.17 I/O APIC Device
	9.18 Wake Alarm Device
	9.18.1 Overview
	9.18.2 _STP (Set Expired Timer Wake Policy)
	9.18.3 _STV (Set Timer Value)
	9.18.4 _TIP (Expired Timer Wake Policy)
	9.18.5 _TIV (Timer Values)
	9.18.6 ACPI Wakeup Alarm Events
	9.18.7 Relationship to Real Time Clock Alarm
	9.18.8 Example ASL code
	 Power Source and Power Meter Devices
	10.1 Smart Battery Subsystems
	10.1.1 ACPI Smart Battery Status Change Notification Requirements
	10.1.1.1 Smart Battery Charger
	10.1.1.2 Smart Battery Charger with optional System Manager or Selector
	10.1.1.3 Smart Battery System Manager
	10.1.1.4 Smart Battery Selector
	10.1.2 Smart Battery Objects
	10.1.3 _SBS (Smart Battery Subsystem)
	10.1.3.1 Example: Single Smart Battery Subsystem
	10.1.3.2 Multiple Smart Battery Subsystem: Example
	10.2 Control Method Batteries
	10.2.1 Battery Events
	10.2.2 Battery Control Methods
	10.2.2.1 _BIF (Battery Information)
	10.2.2.2 _BIX (Battery Information Extended)
	_OSC Definition for Control Method Battery
	10.2.2.4 _BMA (Battery Measurement Averaging Interval)
	10.2.2.5 _BMS (Battery Measurement Sampling Time)
	10.2.2.6 _BST (Battery Status)
	10.2.2.7 _BTP (Battery Trip Point)
	10.2.2.8 _BTM (Battery Time)
	10.2.2.9 _BCT (Battery Charge Time)
	10.2.2.10 _BMD (Battery Maintenance Data)
	10.2.2.11 _BMC (Battery Maintenance Control)
	10.3 AC Adapters and Power Source Objects
	10.3.1 _PSR (Power Source)
	10.3.2 _PCL (Power Consumer List)
	10.3.3 _PIF (Power Source Information)
	10.3.4 _PRL (Power Source Redundancy List)
	10.4 Power Meters
	10.4.1 _PMC (Power Meter Capabilities)
	10.4.2 _PTP (Power Trip Points)
	10.4.3 _PMM (Power Meter Measurement)
	10.4.4 _PAI (Power Averaging Interval)
	10.4.5 _GAI (Get Averaging Interval)
	10.4.6 _SHL (Set Hardware Limit)
	10.4.7 _GHL (Get Hardware Limit)
	10.4.8 _PMD (Power Metered Devices)
	10.5 Example: Power Source and Power Meter Namespace
	 Thermal Management
	11.1 Thermal Control
	11.1.1 Active, Passive, and Critical Policies
	11.1.2 Dynamically Changing Cooling Temperature Trip Points
	11.1.2.1 OSPM Change of Cooling Policy
	11.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion or Removal
	11.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis
	11.1.3 Detecting Temperature Changes
	11.1.3.1 Temperature Change Notifications
	11.1.3.2 Polling
	11.1.4 Active Cooling
	11.1.5 Passive Cooling
	11.1.5.1 Processor Clock Throttling
	11.1.6 Critical Shutdown
	 Cooling Preferences
	11.2.1 Evaluating Thermal Device Lists
	11.2.2 Evaluating Device Thermal Relationship Information
	11.2.3 Fan Device Notifications
	11.3 Fan Device
	11.3.1 Fan Objects
	11.3.1.1 _FIF (Fan Information)
	11.3.1.2 _FPS (Fan Performance States)
	11.3.1.3 _FSL (Fan Set Level)
	11.3.1.4 _FST (Fan Status)
	11.4 Thermal Objects
	11.4.1 _ACx (Active Cooling)
	11.4.2 _ALx (Active List)
	11.4.3 _ART (Active Cooling Relationship Table)
	11.4.4 _CRT (Critical Temperature)
	11.4.5 _DTI (Device Temperature Indication)
	11.4.6 _HOT (Hot Temperature)
	11.4.7 _NTT (Notification Temperature Threshold)
	11.4.8 _PSL (Passive List)
	11.4.9 _PSV (Passive)
	11.4.10 _RTV (Relative Temperature Values)
	11.4.11 _SCP (Set Cooling Policy)
	11.4.12 _TC1 (Thermal Constant 1)
	11.4.13 _TC2 (Thermal Constant 2)
	11.4.14 _TMP (Temperature)
	11.4.15 _TPT (Trip Point Temperature)
	11.4.16 _TRT (Thermal Relationship Table)
	11.4.17 _TSP (Thermal Sampling Period)
	11.4.18 _TST (Temperature Sensor Threshold)
	11.4.19 _TZD (Thermal Zone Devices)
	11.4.20 _TZM (Thermal Zone Member)
	11.4.21 _TZP (Thermal Zone Polling)
	11.5 Native OS Device Driver Thermal Interfaces
	11.6 Thermal Zone Interface Requirements
	11.7 Thermal Zone Examples
	11.7.1 Example: The Basic Thermal Zone
	11.7.2 Example: Multiple-Speed Fans
	11.7.3 Example: Thermal Zone with Multiple Devices
	12 ACPI Embedded Controller Interface Specification
	12.1 Embedded Controller Interface Description
	12.2 Embedded Controller Register Descriptions
	12.2.1 Embedded Controller Status, EC_SC (R)
	12.2.2 Embedded Controller Command, EC_SC (W)
	12.2.3 Embedded Controller Data, EC_DATA (R/W)
	12.3 Embedded Controller Command Set
	12.3.1 Read Embedded Controller, RD_EC (0x80)
	12.3.2 Write Embedded Controller, WR_EC (0x81)
	12.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
	12.3.4 Burst Disable Embedded Controller, BD_EC (0x83)
	12.3.5 Query Embedded Controller, QR_EC (0x84)
	12.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT
	12.5 Embedded Controller Firmware
	12.6 Interrupt Model
	12.6.1 Event Interrupt Model
	12.6.2 Command Interrupt Model
	12.7 Embedded Controller Interfacing Algorithms
	12.8 Embedded Controller Description Information
	12.9 SMBus Host Controller Interface via Embedded Controller
	12.9.1 Register Description
	12.9.1.1 Status Register, SMB_STS
	12.9.1.2 Protocol Register, SMB_PRTCL
	12.9.1.3 Address Register, SMB_ADDR
	12.9.1.4 Command Register, SMB_CMD
	12.9.1.5 Data Register Array, SMB_DATA[i], i=0-31
	12.9.1.6 Block Count Register, SMB_BCNT
	12.9.1.7 Alarm Address Register, SMB_ALRM_ADDR
	12.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0], SMB_ALRM_DATA[1]
	12.9.2 Protocol Description
	12.9.2.1 Write Quick
	12.9.2.2 Read Quick
	12.9.2.3 Send Byte
	12.9.2.4 Receive Byte
	12.9.2.5 Write Byte
	12.9.2.6 Read Byte
	12.9.2.7 Write Word
	12.9.2.8 Read Word
	12.9.2.9 Write Block
	12.9.2.10 Read Block
	12.9.2.11 Process Call
	12.9.2.12 Block Write-Block Read Process Call
	12.9.3 SMBus Register Set
	12.10 SMBus Devices
	12.10.1 SMBus Device Access Restrictions
	12.10.2 SMBus Device Command Access Restriction
	12.11 Defining an Embedded Controller Device in ACPI Namespace
	12.11.1 Example: EC Definition ASL Code
	12.12 Defining an EC SMBus Host Controller in ACPI Namespace
	12.12.1 Example: EC SMBus Host Controller ASL-Code
	13 ACPI System Management Bus Interface Specification
	13.1 SMBus Overview
	13.1.1 SMBus Slave Addresses
	13.1.2 SMBus Protocols
	13.1.3 SMBus Status Codes
	13.1.4 SMBus Command Values
	13.2 Accessing the SMBus from ASL Code
	13.2.1 Declaring SMBus Host Controller Objects
	13.2.2 Declaring SMBus Devices
	13.2.3 Declaring SMBus Operation Regions
	13.2.4 Declaring SMBus Fields
	13.2.5 Declaring and Using an SMBus Data Buffer
	13.3 Using the SMBus Protocols
	13.3.1 Read/Write Quick (SMBQuick)
	13.3.2 Send/Receive Byte (SMBSendReceive)
	13.3.3 Read/Write Byte (SMBByte)
	13.3.4 Read/Write Word (SMBWord)
	13.3.5 Read/Write Block (SMBBlock)
	13.3.6 Word Process Call (SMBProcessCall)
	13.3.7 Block Process Call (SMBBlockProcessCall)
	 System Address Map Interfaces
	14.1 INT 15H, E820H - Query System Address Map
	14.2 E820 Assumptions and Limitations
	14.3 UEFI GetMemoryMap() Boot Services Function
	14.4 UEFI Assumptions and Limitations
	14.5 Example Address Map
	14.6 Example: Operating System Usage
	Waking and Sleeping
	15.1 Sleeping States
	15.1.1 S1 Sleeping State
	15.1.1.1 Example 1: S1 Sleeping State Implementation
	15.1.1.2 Example 2: S1 Sleeping State Implementation
	15.1.2 S2 Sleeping State
	15.1.2.1 Example: S2 Sleeping State Implementation
	15.1.3 S3 Sleeping State
	15.1.3.1 Example: S3 Sleeping State Implementation
	15.1.4 S4 Sleeping State
	15.1.4.1 Operating System-Initiated S4 Transition
	15.1.4.2 The S4BIOS Transition
	15.1.5 S5 Soft Off State
	15.1.6 Transitioning from the Working to the Sleeping State
	15.1.7 Transitioning from the Working to the Soft Off State
	15.2 Flushing Caches
	15.3 Initialization
	15.3.1 Placing the System in ACPI Mode
	15.3.2 BIOS Initialization of Memory
	15.3.3 OS Loading
	15.3.4 Exiting ACPI Mode
	Non-Uniform Memory Access (NUMA) Architecture Platforms
	16.1 NUMA Node
	16.2 System Locality
	16.2.1 System Resource Affinity Table Definition
	16.3 System Locality Distance Information
	16.3.1.1 Online Hot Plug
	16.3.1.2 Impact to Existing Localities
	 ACPI Platform Error Interfaces (APEI)
	17.1 Hardware Errors and Error Sources
	17.2 Relationship between OSPM and System Firmware
	17.3 Error Source Discovery
	17.3.1 Boot Error Source
	17.3.2 ACPI Error Source
	17.3.2.1 IA-32 Architecture Machine Check Exception
	17.3.2.1.1 IA-32 Architecture Machine Check Bank Structure
	17.3.2.2 IA-32 Architecture Corrected Machine Check
	17.3.2.2.1 IA-32 Architecture Non-Maskable Interrupt
	17.3.2.3 PCI Express Root Port AER Structure
	17.3.2.4 PCI Express Device AER Structure
	17.3.2.5 PCI Express/PCI-X Bridge AER Structure
	17.3.2.6 Generic Hardware Error Source
	17.3.2.6.1 Generic Error Data
	17.3.2.6.2 SCI Notification For Generic Error Sources
	17.3.2.7 Hardware Error Notification
	17.4 Firmware First Error Handling
	17.4.1 Example: Firmware First Handling Using NMI Notification
	17.5 Error Serialization
	17.5.1 Serialization Action Table
	17.5.1.1 Serialization Actions
	17.5.1.2 Serialization Instruction Entries
	17.5.1.3 Error Record Serialization Information
	17.5.2 Operations
	17.5.2.1 Writing
	17.5.2.2 Reading
	17.5.2.3 Clearing
	17.5.2.4 Usage
	17.5.2.4.1 Error Log Address Range Resides in NVRAM
	17.5.2.4.2 Error Log Address Range Resides in (volatile) RAM
	17.5.2.4.3 Error Log Address Range Resides on Service Processor
	17.5.2.4.4 Error Log Address Range is Copied Across Network
	17.6 Error Injection
	17.6.1 Error Injection Table (EINJ)
	17.6.2 Injection Instruction Entries
	17.6.3 Injection Instructions
	17.6.4 Trigger Action Table
	17.6.5 Error Injection Operation
	18 ACPI Source Language (ASL) Reference
	18.1 ASL Language Grammar
	18.1.1 ASL Grammar Notation
	 ASL Name and Pathname Terms
	18.1.3 ASL Root and Secondary Terms
	18.1.4 ASL Data and Constant Terms
	18.1.5 ASL Opcode Terms
	18.1.6 ASL Primary (Terminal) Terms
	18.1.7 ASL Parameter Keyword Terms
	18.1.8 ASL Resource Template Terms
	 ASL Concepts
	18.2.1 ASL Names
	18.2.1.1 _T_x Reserved Object Names
	18.2.2 ASL Literal Constants
	18.2.2.1 Integers
	18.2.2.2 Strings
	18.2.3 ASL Resource Templates
	18.2.4 ASL Macros
	18.2.5 ASL Data Types
	18.2.5.1	 Data Type Conversion Overview
	18.2.5.2	Explicit Data Type Conversions
	18.2.5.3	Implicit Data Type Conversions
	18.2.5.4	Implicit Source Operand Conversion
	18.2.5.5	Implicit Result Object Conversion
	18.2.5.6	 Data Types and Type Conversions
	18.2.5.7	 Data Type Conversion Rules
	18.2.5.8	 Rules for Storing and Copying Objects
	18.2.5.9	 Rules for Reading and Writing Objects
	18.2.5.9.1	 ArgX Objects
	18.2.5.9.2	 LocalX Objects
	18.2.5.9.3	 Named Objects
	 ASL Operator Summary
	18.4 ASL Operator Summary By Type
	18.5 ASL Operator Reference
	18.5.1 Acquire (Acquire a Mutex)
	18.5.2 Add (Integer Add)
	18.5.3 Alias (Declare Name Alias)
	18.5.4 And (Integer Bitwise And)
	18.5.5 Argx (Method Argument Data Objects)
	18.5.6 BankField (Declare Bank/Data Field)
	18.5.7 Break (Break from While)
	18.5.8 BreakPoint (Execution Break Point)
	18.5.9 Buffer (Declare Buffer Object)
	18.5.10 Case (Expression for Conditional Execution)
	18.5.11 Concatenate (Concatenate Data)
	18.5.12 ConcatenateResTemplate (Concatenate Resource Templates)
	18.5.13 CondRefOf (Create Object Reference Conditionally)
	18.5.14 Continue (Continue Innermost Enclosing While)
	18.5.15 CopyObject (Copy and Store Object)
	18.5.16 CreateBitField (Create 1-Bit Buffer Field)
	18.5.17 CreateByteField (Create 8-Bit Buffer Field)
	18.5.18 CreateDWordField (Create 32-Bit Buffer Field)
	18.5.19 CreateField (Create Arbitrary Length Buffer Field)
	18.5.20 CreateQWordField (Create 64-Bit Buffer Field)
	18.5.21 CreateWordField (Create 16-Bit Buffer Field)
	18.5.22 DataTableRegion (Create Data Table Operation Region)
	18.5.23 Debug (Debugger Output)
	18.5.24 Decrement (Integer Decrement)
	18.5.25 Default (Default Execution Path in Switch)
	18.5.26 DefinitionBlock (Declare Definition Block)
	18.5.27 DerefOf (Dereference an Object Reference)
	18.5.28 Device (Declare Bus/Device Package)
	18.5.29 Divide (Integer Divide)
	18.5.30 DMA (DMA Resource Descriptor Macro)
	18.5.31 DWordIO (DWord IO Resource Descriptor Macro)
	18.5.32 DWordMemory (DWord Memory Resource Descriptor Macro)
	18.5.33 DWordSpace (DWord Space Resource Descriptor Macro)
	18.5.34 EISAID (EISA ID String To Integer Conversion Macro)
	18.5.35 Else (Alternate Execution)
	18.5.36 ElseIf (Alternate/Conditional Execution)
	18.5.37 EndDependentFn (End Dependent Function Resource Descriptor Macro)
	18.5.38 Event (Declare Event Synchronization Object)
	18.5.39 ExtendedIO (Extended IO Resource Descriptor Macro)
	18.5.40 ExtendedMemory (Extended Memory Resource Descriptor Macro)
	18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor Macro)
	18.5.42 External (Declare External Objects)
	18.5.43 Fatal (Fatal Error Check)
	18.5.44 Field (Declare Field Objects)
	18.5.45 FindSetLeftBit (Find First Set Left Bit)
	18.5.46 FindSetRightBit (Find First Set Right Bit)
	18.5.47 FixedIO (Fixed IO Resource Descriptor Macro)
	18.5.48 FromBCD (Convert BCD To Integer)
	18.5.49 Function (Declare Control Method)
	18.5.50 If (Conditional Execution)
	18.5.51 Include (Include Additional ASL File)
	18.5.52 Increment (Integer Increment)
	18.5.53 Index (Indexed Reference To Member Object)
	18.5.53.1 Index with Packages
	18.5.53.2 Index with Buffers
	18.5.53.3 Index with Strings
	18.5.54 IndexField (Declare Index/Data Fields)
	18.5.55 Interrupt (Interrupt Resource Descriptor Macro)
	18.5.56 IO (IO Resource Descriptor Macro)
	18.5.57 IRQ (Interrupt Resource Descriptor Macro)
	18.5.58 IRQNoFlags (Interrupt Resource Descriptor Macro)
	18.5.59 LAnd (Logical And)
	18.5.60 LEqual (Logical Equal)
	18.5.61 LGreater (Logical Greater)
	18.5.62 LGreaterEqual (Logical Greater Than Or Equal)
	18.5.63 LLess (Logical Less)
	18.5.64 LLessEqual (Logical Less Than Or Equal)
	18.5.65 LNot (Logical Not)
	18.5.66 LNotEqual (Logical Not Equal))
	18.5.67 Load (Load Definition Block)
	18.5.68 LoadTable (Load Definition Block From XSDT)
	18.5.69 Localx (Method Local Data Objects)
	18.5.70 LOr (Logical Or)
	18.5.71 Match (Find Object Match)
	18.5.72 Memory24 (Memory Resource Descriptor Macro)
	18.5.73 Memory32 (Memory Resource Descriptor Macro)
	18.5.74 Memory32Fixed (Memory Resource Descriptor Macro)
	18.5.75 Method (Declare Control Method)
	18.5.76 Mid (Extract Portion of Buffer or String)
	18.5.77 Mod (Integer Modulo)
	18.5.78 Multiply (Integer Multiply)
	18.5.79 Mutex (Declare Synchronization/Mutex Object)
	18.5.80 Name (Declare Named Object)
	18.5.81 NAnd (Integer Bitwise Nand)
	18.5.82 NoOp Code (No Operation)
	18.5.83 NOr (Integer Bitwise Nor)
	18.5.84 Not (Integer Bitwise Not)
	18.5.85 Notify (Notify Object of Event)
	18.5.86 ObjectType (Get Object Type)
	18.5.87 One (Constant One Object)
	18.5.88 Ones (Constant Ones Object)
	18.5.89 OperationRegion (Declare Operation Region)
	18.5.90 Or (Integer Bitwise Or)
	18.5.91 Package (Declare Package Object)
	18.5.92 PowerResource (Declare Power Resource)
	18.5.93 Processor (Declare Processor)
	18.5.94 QWordIO (QWord IO Resource Descriptor Macro)
	18.5.95 QWordMemory (QWord Memory Resource Descriptor Macro)
	18.5.96 QWordSpace (QWord Space Resource Descriptor Macro)
	18.5.97 RefOf (Create Object Reference)
	18.5.98 Register (Generic Register Resource Descriptor Macro)
	18.5.99 Release (Release a Mutex Synchronization Object)
	18.5.100 Reset (Reset an Event Synchronization Object)
	18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)
	18.5.102 Return (Return from Method Execution)
	18.5.103 Revision (Constant Revision Object)
	18.5.104 Scope (Open Named Scope)
	18.5.105 ShiftLeft (Integer Shift Left)
	18.5.106 ShiftRight (Integer Shift Right)
	18.5.107 Signal (Signal a Synchronization Event)
	18.5.108 SizeOf (Get Data Object Size)
	18.5.109 Sleep (Milliseconds Sleep)
	18.5.110 Stall (Stall for a Short Time)
	18.5.111 StartDependentFn (Start Dependent Function Resource Descriptor Macro)
	18.5.112 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro)
	18.5.113 Store (Store an Object)
	18.5.114 Subtract (Integer Subtract)
	18.5.115 Switch (Select Code To Execute Based On Expression)
	18.5.116 ThermalZone (Declare Thermal Zone)
	18.5.117 Timer (Get 64-Bit Timer Value)
	18.5.118 ToBCD (Convert Integer to BCD)
	18.5.119 ToBuffer (Convert Data to Buffer)
	18.5.120 ToDecimalString (Convert Data to Decimal String)
	18.5.121 ToHexString (Convert Data to Hexadecimal String)
	18.5.122 ToInteger (Convert Data to Integer)
	18.5.123 ToString (Convert Buffer To String)
	18.5.124 ToUUID (Convert String to UUID Macro)
	18.5.125 Unicode (String To Unicode Conversion Macro)
	18.5.126 Unload (Unload Definition Block)
	18.5.127 VendorLong (Long Vendor Resource Descriptor)
	18.5.128 VendorShort (Short Vendor Resource Descriptor)
	18.5.129 Wait (Wait for a Synchronization Event)
	18.5.130 While (Conditional Loop)
	18.5.131 WordBusNumber (Word Bus Number Resource Descriptor Macro)
	18.5.132 WordIO (Word IO Resource Descriptor Macro)
	18.5.133 WordSpace (Word Space Resource Descriptor Macro))
	18.5.134 XOr (Integer Bitwise Xor)
	18.5.135 Zero (Constant Zero Object)
	 ACPI Machine Language (AML) Specification
	19.1 Notation Conventions
	19.2 AML Grammar Definition
	19.2.1 Table and Table Header Encoding
	19.2.2 Name Objects Encoding
	19.2.3 Data Objects Encoding
	 Package Length Encoding
	19.2.5 Term Objects Encoding
	19.2.5.1 Namespace Modifier Objects Encoding
	19.2.5.2 Named Objects Encoding
	19.2.5.3 Type 1 Opcodes Encoding
	19.2.5.4 Type 2 Opcodes Encoding
	19.2.6 Miscellaneous Objects Encoding
	19.2.6.1 Arg Objects Encoding
	19.2.6.2 Local Objects Encoding
	19.2.6.3 Debug Objects Encoding
	19.3 AML Byte Stream Byte Values
	19.4 AML Encoding of Names in the Namespace
	A Device Class PM Specifications
	A.1 Overview
	A.2 Device Power States
	A.2.1 Bus Power Management
	A.2.2 Display Power Management
	A.2.3 PCMCIA/PCCARD/CardBus Power Management
	A.2.4 PCI Power Management
	A.2.5 USB Power Management
	A.2.6 Device Classes
	A.3 Default Device Class
	A.3.1 Default Power State Definitions
	A.3.2 Default Power Management Policy
	A.3.3 Default Wake Events
	A.3.4 Minimum Power Capabilities
	A.4 Audio Device Class
	A.4.1 Power State Definitions
	A.4.2 Power Management Policy
	A.4.3 Wake Events
	A.4.4 Minimum Power Capabilities
	A.5 COM Port Device Class
	A.5.1 Power State Definitions
	A.5.2 Power Management Policy
	A.5.3 Wake Events
	A.5.4 Minimum Power Capabilities
	A.6 Display Device Class
	A.6.1 Power State Definitions
	A.6.1.1 CRT Monitors (not including other full screen displays)
	A.6.1.2 Internal Flat Panel Devices
	A.6.1.3 DVI Displays (Digital Flat Panels and DVI Monitors)
	A.6.1.4 Standard TV Devices (and Analog HDTVs)
	A.6.1.5 Other (new) Full Screen Devices
	A.6.1.6 Video Controllers (Graphics Adapters)
	A.6.1.7 Display Codecs
	A.6.2 Power Management Policy for the Display Class
	A.6.3 Wake Events
	A.6.4 Minimum Power Capabilities
	A.6.5 Performance States for Display Class Devices
	A.6.5.1 Common Requirements for Display Class Performance States
	A.6.5.2 Performance states for Full Screen Displays
	A.6.5.2.1 CRT Performance States
	A.6.5.2.2 Internal Flat Panel
	A.6.5.2.3 DVI Full Screen Devices
	A.6.5.2.4 Standard TV and Analog HDTVs
	A.6.5.2.5 New Devices
	A.6.5.3 Performance States for Video Controllers/Display Adapters
	A.7 Input Device Class
	A.7.1 Power State Definitions
	A.7.2 Power Management Policy
	A.7.3 Wake Events
	A.7.4 Minimum Power Capabilities
	A.8 Modem Device Class
	A.8.1 Technology Overview
	A.8.1.1 Traditional Connections
	A.8.1.2 Power-Managed Connections
	A.8.1.3 Motherboard Modems
	A.8.2 Power State Definitions
	A.8.3 Power Management Policy
	A.8.4 Wake Events
	A.8.5 Minimum Power Capabilities
	A.9 Network Device Class
	A.9.1 Power State Definitions
	A.9.2 Power Management Policy
	A.9.3 Wake Events
	A.9.3.1 Link Status Events
	A.9.3.2 Wake Frame Events
	A.9.4 Minimum Power Capabilities
	A.10 PC Card Controller Device Class
	A.10.1 Power State Definitions
	A.10.2 Power Management Policy
	A.10.3 Wake Events
	A.10.4 Minimum Power Capabilities
	A.11 Storage Device Class
	A.11.1 Power State Definitions
	A.11.1.1 Hard Disk, CD-ROM and IDE/ATAPI Removable Storage Devices
	A.11.1.2 Floppy Disk Devices
	A.11.1.3 IDE Channel Devices
	A.11.2 Power Management Policy
	A.11.2.1 Hard Disk, Floppy Disk, CD-ROM and IDE/ATAPI Removable Storage Devices
	A.11.2.2 IDE Channel Devices
	A.11.3 Wake Events
	A.11.4 Minimum Power Capabilities
	B ACPI Extensions for Display Adapters
	B.1 Introduction
	B.2 Definitions
	B.3 ACPI Namespace
	B.4 Display-specific Methods
	B.4.1 _DOS (Enable/Disable Output Switching)
	B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)
	B.4.3 _ROM (Get ROM Data)
	B.4.4 _GPD (Get POST Device)
	B.4.5 _SPD (Set POST Device)
	B.4.6 _VPO (Video POST Options)
	B.5 Notifications for Display Devices
	B.6 Output Device-specific Methods
	B.6.1 _ADR (Return the Unique ID for this Device)
	B.6.2 _BCL (Query List of Brightness Control Levels Supported)
	B.6.3 _BCM (Set the Brightness Level)
	B.6.4 _BQC (Brightness Query Current level)
	B.6.5 _DDC (Return the EDID for this Device)
	B.6.6 _DCS (Return the Status of Output Device)
	B.6.7 _DGS (Query Graphics State)
	B.6.8 _DSS (Device Set State)
	B.7 Notifications Specific to Output Devices
	B.8 Notes on State Changes
	Index

