Advanced Configuration and
Power | nterface Specification

Hewlett-Packard Cor poration
Intel Corporation

Microsoft Corporation
Phoenix Technologies L td.
Toshiba Corporation

Revision 4.0a
April 5, 2010

Copyright © 1996-2010, Hewlett-Packard Corporation, Intel Corporation, Microsoft Cor poration, Phoenix
Technologies Ltd., Toshiba Corporation
All rightsreserved.

INTELLECTUAL PROPERTY DISCLAIMER

THISSPECIFICATION ISPROVIDED “AS1S” WITH NO WARRANTIESWHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESSFOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESSOR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTSISGRANTED OR INTENDED HEREBY.

HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. HP, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DO
NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Affected

Revision Change Description Sections

4.0a Errata corrected and clarifications added.

Apr. 2010 Removed text concerning government requirement of mechanical off 2.2
Clarified URL update document, Corrected section references for APIC, SLIT, | 5.2.6
SRAT in Table 5-5, Update URL s and reformated Table 5-6
Corrected reference to Interrupt Source Override Structure 5.2.12.4
Corrected name for CPEP table 5.2.18
Corrected reference to SMBus, should be IPMI 55.24.31
Clarified BusCheck and DeviceCheck notifications in Table 5-53 5.6.5
Added link to non-ACPI Plug and Play ID reference document 5.6.6
Added missing _ATT and _GAI names, Corrected page/section referencesin 5.6.7
Table 5-67
Corrected EndTag name value. Was 0x78, correct value is 0x79 Table 6-33 6.4.2.8
Consumer/Producer bit isignored (Restored 2.0C change that had been lost) 6.4.3.5.1,2,3
Clarified use of _GLK (Global Lock) object 6.5.7
Corrected definition of _TSD object 8.4.34
Corrected definition of _PSD object 8.4.45
Corrected table name (CPEP) 8.4.5
Corrected “ maximum positive adjustment” value. Was 500%, correct valueis | 9.2.5
50%, Updated description of example — 300 to 400 lux, Eliminated hardcoded
package lengths in examples, Changed “ brightness’ to “highest ambient light
value’

Corrected referenceto _IDE, should be _GTM. Corrected table reference 9.8.21.1
Clarified GPE Block Device Description 9.10
Corrected _PLD object examples 9.13
Repaired diagram that would not display properly Figure 10-2 10.1.3.1
Added missing BCT method to Table 10-3 10.2.2
Clarified that OEM Information field should contain NULL string if not 10.2.1.1-2
supported in Table 10-4 & Table 10-5

Corrected description of _BTM arguments and return value 10.2.2.8
Clarified description of _BCT return value 10.2.29
Corrected HID for Power Source device. Was ACPI0003, correct value is 10.3
ACPI0004

Corrected _PIF example. First package element was a Buffer, should be 10.3.3
Integer, Clarified that OEM Information field should contain NULL string if

not supported Table 10-10

Corrected description of _SHL method Table 10-11 104
Clarified _PRL return value, alist of References 10.34
Corrected _PMC example. First package element was a Buffer, should be 104.1

Integer

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Affected

Revision Change Description Sections
Clarified that OEM Information field should contain NULL string if not 10.4.1
supported Table 10-12
Removed “TODQO" note. Updated example 105
Repaired diagram that would not display properly Figure 15-1 151
Corrected error conditions from “fatal” to “corrected 17.1
Corrected several incorrect section references, Clarified number of Generic 17.3.1
Error Data Entry structuresis >=1 (not Zero)
Clarified number of Generic Error Data Entry structuresis >=1 (not Zero) 17.3.2.6.1
Added new section clarifying SCI notification for generic error sources 17.3.2.6.2
Added new section describing Firmware First error handling 174
Clarified purpose of the codes Table 17-17 17511
Added reference to table of COMMAND_STATUS codes Table 17-23 17.6.1
Clarified purpose of the command status codes in Table 17-27 and the error 17.6.3
type definitionsin Table 17-28
Added ATT resource descriptor field name 18.1.8
Clarified rules for Buffer vs. Integer return types from a field unit 18.5.44,89
Corrected section/page reference 18.5.101

4.0 Major specification revision. Clock Domains, x2APIC Support, Logical

June 2009 Processor Idling, Corrected Platform Error Polling Table, Maximum System
Characteristics Table, Power Metering and Budgeting, IPM| Operation
Region, USB3 Support in _PLD, Re-evaluation of _PPC acknowledgement via
_OST, Therma Model Enhancements, OSC at\ SB, Wake Alarm Device,
Battery Related Extensions, Memory Bandwidth Monitoring and Reporting,
ACPI Hardware Error Interfaces, D3hot.

3.0b Errata corrected and clarifications added.

Oct. 2006

3.0a Errata corrected and clarifications added.

Dec. 2005

3.0 Major specification revision. General configuration enhancements. Inter-

Sept. 2004 | Processor power, performance, and throttling state dependency support added.
Support for > 256 processors added. NUMA Distancing support added. PCI
Express support added. SATA support added. Ambient Light Sensor and User
Presence device support added. Thermal model extended beyond processor-
centric support.

2.0c Errata corrected and clarifications added.

Aug. 2003

2.0b Errata corrected and clarifications added.

Oct. 2002

2.0a Errata corrected and clarifications added. ACPI 2.0 Errata Document Revision

Mar. 2002 | 1.0 through 1.5 integrated.

ACPI 2.0 Errata corrected and clarifications added.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Affected

Revision Change Description Sections

Errata Doc.

Rev. 1.5

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.4

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.3

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.2

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.1

ACPI 2.0 Errata corrected and clarifications added.

Errata Doc.

Rev. 1.0

20 Major specification revision. 64-bit addressing support added. Processor and

Aug. 2000 | device performance state support added. Numerous multiprocessor workstation
and server-related enhancements. Consistency and readability enhancements
throughout.

1.0b Errata corrected and clarifications added. New interfaces added.

Feb. 1999

1.0a Errata corrected and clarifications added. New interfaces added.

Jul. 1998

1.0 Original Release.

Dec. 1996

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Vi

Contents

I VI 15 16 I 1 TS
N T g ToiT o T I o= | USSR
1.2 Power Management Rationale
G I =0 T= T S T] o] To o USRS
1.4 OEM I MpPlementation SEEALEOYcoeeererereeeeeeertestesteseeeeeeeaesaestesaeseeseeseenessessesaeseesseeeneesessesaessessessensanesnessas 23
1.5 POWEr @Nd SIEEP BULTONS ... couiiiiciiciiceste et sttt se st e s b e st et e e e sseseebesbestesbaseenseneanennas 23
1.6 ACPI Specification and the Structur@ Of ACPI ... e 24
1.7 0S and Platform COMPIIANCEcocviiiiiieieiet ettt sttt se et be s re s e e esseseebesbestesbeeenseseasennas 25

1.7.1 Platform Implementations of ACPI-defined INtErfatescooeiiiiriieiee e 25
1.7.2 OSPM Implementations
1.7.3 OS Requirements,
RS I o = Y UTo 1= o ol RS SS
1.9 DOCUMENT OF QANIZALION ..c.viiveeieeicteeti et ste ettt st s b e e e e e e seetestesbesse s eseeseeseebesbesee s esaesseseebesaestessaseensesaesensas
1.9.1 ACPI Introduction and Overview....
1.9.2 Programming Models........
1.9.3 Implementation Detalils......
1.9.4 TEChNICAl REFEIENCE ... eviuiieteieie ettt b ekt b et s b b et be st st ebe e
1.10 REIGLEO DOCUMENTS.......eiiteieeieeeeeettetesieseesee e e e st stesaeseessesee e eaeeaeeaeseessesee s aneameeseebesaeeeenseneeneeseabesaessesseneenseneaneanas

2DEFINITION OF TERMS ...ttt ettt e e e ettt e e e e e e e e s aba e e e e eabe e e enseeessaseeeeanteeaeannes
2.1 General ACPI Terminology
2.2 Global System State Definitions
2.3 Device POWEr State DEfINITIONS.......ccuiiieieiieie et ee et este s e e tesaeestesse e sesaaeseesseensesneeseensnens
2.4 S1eeping Stat@ DEfiNITIONScciiiiiieieeei sttt et e b be s te s b et e e e eneeresresbe e et eneenennas
2.5 Processor POWEr State DEfINITIONScoviiciiiicesecse ettt e s te s e et e sseesresneentesneesrennnens 42
2.6 Device and Processor Performance State DEfiNitiONS........ccccucciiieiiiiesc e 43

SACPI OVERVIEW ...ttt sttt sttt ee et e b e e be e e be e s bt e s beeenbeesnbeesabeesbeeennen s 45
3.1 System POWEr MaNAQEMENToiiiiiiieieiieie ettt st sbe e ste e et e s b e besse e besaeesbesseenbesseetesseensesneeneensnens 46
.2 POWES SEBEES..... ettt ettt bttt a bbb e b e e e eeh e e Rt e E e b e e e e h e R e R R e R e R R Rt Rt R R e et e ne e 47

2.1 POWES BULLON........oitiiieitieie sttt ettt ettt b et e e se e e bt e ae e sb e s he e s e emeesbe s he e b e emeeseesheeseeaeenbesreenseeneensensnens 48
3.2.2 Platform Power Management CharaCteriStiCS........cuviiirieieieiii ettt se e eseeneas 48
3.3 DeViCe POWEr MANAGEIMENT ..ottt ettt e et aeeaeseesbese e e e seeaesaeeeesaeseemeeneenesaesbesseseenseneanesnas
3.3.1 Power Management SLANAAITSc..eoirererireeierie ettt aeseesbe st e e e e e e eaesbessessense e eneeneasens
3.3.2 DBVICE POWES SEAES.......eeuieeieieteeeiees ettt ettt bbbkt b bt b e e b ettt b et et e b
3.3.3 Device POWer State DEfiNItIONS........cciireeeieeeese ettt see bt e et aesbesbeste e e e eneeneeneas
3.4 CONLIOHlING DEVICE POWES ...ttt sttt ae et st e b e e et e e e st eaesbe s e e eee e e seeaesaeebesseseeneeneeneanas
3.4.1 Getting Device Power Capabilities.....
3.4.2 Setting Device Power States.....
3.4.3 Getting Device Power Status....
3.4.4 WaKiNG the COMPULETccveieiicti ettt ettt te s beste st e ae st eseeseesestesbessenseseeseeseabesbesseseseenensensens
3.4.5 Example: Modem Device POWEr ManagemeENntccccueeeieeiiieiesiesieeeessesiestesressesaesss e ssessessessesasnessessens
3.5 Processor POWEr MaANAGEIMENTiiiiiiiieie ettt ettt s se e ae e b e s heeseesaeessesaeesbesaeensesaeeseesaeensesneesressnans
3.6 Device and Processor PerforManCe SEALES ..ottt
3.7 Configuration and “Plug and Play”
3.7.1 Device Configuration Example: Configuring the Modem
T2 INUMA NOUES.......ceitiiiteiirieiestete ettt ettt et e bbb e bt b e bt se e b e e e b et et et s b e bt s e e b e s eb et et en e s b e bt neebe s neens
.8 SYSLOIM EVENES.....ceeeee ettt h et s h b e bt e e e s bt e b e e he e e e e he e b e ehe e beshe e et eReebeeReeneeneenrenrnen
3.9 Battery Management...............
3.9.1 Battery Communications...
e I - 1= A O o o YOS
3.9.3 BAErY GBS GAUGE. ... veivieueerierieiitieiiesieseesteeseestesseessesseestesseesbesseesbesseeabeaseesbesae e beeseesbesseenbesseenbesseenbesneeneenreens

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Vi

.94 LOW BAILENY LEVEIS ...ttt sttt a e et e b e b et e e et ene e et ebeseeste e e e eneeneeneas
3.9.5 BAErY CaliDralioncceeeeeeeete ettt b e b et e e et et e heeaeeeesbeee e e e Rt ene Rt ebesbeeee s eneeneeneenens
3.10 TherMal M ANAQEMENL.......cviiiieiiesieieeete ettt ettt st e st et e e e seebeste st et enseseeseesesbesbesaenseseeseeseebesbessensenaesennas
3.10.1 Active and Passive Cooling Modes
3.10.2 Performance vS. ENergy CONSEIVELION.........ccouiueiirieriereeieeeieetestesteseeseeeesesseseesseseenseseenessessessessessesesnsesessens 64
3.10.3 ACOUSEICS (INDISE)veveieuierieiietteteste et e e et esestesbestesbe e et eseeseebessesbaae st eseeseeseetesbessensesseneeseabessesseseseensnsenrens 64
3.10.4 MUILIPIE TREIME ZONESc.ccuiiuiiiiitisiiieeeee ettt ettt st e et beese s besbeste s eseeneeseabesbesseseseenensensens 64

4 ACPl HARDWARE SPECIFICATION ...cctieiieieeieeesee sttt steeste e e steesse e e e sneesseessessseessesnsssnessnes 65
4.1 Fixed Hardware Programming MOOE!ooecieieiiiiieii ettt sbe st s s 65
4.1.1 FUNCLIONEl FIXEO HAIAWEIE ...ttt sttt s e b e st e e e e e e e neeneenas 65
4.2 Generic Hardware Programming MOGEccoieiiiiiiiiiieiccce sttt 66
TR BT | o I = = Lo LTSRS
L o s = =T N (o] =] o BTSSR
4.5 The ACPI HardwareModsd
4.5.1 Hardware Reserved Bits....
4.5.2 HardWare IgNOIE0 BitS........ccucviiiiiiiiisieieieese sttt et st esae st e s s s beabeste s e e esseseesesbestesbaaenseseasennas
4.5.3 HardWare WILE-ONIY BitS........cciiiiiiiiiirieieieice ettt sttt st st seebesbesbe b e saenseseesennas
4.5.4 CrOSS DEVICE DEPENUENCIEScveeiieiieeeieieeie ettt ste et e e it s tesaesee e e e eseeaesbesaeseen s e e eneeseeaesaessesseseeneeneaneanas 73
4.6 ACP] Har AWar € FEALUIN ES.....c.ucui ittt sttt b ettt b et e b e bt ekt b et e b e s e b et et ne b e s e st ene e 73
4.7 ACPI REGISLEr MOUEc.eovieiiieieieiirieiee ettt ettt ae et sesaeseseeseseese e ssenessesesaesensesesensenessnsensenenens 75
A.7.1 ACPI REQISLEN SUIMIMIBIYeeueiuieteiteieenteeeeesesseasessesseseeaseseasessessessessaasaseeseasessessessensenseneeseasessessessessenseneasesses 78
A.7.2 FIXEA HArOWEre FEBIUIES.eueeeiiieeiiieeteirie sttt ettt b etk b ettt bbbt e e 80
4.7.3 FiXEd HarOWare REJISLEN'Scouiriiiti ittt e et ie sttt ae s ee e e e e ae st sbesaese e s e e eneeseebesaeseesseneeneeneaneenas 89
A.7.4 GeNeriC HardWarE REQISLEIS.......coueiui ettt sttt st se et ae et e s aesee s e e e e eneeaesaesbesaeneeneeneaneenas 97

5 ACPI SOFTWARE PROGRAMMING MODELccoiiiiiiiiiiiiecsis et 105
5.1 Overview of the System Description Table ArChiteCIUIe.........cooiiiiiieeee e 105
5.1.1 AdAress SPace TraNSIaliONcocereiririiniiieirie sttt b e b ettt ne b nbe s 107
5.2 ACPI System DesCription TabIES......cciuiiieiciiiieii ettt st e be b s te b e e e seeneanas 109
5.2.1 Reserved Bitsand Fields
5.2.2 Compatibility........ccccevnnne
5.2.3 Address FOrmatccooeeereeenenenereeenns
5.2.4 Universal Uniform [dentifiers (UUID)occoiiiiiiieeeeeee et
5.2.5 Root System Description POINTEr (RSDP)cviiiiirieieieise sttt sttt sre e s e s e
5.2.6 System DesCription Tahl€ HEAOENcccveiiiieiicesecce ettt
5.2.7 Root System Description Tabhle (RSDT)coioiieiiiierieieeeeeeie ettt se s se e nne e
5.2.8 Extended System Description Table (XSDT)...
5.2.9 Fixed ACPI Description Table (FADT)
5.2.10 Firmware ACPI Control Structure (FACS)
5.2.11 DEfiNITION BIOCKS.....eetieeieieteett ettt ettt ettt st e e e b e bt st e sa e e e e e neeneeaesbeseesee e eneenennees
5.2.12 Multiple APIC DesCription Table (IMADT).....ccuiiiiieieieiee ettt sae st e e sse st sre s s e sse e
5.2.13 Global SYStEM INEITUPBLS......ccuvitiiieiteiieieeetiete st se et e e te st sttt e e e e eseebesbesbesaesae s eseeseesesbessessenseseenensees
5.2.14 Smart Battery Tahle (SBST) .. .o ittt st s b e e e e e nenne e
5.2.15 Embedded Controller Boot Resources Table (ECDT)
5.2.16 System Resource Affinity Table (SRAT) .ccccvvieiiveserieeeeeseeeins
5.2.17 System Locality Distance Information Table (SLIT)
5.2.18 Corrected Platform Error Polling Table (CPEP)......cc.co et
5.2.19 Maximum System CharacteristicsS Tabhle (MSCT) ...ccucicieieiiiceseseeeeee et
B.3 ACP] NAIMESPDACE. ... e iueetieiiesieseestesiee e siees e ssee e s e esbesseeseesbeenbesseeeesseeabesbeeseesbeensesbeestesbeenbesbeeseesbeensenbenneensennsas
5.3.1 Predefined ROOt NBMESPACEScueiuiieeieeeieie ettt et sttt eesee e e e seeaesbesaesee e eneeseeaesbeseeseeseneenensees
LI @ o= ot £ SRRSSR
5.4 DEfiNition BIOCK ENCOOINGc.cciiiiiiiiiisieieiee st ste ettt st sae st s e e s esesbesbesse s eseeseeseesessestensaseenseseesennas
5.5 Using the ACPI Control M ethod SOUrCe LanQUAJEccceeueiuiriereiieieeeeeieete e seesee e sae e ee e e sne e
5.5 1 ASL SEAEIMENTS.ccuiiteitetee ettt ettt sttt bbbt s et h e bt e bt b e b e e e e e ae bt eb e b e n e e e n e st e
5.5.2 Control MethOO EXECULIONcouiiiiiiieeeeecee ettt sttt b e st e e e e s eae st e seese e e e e eneneeees
5.6 ACPI Event Programming M OGEL ...ttt ene e

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

viii

5.6.1 ACPI Event Programming Model COMPONENES.........coueiuerirererierierieieereeesiesie st see e saeseeseeseesee e enesse e 172
5.6.2 TYPES Of ACPI EVENLS......eiiiieeiiet ettt ettt ettt e e et b e bt sb e e e e e e e neeneeae et e seesee e eneenennees 173
5.6.3 FiXed EVENt HaNIING.....cviieieiiii ettt st b et b e eae s be b e see s e e enenseans 174
5.6.4 General-Purpose EVENt HaNAIiNGcooeieiiiieie ettt sttt nne e 175
5.6.5 Device ObJECt NOLITICAIIONSccuiitirieieeieieeceie ettt sttt b e st a e e e s eae b e see e e e e e enesnees 178
5.6.6 DeVice Class-SPECITiC ODJECLS........cuiiiiirieieieii ettt sa e et be s besba st et e e seeaesbesbesee s e e enenseans 183
5.6.7 Predefined ACPI Names for Objects, Methods, and RESOUICEScccvereiiiieiericieeeeee e 185
A S =0 (= T T= o IO o ok TSRS 193
B5.7.1_GL (GlODal LOCK MULEX).....ccuiiuiiiiitiiieieieiieit st sie e stesee e stesrestestesae s eseesessestessasaenseseesessestessessenseneesensenns 193
5.7.2_OSI (Operating SystemM INEEITACES)ccveveieiieiiiisteseeiee sttt ese e saesre s e e nense e 193
B5.7.3_OS (OSNAME OBJECL) ...eveueieuireeiirieeiiesieesieseseesesiesesesteesaesesesseseesesestenessesessesessesesessensssasessesessesessesensesenes 196
5.7.4\ REV (ReViSION DAt OBJECL)veuerieeireeieiriei st ettt e e seene s se e se e ssenesaeneseeseneesenessnnes 197
5.8 System Configuration ODJECES........ccuiiiiiirieieieise sttt sttt s be b e st et e e e eseebesbestesbeeenseseeneanas 197
L3S I5 R = L 1Y 11 3o o 197
6 DEVICE CONFIGURATION ..ottt ittt et etee st et eete e sreesaeeessneesseesseenseensessansseesseessnsnsesnessnes 199
6.1 Device | dentifiCation ODJECES.........iiiii ettt sttt b e b e e e e et seebeeaesee e e e e e eneeneanas 199
LS00 N T 0 [0 ==\ T 200
(S @ T (@e a7z 1o 1= 1 5) TSRS 201
6.1.3 _DDN (DOS DEVICE NBIME)cueeeueeeuererieesiesereeseseesesessesesseseseesesseseseesensssesessesessesessssensssenessesessesessesessesenes 201
6.1.4 _HID (Hardware ID)
6.1.5_ MLS (MUltiple Language SITiNG)oceeereeieieeiesiesieseeeeesie st stestesaeeesessessestessasaeseseesessessessessensessesessenns 202
6.1.6 _PLD (PhysSiCal DEVICE LOCAIION)cucveieieeeieiieieitesiesieee ettt e e ese st snestesaasae s e e eseenestesbesaenseseenensens 203
LT S I 2 (5 (0T) 209
6.1.8 _SUN (SIOt USEr NUMDEY) ...ttt a e et a e eae b e e e see e e e enenaeeee 210
6.1.9 _UID (UNIQUE ID) .ttt sttt sttt ekttt bbbt b ettt nbe s 210
6.2 Device CoNfiguralion ODJECEScoiiiieiieeeiee ettt ettt sttt ae b be e e s e e e e eseeaesaeseess e e e e eneeneanas 210
6.2.1 _CDM (CIOCK DOIMEINYcuveuietieeieiestesieieeeseesestessessesseseeseesessessessessaseessesessessessessassensessesessessessessensessesessenns 211
6.2.2 _CRS (CUrrent RESOUICE SELLINGS) ..oveverereerieriiieiiesiesieseeeeestesteste st e saeeesessessestessesaeseseesessestessessensessesessenns 212
LI T B TS (1 o =) T
6.2.4 _DMA (Direct Memory Access)
6.25 FIX (Fixed Register RESOUICE PrOVIAEN)c.ccieiiiiiiieieieieie sttt sttt sb e st nne e 215
6.2.6 _GSB (Global System INtErTUPE BESE)........ccuiuiiiiiiiiiisieieieesie sttt sttt sse st saesee s neenenseans 216
6.2.7 _HPP (HOt PlUQ PaIrAIMELEIS)cuiiviitiieeieieeieie ettt ettt se et ae s seesae e e e e e eneeaesbesseseeeeneenesneees 217
6.2.8 _HPX (Hot Plug Parameter EXIENSIONS)......cccviiiiiriinierieieisiesiestesieseeseesessessestessesaessessesessessessessensessesessenns 219
6.29 MAT (MUltiple APIC TablE ENLIY) c.oveieeceieiice sttt sttt st b et nne e 224
6.2.10 _OSC (Operating System Capabilities)coeiirireieeireeese e 225
6.2.11 PRS (P0SSIDI€ RESOUICE SEHINGS). ... veueeeeuiriieierie ettt et see e e s eaesbeseesee e e e eneseeees 233
6.2.12 PRT (PCl ROULING TAHIE)cveiuiiieitiiieieieieic ettt sttt a e se b enesbesbesae s e e enenseens 233
6.2.13 _PXIM (PrOXIMILY) ..evesueteieietietisestestesieseestesestessessesseseeseesessessessassasaesseseesessessessasaenseseesessessessessenseseesensenns 236
6.2.14 _SLI (System Locality INfOrMELTON)........cccoirireiirierieieeee ettt st e e nne e 236
6.2.15 SRS (St RESOUICE SEINGS) .. .vieveiverreieierietieesiesiesseseeeeseetesrestestesaeseseesessestessesaeseseesessessessessensessessssenns 239
6.3 Device Insertion, Removal, and StatuS ODJECEScuiivicicieiiicese et nas 239
6.3.1 EDL (EJECE DEVICE LISL) ...veueeeuiieeieieeerieieesieie s tesieee st esie e sae e se e te e se e saeneseeseseeseessanesseneseesenessensnsnnes 241
6.3.2 _EJD (Ejection Dependent DEVICE)cc.civeieiiieieriisiesieieeetestestestasae e ese e ssestesaesaeseseesessestessessenseseesessenes 241
B.3.3 _EIX (EJECL) vttt bbb bbb bbbt b et na s 243
L3 20 S 1 Q{7 243
6.3.5_OST (OSPM Status INICAHION)cveieeeeeeuieieeierie ettt e e se b stesee e e e e e st saesbeseeseeeeneenessees 244
6.3.6 _RMV (REIMOVE)uiiiiiieiiieietiete ettt ettt te e s te st e e e eseebesbesse b eeenseseeseebesbesbasaenteseeseesesbesbeseenseseenensees 248
LTI S 17N (- 11 248
6.4 ReSOUrCe Data TYPESTOI ACPI ...ttt sttt s b e b b et e e et e seeaesaesee s e e e e eneeneanas 249
6.4.1 ASL MaCros fOr RESOUICE DESCIIPLOIS......c.veuieuiiieiieriisiesieieeeteste st s e e e e sbestesbe e te e seesestesbesteseseesensens 249
6.4.2 SMall RESOUICE DAA TYPucueiuireertereeieeeiceteetestesee st e e e e et stesaeseeseesee e eseesesaestesaeseeneeneeseenesbesseseenseneenessees 249
6.4.3 Large RESOUICE DBLA TYPEeeueiteeieitieitisieeie st ettt et et b e e be e b e s be e e e sbe e s e she et e sbeensesbe e e e sneennesneenes 254
6.5 Other Objectsand Control MEINOUScc.ccviiiieiiiesesieeee e r e sbe st b e e s e e eneanas 276
L3030 R 10 276
LTS3 T S o To:) 277

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

6.5.3 _BDN (BIOS DOCK NAIMIE)ctieeuirieeirieieerieeseeiesieee s tesesteesesseseesesessenessesessesessesessssensssansssesessesessesensesenes 277
LTS3 A B Ll (=" [0) 277
6.5.5 BBN (BaSEBUSNUIMIDEN)ocuiiiiiiitiiieieieiete ettt sttt s tesae et se s e esesbesbesse s eneenensens 279
5.5.6 _SEG (SEOMENL)evieitiirteiiteit sttt ettt sttt b et b et se bbbt b et b bbbt e b et bbbt e b e 279
LT A I QT (€1 7= N I R 281
7 POWER AND PERFORMANCE MANAGEMENT ..ottt 283
7.1 Declaring a POWer RESOUICE ODJECLouiiiieieieiie ettt sttt b e se e e e e ene e 283
7.1.1 Defined Child Objects fOr 8 POWEr RESOUICE........c..ciririiririeirieesieie et be e 284
T 0.2 OFF e bbb E AR b £ R R ARt A h e bbbt bbbt e 284
7500 © | 285
8 Y 1N (5 7 11 285
7.2 Device POwer Management ODJECESiiuiiiiiicieii ettt sttt st sttt seete b e ste b e e e e eneeneanas 285
7.21 _DSW (DeVICE SIEEN WEKE) ...ttt sttt st e et a e ae b e e e se e e e e eneeaeee 287
A A s Ol (VY= S - (=) 287
7.2.3 _PSL (POWES SEAEE 1) ...veuerteueiteiireeieriete ettt sttt etttk b et bbb btk e b ettt b et b e nbe s 288
A oA (VY= S - (=) 288
7.2.5 PS3 (POWES SEAEE 3) ...vveuereeuerteuereeiesiesesesteesteseseeseseesesessesesseseseesessssesessensssesessesessnsessesensssenessessssesessesensssenes 288
7.2.6 _PSC (POWEN SEAE CUIENL)veivieieitiiteieeeeiete sttt se ettt st ae e eseesesbesbesaesae st eseesessestesbessenseseesensees 288
7.2.7 _PRO (Power RESOUICES FOF DO)......oiviieieiieeieiisie sttt sttt sa e b s tesaa st seeseesesbesbeseenseneenensens 289
7.2.8 _PR1 (POWeEr RESOUICES FOF DL)......eiuiieiieeeieie ettt ae e e e e e e e s eae b e seesee e e e enennees 289
7.2.9 _PR2 (POWEr RESOUICES FOF D2)......eiuiieiieeeieiieiesie sttt sttt sttt e e e e e st eaesbeseesee e e e enenneees 290
7.2.10 _PR3 (Power RESOUICES fOr D3NOL).....cvcieuieiiiieiiiciesiesieeee sttt sttt sb e st neene s 290
7.2.11 _PRW (Power ReSOUICES fOr WEKE).......cceeruirieiirieieee ettt st 290
7.2.12 PSW (POWESN SEAEEWEKE) ..ottt ettt sttt ae st a e e et et eneeae b e seesee e e e enennees 291
7.2.13 _TRC (IN RUSN CUITEML) c..uveiietieticieitesieteeesee e se sttt e st e e esestesbestesaasae e eseesessessessasaenseseesessestessessenseseesensenns 292
7214 SID (SLDEVICE SIAE) ...cuveeerieeieieitesiesieeeiete e e e st et e e e e te s beste s b e sae e eseesesbesbesbesaenseseesessesbesteseenseneesenseans 292
7.2.15 _S2D (S2 DEVICE SEALE)cueveuereeuereeeereeteesieseseeseseesesesseesseseseeseseesesessesssesessesessnsesessensssenessenessesessesensesenes 293
7.2.16 _S3D (S3 DEVICE SEALE)cueveuereeuereetereeteesieseseesesaesesesteessesesesseseesesesseessesessesessesesessensssesessenessesessesensesenes 293
T.2.17 _SAD (SA DEVICE SEAE) ...cuveueeveerieieitisieteeette et te ettt st s b e s te st e e e s ese et e s besbesaasae st eneeseesestesbeseenseneenenseans 294
7.2.18 _SOW (SO DEVICEWEKE SEALE)euveeereeeeneieiereeiesieee s ieres e seeseseeseseste e se e seesesaesesassenessenesseneseesenessenessenes 295
7.2.19 _SIW (S1 DEVICEWEKE SEALE)eveeeeeieerienereeierieee s teses e seeses e sestesessesessesesaesesessenessenessenessesessssensssenes 295
7.2.20 _S2W (S2 DVICEWAKE SEALE)ccveiviiereeeieiicte st sieste ettt sttt ettt besba e et seeseesesbesbesee s e e enenseans 295
7.2.21 _S3W (S3 DEVICEWAKE SEALE)ccviiveiereeeieiicieite ettt sttt et be s besbasae s e e seeaesbesbesae s eneenenseane 295
7.2.22 SAW (SA DEVICEWEKE SEALE)eueeeeeeeeerieiereeierieee s eesiee s te e se et nesaeseseese e ssenesseneseeseneesenensnnes 296
7.3 OEM-Supplied System-Level Control Methods.........cccuciciiiiiciii e 296
7.3.1_BFS (BACK From SIEED).....ccciiiieitiiieeecie ettt st b et beene s besbesee s e e enenne e 296
7.3.2_PTS (Prepare TO SIEED)coeeueeeeieie ettt sttt ae bt sb e b e e e e e neeseeaesbeseesee e eneeneanees 297
AR AN ST (€ o1l R OIS == o) SRS 297
7. 3.4 SYSLEIM _SK SEAESeueiteerteieiteie sttt b ettt bbb bbb bbbtk b et bt et ne bt nb s 298
7.3.5 _SWS (SYSLEM WEKE SOUICE)covieeieeieeeiceieetesieeteseeseeeeseete st seeseesee e esessessestesseseenseneeseenesseseeseenseneenessenes 302
7.3.6_TTS (TranStioN TO SEALE).......ccueeuerueieeieieeieieeterie et et et etesbeseesee e e e e sessesaeseesaeseeneeneeseeaesbeseeseenseneenesnees 303
737\ WAK (SYSLEM WEKE)ceueiieiireeiiieierieiee ettt ettt sttt b et 303
7.40SPM usageof _GTS, _PTS, _TTS, _WAK, and _BFS ... 304
8 PROCESSOR CONFIGURATION AND CONTROL ...ooiotiieieese st s sne e 307
8.1 PrOCESSOr POWEE SLALES.......ccuiiiieeitieeieestieeiteesteesteeseeesteesteesseeateesseesseesseeeseesaseeaseessseesseesnseesseesnseesnseenseesnens
8.1.1 ProcesSOr POWEYN SEAIE CO.......c.eeieeeieieeieeieeeieeseeeesteeseeesteessesesseesseeesseesnseesseesnseesseesnseesseessesssseensessssnensensns
8.1.2 ProCESSOr POWES SEALE CL.......oouiiuiiiiitiieeiee ettt sttt sb bt b et b bt e b e et et b e eb b sn e e n e ene e
8.1.3 ProCESSOr POWEYN SEAIE C2........eeeieeeieieeieesieeerteestee et esee et esseeesseesseeesseesnseesseesnseesseesnseesseeensensnseensensnenensensns
8.1.4 ProCESSOr POWEN SEAIE C3........eeeieeeiiieeieeseieeteesee et esee et esseeesaeesseeesseesneeesseeanseesseesnseesseeenseesnseensenssenensensns
8.1.5 Additional Processor Power States
8.2 FIUSNING CACRES.......ocuiiiicieiecc ettt e e st ae s be s b et e b ese e st eseebesbestessaseeneeseenennas
8.3 Power, Performance, and Throttling State DependenCies..........ccoiierererirere e 313
8.4 DECIAI NG PrOCESSON S... . iiveveuieuietieti st stestest et et et s tesbesre st e saeseeseeseasesbesbesse s eseeseesesbesbessensessesseseeseabestensassenseseeneanis 313
8.4.1 _PDC (Processor Driver Capabilities)ccoceiieiiiierieieeieeeeie ettt see e 314
8.4.2 Processor POWES SEAtE COMNIIOIcouiuiiriiiieirieierieie ettt 315

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

8.4.3 Processor Throttling CONLIOIS..........e ittt s a e e et e e s eaesbeseesee e e e enesseees 320
8.4.4 Processor Performante CONEIOLoeoeieeiei ettt st e e e e s eae b e seesee e e e eneene e 326
8.4.5 _PPE (Polling fOr PlAtfOrM EITOIS).......couiueiiieirieierieieree ettt 333
8.5 Processor AQQregator DEVICE........uciviiiiieieeeiee ettt ettt st sttt se et s te s b e sbe b e e e st eseetesbestesbaeenseneenennas 333
8.5.1 LOGiCal ProCESSOr IAIING eeeueiuieiesie ittt sttt ettt e e e se s e eaesbesae e e e e neeseeaesbeseeseeneeneenessees 333
9 ACPI-DEFINED DEVICESAND DEVICE SPECIFIC OBJECTS......cccooeeee et 335
LS NS IS Y= C= 0 T g o [T o= o TSRS 335
O.1.1 _ SST (SYSLEM SEALUS) ..veueveueteiereeteeetereste st see ittt b et st b e b ekt b et b bt s bt e e ek e e b e s et se b b e e b e e nbens 335
9.1.2 M SG (IMESSAGE)cveuevererernerteneseeseseesesessenessesesessessesesessensssesessssessesesessensssenessesessesessesensssenessenessesessesensssanes 335
9.1.3 _BLT (Battery Level Threshold)oco oot s 335
9.2 AMDiIeNt Light SENSOT DEVICE......c.iiiiiiiiiieietiee sttt sttt sttt et e sestesbe st et e e e st eseebessestessaseenseseeneanas 336
S @Y= VUSSR 336
9.2.2 _ALI (Ambient Light HTUMINGNCE)coveieeiiiiieie sttt st e e s e st se e e e e e ne e 337
9.2.3 _ALT (Ambient Light TEMPEIGIUIE)cveuiiuiiieiieiiisieieiee ettt e e e srestesae e s seesessesbesbesaeseneesenseens 337
9.24 ALC (Ambient Light Color ChromMatiCity)cccceirirereeieiseii et ene e 337
9.25 ALR (Ambient Light RESPONSE).......coueeeeeiriieierieriesiesee et sttt seeseees e ssesaestesseseeeeseeseenesseseeseenseneenessees 338
9.2.6 _ALP (Ambient Light POHING)coiiieeeeiee ettt st e e sae st seesee e e ne e 342
9.2.7 Ambient Light SENSOr EVENES........ccviiiieieeceieic sttt be st sbe et seeseesesbesbesee s e e enenseans 342
9.2.8 Relationship to Backlight Control MEthOS.........c..coereieeiireeeie et 342
LR T L (= YA B L= Y o OO
9.4 Control Method Lid Device
LS T 1 P
9.5 Control Method Power and SIeep BULLON DEVICES..........cvcieiiiiiiiesiesieieeee ettt eneanas 343
9.6 EMbEdded CONtrOlEr DEVICE.......c.iceeiiecieecie ettt sttt st st be s be b e sbeebesbeessesbeenbesbessnesreensesbesanesseennas 344
9.7 GENENIC CONLAINET DEVICE.ottt a ettt e et ae st e b e s be st e s e e e e eseebesaesbense e eneeneeneanas 344
0.8 ATA CONLIOHEr DEBVICES......eeiviiueiitiitieiteiee e st e st st estesteestesbeebesbeebesbeebesbaessesbeensesbeessesbeenbesbesssesreensestesnnesseennas 344
9.8.1 Objects for Both ATA and SATA CONLIOIENS.....c..oiuiieeeeeere et 345
O.8.2 | DE CONIOHEN DBVICE. ... cveueieiireeieieie ettt ettt ekttt b etk b ettt b et ne b b 346
9.8.3 Serial ATA (SATA) CONLrOHEr DEVICE.......ccueeuiiieiieiieeiesieee ettt st se st sbesre s e nense e 348
9.9 Floppy Controller DEVICE ODJECES. ..ottt st a e e b e e e e e neeneanas 350
9.9.1 FDE (FIOPPY DiSK ENUMEIGLE)ccueiveiereeeieiiiieitesiesieseeeeestestestessesaesesessessestessasaenseseesessessessessensessesensenns 350
9.9.2 _FDI (Floppy Disk INfOrMELION)cceiieieieeieiisie ettt st et se s s besbesae s e e enenseens 351
9.9.3_FDM (FIOPPY DiSK DIIVE MOUE)......c.ceeeeeuieiieierie sttt ettt sae st saesee e e s eaesbeseesee e e e enesnees 352
O.10 GPE BIOCK DEBVICE......c.eieeuieriiuiiieiirie ettt sttt stttk b et e bbbt b et b st n e e bt e e b et b et b bt st be e bens 352
9.10.1 Matching Control Methods for General-Purpose Eventsin a GPE Block Device..........ccoovvveieieccnnene 353
.11 M OUUIE DEVICE ...ttt ettt ettt sttt a e bt e et sb e e e st e e e meeaeeaeebeeaese e s e neeneaseebesaesbensenseneeneeneanas 353
9.11.1 Describing PCI Bus and Segment Group Numbers under Module DeviCes.........coeveveieieieseseseeeennns 355
Q.12 M BIMOIY DEBVICESceiititeeeeeeeteete ettt ettt ettt bt besee st e e e st e st e bt eaeseeeaese e e emeeaeeaeebeeaeaEemseneeneeseebeeaesbenseneeneeneeneanas 357
LS 2 N0 o [=S D<ol o [T [OOSR 358
9.12.2 Memory Bandwidth Monitoring and REPOMINGc.ccueveiieiiiiserieieeeesre et 358
9.12.3 _OSC DE€finition fOr MemMOIY DEVICE.......cccciuiiiiirieieieeieeeie sttt sae e e e s s st seeseeee e enesaeees 359
9.12.4 EXAMPIE MEMOTY DEVICE.......eiuiiiiitiieeieieeceie ettt sttt ettt ettt st st e e e e seebe s bt st e saese e s e neeneeaesbeseeseeseneeneesees 360
9.13 _UPC (USB POrt Capabilities)cccciiuicieieieiiieii ettt st st sv et st eresnestesbasaenseneeneanas 360
9.13.1 USB 2.0 Host Controllersand _UPC @and _PLD.........ccooiiiiiiiieereeeeeeee st 364
9.14 Device ODJECt NAME COlISIONoiuiiiieeieeeieeeie sttt sttt be s be e e s e e e e eseeaesaeseesee e eneeneeneanas 366
9.14.1 _DSM (Device SPeCific MEO)cccieieiieiiciesieeece et s b e sa et ene e 366
9.15 PC/AT RTC/CM OS DEVICES......ctreeueeetenerteesientseesesessaeseesessesesessessssasessesessesessssensssesessesessesessssensssesessesessesenes 369
9.15.1 PC/AT-compatible RTC/CMOS Devices (PNPOBOO)..........ccciiiierieieierestesesiesaesseseesesse e sseseessessesessenns 369
9.15.2 Intel PIIX4-compatible RTC/CMOS Devices (PNPOBOL).........ccceieieeeeii et see e 370
9.15.3 Dallas Semiconductor-compatible RTC/CMOS Devices (PNPOBO02)..........ccouierereneeeneniesie e 371
9.16 User Presence DELECIION DEVICEcc.oiuieeeieieieie sttt st e et besaesee e e e e e eneeaeanas 371
9.16.1 _UPD (USEr PreSenCe DELECE)ceiuiiiiieeceieii ettt ettt sttt be st sba et se s s tesbesse s e e enenneans 372
9.16.2 _UPP (User PreSenCe POIING)eiiieeeeeiee ettt st se e e ene e 372
9.16.3 USEr PreSenCe SENSOI EVENLS.c.iiieiiieeie sttt sttt sttt e et b e e bt s e she e e sbe e s e sbe et e sbeennesneenes 372
O.17 17O APIC DBVICE. .. .ceeuiieueirteee ettt ettt sttt b btk b st b bbbt b et b st n e e bt e e b et e b et b e bt st b et et 372

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Xi

.18 WaAKE AIGI M DBVICEcuvuieriiiiet sttt ettt b ekt b et bt e bt ekt b et st b e et 373
O.18.1 OVEIVIBIN ...ttt te sttt ee s e e te e sesesees e eesese s ene s s eseseese e esese e s e e e e eneneeneseeseneesenessenensenesenneneesenensnnen 373
9.18.2 _STP (Set Expired Timer Wake POlICY)ccviiiiiiiirieieieise st sttt nne e 375
9.18.3 _STV (SEL TIMEN VAIUE)cuecuiieieieite ittt sttt ettt st st sa et be st e sae e et eseeseesesbesbesaenseneenenseans 376
9.18.4 _TIP (Expired Timer Wake POIICY)coueoeeirieieie ettt nne e 376
9.18.5 _TIV (TIMEN VBIUES)c.evniieiireeieseete ettt bbbkt ekt b ettt b et b et nb s 376
9.18.6 ACPI WaKeUP AlGIM EVENES.......ccoiiiieieeeeieic ettt sa et se e be s besbasae s e e eseesesbesbessenseneenenseans 376
9.18.7 Relationship to Real Time ClOCK ALQIMN.........coi i s 376
9.18.8 EXAMPIE ASL COUR....c.eeeinieieeteete ettt ettt ettt sttt ae bt b et e e e e e e ese e b e ebesbesaeseemeeneeneenesbeseeseenseneenensees 377

10 POWER SOURCE AND POWER METER DEVICES.......ccoo it 379

10.1 SMart Battery SUDSYSIEMS.......couiiuiiiiiie et ete ettt ettt be st et e e e e e e e aeeaeseesaesee s e st eneenesbesaeseesseneeneeneanens 379
10.1.1 ACPI Smart Battery Status Change Notification REQUIFEMENES...........cereirrennieireeeneereeeesiee e 381
10.1.2 SMart BaEry ODJECES.....c.coueiiiieiirieeiie ettt bbbttt b e e b 382
10.1.3 _SBS (Smart Battery SUDSYSIEIM)ccuciieeiirieeieeiees ettt et see e seese e senesaeneseenenens 382

10.2 CONLrOl MEENOU BAITEI TES........iuiiieiirieieieieee ettt b ettt 385
J0.2.1 BAEIY EVENES ...ttt sttt ettt b e e b s e s bt e ae e s b e e ae e b e e as e sbesaeeebeensenbeeseeabeenresbenneesneennas 385
10.2.2 Battery Control MEINOMSccciuirieieiieeeceee ettt st e e e e e s aesaeseeseesee e eneeneenas 386

10.3 AC Adaptersand POWEr SOUICE ODJECES........ccuiiiiiiiiiierieieieeste ettt e st e et sbesresbesaeeeseesens 398
10.3. 1 PSR (POWEY SOUICTE)ceeueeueeueeuertestereeseeeueasestessessesseaeeseaseasesaessassessensaseasessessassessensasessessessessessensesesnesses 398
10.3.2 _PCL (POWES CONSUMEN LISE) ...eiuiitiiteieeieeeeeeetesieseesie et te e se e sesse e seesse e emeeseeaesaeseesseseeneeneeneenas 399
10.3.3 _PIF (Power SoUrce INFOIMELiON)........cveeveieierieesiesiesieseeseesesteste e sseseesee e e sessestessesaesaeseesessestessesaenseseesesss 399
10.3.4 _PRL (Power Source ReAUNAANCY LiSt)ccvciiiiiiiiiiieieieise sttt st enas 400

JO.4 POWES M BLEIS. ... ettt ettt ettt et e bt s bt et she e s e s bt e e e ehe e e e eh e e s e e eReeae e ebeeRe e b e e mseabeeae e bt eneenbessnenneennenbennnens 400
10.4.1 _PMC (Power Meter Capabiliti@S)ecveeeieiiiiiiisiisieseeeee ettt st st be s s e e eneenas 400
10.4.2 _PTP (POWES TEP POIMES)ciiiitiiiitiiteieeeteee et ste e ste sttt sae et besbestesbeaesaeseesessestessesaenseseenennas 402
10.4.3 _PMM (POWer MEter MEBSUMEITIENL)eeeueruirteiteeeeieseeieeieeiesaeseeseeseeessessesaeseesseseeneeneesesaeseessessenseneeneanas 403
10.4.4 _PAI (Power AVEraging INTEIVAl)ccuecieieieieeii sttt ettt se st sbesbesae s eseeneenas 403
10.4.5 _GAIl (Get AVEraging INTEIVAL)cecuiiieieicieiee sttt st seesesbestesbesae s eseeneenas 403
10.4.6 _SHL (Set HardWare€ LIMT)ceoveeeereiieeierieeresiees e ee st seese s sesesee e seseseeseseesesessensssnnessnsenens 404
10.4.7 _GHL (Get HardWare LIMIT)ccceeoeieireeierieerieieeseeseesesesseseseeesesesessesessesesseesseseseesessssesessensssesessesenens 404
10.4.8 _PMD (POWEr MELErEd DEVICES).....ccueiviierieuierieieitesiisteseesesseetesbestessesaesae e sessestessasaesseseesessestessesaenseseesenss 404

10.5 Example: Power Source and Power Meter NaMESPACEccociveierierieieietisestessesseseeeeessessessessesaessesessens 405

11 THERMAL MANAGEMENT ...ttt sttt esnaessaesneesseenaesneesneesnes 407

5 0 R I 1= 0 0 =TI O g o | U 407
11.1.1 Active, Passive, and CritiCal POICIEScciccuiie ittt e et e s ar e s s eaae e s e be e e s sabe e s sbnassesenas 408
11.1.2 Dynamically Changing Cooling Temperature Trip POINES.........ccccvierierieiieeiisesesieeeeee s sre s sseeeeenas 409
11.1.3 Detecting TemMPErature CRENQES.........cocoveeeereeierteeeerteseeeeieeiesaeseeseesee e sseesesaeseesseseeneenessessessessessensenessesss 410
I O o (X oo 1 o PSRRI 412
11.1.5 PaASSIVE COOIING ...vvviieiteiiieieteett et ste et et et et et et e e eseeseebesbesbesbe e eseeseebesbestesbessenseseebeabentesseaenseseenennis 412
11.1.6 CritiCal SNUIHOWNcueiteiiieeieiete ettt bbbttt b et se b e b ettt s b s e e b e 414

i @0 o [T g To [o = 1= = (oSSR 415
11.2.1 Evaluating ThermMal DEVICE LiSEScviuiiieiciiiiictesiesieeeeee ettt sttt sne st b et eseeneenas 416
11.2.2 Evaluating Device Thermal Relationship INfOrMEtioncccvviierieieeeeii e 417
11.2.3 Fan DeViCe NOLITICATIONS.c.ceiiuieiie ettt e et e s e et saesbe e e e e e e neeneenas 417

LLB AN DBVICE. ...ttt ettt b etk e bbb st e bbbt ekt b et b Rt b bt b b et bRt b bt bt b 417
L1.3.0 FAN ODJECES....ueueveuerteierieie sttt stttk b ettt b et e b e e b ettt b et s e b e e e b e e b et b e bt ne e b e e e b et b et b st ene e 417

O = 4P o= o S 421
11.4.1 ACK (ACHVE COOIING)...cvirerieiirieieitestesteeeee e s e ste st st e e e e e etesbestesbeeesseseesessestessassenseseeseasestessesaenseseesensas 422
L14.2 ALX (ACHVE LISE) weveeeieeiiieeieieteiste ettt b ettt st b e bbb s ne b 422
11.4.3 _ART (Active Cooling Relationship Tal@)cceoireieeeeeie e s 423
11.4.4 CRT (CritiCal TEMPEIAEUIE)cociiviiieieeeeeeieestesieste e se e te e st e sae st e e sesbestessasaenseseesessestessesaenseseesensas 425
11.4.5 _DTI (Device Temperature INAICAHON)cccoviiiiriinieeeiei et sie et te et sresaesae s eseeneenas 425
11.4.6 _HOT (HOt TEMPEIBIUIE)c.eeueeuieteiteieeieeeueeueetesteseeseeseeuesseesesaessesseseeneeseesesaessessesenseneesessessessessensenesnesss 425
11.4.7 _NTT (Notification Temperature Threshold)oo.ooeoerenee e 426
11.4.8 PSL (PSSIVE LIS ..veueiieiiieeiiisieirtees etttk b e bbbt e bttt b st ene e 426

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Xii

12

13

11.4.9 PSV (PSSIVE) ...ueueeeeuerienireeteneeteseseeesiesesaesesessesessenesseseseesensssesessenesseseseesensnsesessensssesessesensesessssensssesessesensns 426
11.4.10 _RTV (Relative TEMPEratUre VEIUES)cccoiiieiiieiieeecee ettt sie e see e se e s e seessesee e e e eneenas 426
11.4.11 _SCP (St COOlING POIICY) ...veuviuiiiiiiiiieieeeiiet sttt sie ettt st e e e bestesbasae s eseesessestessesaenseseenennas 427
11.4.12 _TCL (Thermal CONSEANE L).....cciiiiiiiiieieieieestesiesie et ee s e re st stesae e e e sesbestessesaesseseesessestessesaenseseesensas 429
11.4.13 _TC2 (ThErmal CONSIANE 2)....cueeeeeuerierireereriererereeeseseseesesessesesseeseesesassesessesessenessesessesessesesessensssesessesessns 430
11.4.14 TIMP (TEMPEIBEUIE)e.veueereeueetieiestestesteeeseete s e sbestesseaeseeseesessessessessesseseesessessessaseenseseeseasestessassenseseesenss 430
11.4.15 _TPT (Trip POINt TEMPErGEUIE)ccveiveieeeeeetieiectesiesieseeieese s e ste e stesaeae e sessestessesaesseseesessestessessenseseesenss 430
11.4.16 _TRT (Thermal RelationsShip TaDIE)cccoeririiieieeeeeeee e s 430
11.4.17 TSP (Thermal Sampling PeriOd)........cc.couieriiiiieieereeee ettt enas 431
11.4.18 _TST (Temperature SensSor ThreShold)cccviiiirieieeieiceie et enas 431
11.4.19 _TZD (Thermal ZONEDEVICES)ccviuiiieieeieiiee it siesie ettt st et eetesbestesbe e s eseesessestesbesaenseseenennas 432
11.4.20 _TZM (Thermal Zone MEMDEL)oiuieeeeeeeiere ettt e e seeae e sbesaesee e eneeneenas 432
11.4.21 _TZP (Thermal Zon€ POIING)ccoviuirieiiieieiiesieseseetee s st e et sae e e sessestessesaenseseeneenas 432
11.5 Native OS Device Driver Thermal INTErfaceSccveiririniiieririeenie et 433
11.6 Thermal Zone Interface REQUITEMENTS...........oiiiiieee ettt sbe et see e e e eneeneas 433
11.7 Thermal ZoNE EXAMPIES.....c..cveiiiiieitiiteiteteeeee et ettt st st e st et e e seeseesesbesbe st et eseeseesesbesbessenseseensesensens 434
11.7.1 Example: The BasiC TREMME ZONE.......couiiiiiieieie ettt se e e e neeneenas 434
11.7.2 Example: MUItiple-SPEEO FaNS........cc.o ittt a e st e st neeneenas 435
11.7.3 Example: Thermal Zone with MUItiple DEVICES........cc.eveiiieiiiceseseieee et 436
ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATION ...cccocoviveeeeeieee e 443
12.1 Embedded Controller Interface DESCriPtioN......cccciiiiierieieieesi sttt be et e sae e eseeneas 443
12.2 Embedded Controller RegiSter DESCIiPLIONSccuiivirerieieeeeiesie sttt e e se e saeseeseesee e eneeneas 446
12.2.1 Embedded Controller Status, EC_SC (R)ccccoveiiiiriirieieieieiesesesieseeee e e st stessesaeaese e ssestessesaesseseesessas 447
12.2.2 Embedded Controller Command, EC_SC (W)oiiiiiieeieiee sttt st enas 448
12.2.3 Embedded Controller Data, EC_DATA (RIW) ..ottt s 448
12.3 Embedded Controller COMMEANT SELcocoiiiriiiieeieie ettt e e s sbesaesee e e e e e eneaneas 448
12.3.1 Read Embedded Controller, RD_EC (OX80)........cccuvirierieieisieiiesiesiesieeeseeesseseessessessesessesssssessesaesseseesesses 448
12.3.2 Write Embedded Controller, WR_EC (OX8L).........coirereeereeierieriesieneeeeesiesee e sieseeesse e snesee e seeeeneeneenas 448
12.3.3 Burst Enable Embedded Controller, BE_EC (0X82).......ccuetreiiriirierieieeeiesieseesieseeeee e st see e e e e 449
12.3.4 Burst Disable Embedded Controller, BD_EC (0X83)cccovueeiiriinerieieieisiesiesieseeaeseesessessessesaesseseeseenas 449
12.3.5 Query Embedded Controller, QR_EC (OX84)......cc.eiirereeeeeeieiiesiesiesee et sae e see e neeneenas 449
12.4 SMBusHost Controller Notification Header (Optional), OS SMB_EVT ..o 450
12.5 Embedded ControllEr FirMMWAI €........cccciiiieiiiieeire it eite et st e e sbeeresbeetestessesbeessesbesssesbesssessesseessesssessesseens 450
126 INEEITUPE IMOOE ...ttt ettt ae bt e et e e e e e s e e aeeaeeeeesese e s eneeneeaesbesaessenseneeneenenneas
12.6.1 EVENt INTEITUPL MOGE .. .c.vieiceieiiceice sttt st e b e e seebeeneste s b e saenseneeneenas
12.6.2 Command Interrupt Model
12.7 Embedded Controller Interfacing Algorithms..........cooeorii e 451
12.8 Embedded Controller Description INfOrMationcc.coueieiiisiesieieieieese et eneas 452
12.9 SMBusHost Controller Interfacevia Embedded Controllerc..ooveeeveeceeicee ettt 452
e e S 0= T Ses 1 o1 o o SRR 452
e I = (o) (o Toro I D 1= v (] o 14 o o [P ORRSRS 456
12.9.3 SMBUS REGISIEN SEL.....eveuieeierieterireeesesereeteres e e st seseseesesessesessesesseseseesessssesessenesseseseesenseseseesensssnnessenenens 460
T2.10 SIMIBUS DEVICES ...ttt ettt et e e ee et e ettt e et e e teeabeeeteesbeesabeeasesesteesaseenbesesseesbessnseeasessnsessseesseesnnensenns 462
12.10.1 SMBUS DEViCE ACCESS RESIIICHIONS.vecveiteeie ittt ete st e et eresbeeresbe et e sbesresbeensesbeessesbeensesbesnnesseeneas 462
12.10.2 SMBus Device Command ACCESS RESITICHION.......c.cccvieceeieeectee ettt eee e seeeereesreeesaeeereesreeeaseenes 462
12.11 Defining an Embedded Controller Devicein ACPlI NamESPACE.cccuiireiirienereeieesiesresesiesaeseeeeseas 462
12.11.1 Example: EC Definition ASL COUE........couciiiiiiiiiiiiieeeiee ettt sttt sne st b sae e seeneenas 463
12.12 Defining an EC SMBus Host Controller in ACPI NameESPaCEcoceeeririerieieerieieeee e see e seeneenens 463
12.12.1 Example: EC SMBuUs HOst Controller ASL-COE.........cccevvriiiriiierieieeeeste et 464
ACPI SYSTEM MANAGEMENT BUSINTERFACE SPECIFICATIONccccovivivieiiie e 465
13,1 SIMIBUS OVEN VIEBWoveeieiteeeteeteestesteestesteestesteestesseessesseesbesbesssesssessesbessseabeensesbesssesseeasesbesssebesssesbesssensenssesessnens 465
13.1.1 SMBUS SIAVE AGUIESSES........ccueeueeeietete ettt ettt et sttt aesee s e e e e e eseebesaeseese e eneenesaeseeseesseseenseneeneanas 465
13.1.2 SMBUS PIOLOCOIS.cceeeeeeeeeieeee ettt sttt sttt ae b e st e s e e et e st e besaesee s e e emeeseeaeseesbesseseeneeneeneenas 465
13.1.3 SMBUS SEAUS COUESveeienirieirieesiete sttt sttt b et b et e b b ettt b et ne b e s b et bt sb s e neene e 466
13.1.4 SMBUS COMMAENA VAIUESc.covinirieiiiieiirieteeieestee ettt ettt bbbt b e e b 466

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

13.2 Accessing the SMBUSTrOM ASL COUE.........cuiiiiiiiiieieiee ettt st e e besbestesbesaeeeseeneas 467
13.2.1 Declaring SMBuUS HOSt CONtroller ObJECES..........ciuiriiieieieieeierie st enas 467
13.2.2 DeClaring SMBUS DEVICES.......cviuiiiiitiiiiieiciiee sttt sa et beste st e s et eseesesbestesbesaenseseenennas 467
13.2.3 Declaring SMBUS Operation REJIONS..........cccciiiiiriinierieieieesiesesseseeseeee e ssestessessessesessessestessesssssesessesses 468
13.2.4 Declaring SMBUS FIEITS........c.coiiiiiie ettt st ae e see e e e e e e neeneenas 469
13.2.5 Declaring and Using an SMBUS Data BUFfercoieieiiiciii et 471

13.3USING the SMBUS PIOLOCOIScuviuiiiiitiiicieeeeeee ettt sttt be st b et et e e eneesesbesbessenseaeneeseanens 472
13.3.1 Read/Write QUICK (SMBQUICK)ccuiiueieieereeiesie ettt st e e ae e see s e see e eneeneenas 472
13.3.2 Send/Receive Byte (SMBSENARECEIVE)c.ccuiiiiiiiriiieeeieiee ettt sttt e st se s enas 472
13.3.3 Read/WIite BYtE (SMBBYLE)......c.iciitiiteieiciteee ettt sttt a e s te st s seebesnestesbesaenseseenennas 473
13.3.4 Read/Write WOrd (SMBWOI)........cceiueieeeeeeeiesie ettt e e ae e seesee e e e e neeneenas 473
13.3.5 Read/Write BIOCK (SMBBIOCK)ciuiieeieeeeeeeiesie ettt see e e e ene e 474
13.3.6 Word Process Call (SMBPIOCESSCTall)......c.ccviieiiiiiirieieieeee sttt sttt enas 475
13.3.7 Block Process Call (SMBBIOCKPrOCESSCall).......ccuviiirieieieiciii ettt 475

14 SYSTEM ADDRESS MAP INTERFACES ...ttt s s 477

14.1 INT 15H, E820H - Query System AddreSS M APcc.cevriiiiieirieerieie ettt 477

14.2 E820 ASSUMPLiONS AN LIMITALIONSeiieieiieieieie ettt sb e s ae e e e e e eneenea 479

14.3 UEFI GetMemoryM ap() BOOt SErVIiCES FUNCLIONcc.cviieicieiic ettt enea 480

14.4 UEF| AssumptionSand LimitationScoccoeeieeiiriereiee et see e sesaesaeseeseeneeneeneeneas 481

14.5 EXAMPIE AGUAIr €SS M AP .. uiiiiciiciicii ettt be st e s b et et e s e eseesesbesbe e e s eseeneesesbesbessensesaensesennens 481

14.6 Example: Operating SYSLEM USAQE.cceireeieieieeeese ettt saesbesaesee s e e eneeaesbesaeseesseneeneeneanens 483

15 WAKING AND SLEEPING......cie ittt sttt st et s be e ssae e sste e snaeesabeesnneennnas 485

15.1 SIEEPING SEALES.......eeueitiiteiteree ettt sttt e e e e st e te s bt et e ee e eaeeseeaesae st e se e e e eseeaeeaeebeeseaeemseneeneesesbesaeasenseneenseneanens 486
15.1.1 S1 SIEEPING SEAE.ueeveiverieiereetieti e ste et et et et s e st e te b e e e seeseetesbesbesseseeseeseesesbesse b essenseseeseabentesseeenseneenennan 488
15.1.2 S2 SIEEPING SEALE.....uecveiveieieeeieett e ste sttt e s et st e st et et e e eseeseebesbeste b e e esseseesesbesbe b essenseseebeebenbesseaenseneenennn 488
T R RS R 1= o] o S = =SSR 489
15.1.4 SA SIEEPING SEALE. ... cveeeeeeeeeieete et rtesee et esbe e e e e e eaeeaeetesaese e s e e eneeseeaesaeseese e emeeneeaeseesbesseseeneeneeneanas 489
15.1.5 S5 SOt Off SEALE.....ccveueiieiiieeierist ettt bbb b e b ettt b et e b e e bt b et b b e e ene e 490
15.1.6 Transitioning from the Working to the SIeeping Statecoceiiiereieieeee e 491
15.1.7 Transitioning from the Working to the Soft Off State.........ccoceiirereieiee e 491

15.2 FIUSNING CACRES.......oiuiiicieiceeee et ettt sttt et s e e beebesbe s b et et e s e eaeeseebesbessensesaeneesensens 491

SR R N TN (=112 (1) o [N 492
15.3.1 Placing the System in ACPI IMOUEccuoiiiiicictesieeeeeee ettt st be st sae e seeneenas 494
15.3.2 BIOS INitialiZation Of MEIMOTYcciiiieieiciieice ettt st be s te b e seesesbesbesbesaeneeseenennas 495
ST TC 1@ S I o (] o ST R 497
15.3.4 EXItING ACPI IMOUE.c..euiieeiiieteirteesett sttt e sttt s e sesessesesse e eesesaesesesse e ssenesseseseesensesesessenssansessennnens 498

16 NON-UNIFORM MEMORY ACCESS (NUMA) ARCHITECTURE PLATFORMS................ 499

T8 VLU N oo 1R 499

RSV = 0 0 0 o=) TSROSO 499
16.2.1 System Resource Affinity Table Definition.............ooooiririiiee e 499

16.3 System L ocality Distance INfOrMEaLtioNcccoieeiiiiieee ettt e e eneenea 500

17 ACPI PLATFORM ERROR INTERFACES (APEI) ..ot 503

17.1 Hardwar € ErrorSand Error SOUMCESoiiiieirieerieet ettt sttt 503

17.2 Relationship between OSPM and SysStem FirMWar€.........cccciviiiiiiiierieieeei e sae e aeaeneas 504

17.3 EFTOr SOUICE DISCOVENY ...ueieeieiieiieieete ettt ettt sttt e et et ae bt st e beee e e e st e aeeaeebeeseseenseneeneenesbesaeseenseneenseneaneas 504
17.3. 1 BOOL EITOF SOUICE.......ceititeieieeiiiti sttt ettt b bbbt s e bt bt et n e e e e e e ene e 504
17.3.2 ACPI EITON SOUICEeeeueeteeuiesteeee ettt ettt ettt e e bt e st e s e e sbeeaeesb e e aeeaseeasesbeeaeesbeemsenbeeneeabeensesbennnesneennas 506

174 Firmware First Error HanGIING.ottt sae e e e e e eneene 519
17.4.1 Example: Firmware First Handling Using NMI NOtifiCationcccooveieieiiiivesesiceece e 519

L17.5 EFrOr SErT@liZALION ..c..ooveieiieeeeeeeee ettt ettt ae bttt e e et e s e e aeeaesbessese e s eneeneenesbesaessenseneeneeneaneas 519
17.5.1 Serialization ACHON TADIE.....ccuiuiireiiiei ettt bbbttt b e naene e 520
AT @)1= 1 1 o] 1P 526

G = o g = o o o U UURSSRN 530
17.6.1 Error INjection Table (EINJ).......coiiiiiiieeeieiee sttt sttt sa e e se s stesaesaenseseeneenas 530

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Xiv

17.6.2 INjection INSEIUCHION ENLITEScouiiiiitiieeeeecee ettt sttt e e s b sbe e e e e e eneeneenas 532
17.6.3 Injection Instructions..............

17.6.4 Trigger Action Table.......
17.6.5 Error Injection Operation

18 ACPI SOURCE LANGUAGE (ASL) REFERENCEcocoeierere e ceeeeeeie st ste s sseee e 535
18.1 ASL LaNQUAGE GIAIMIMATccuviiiiiiietisieeieesseestesseeseesseessessesssssseessessessesssesssessessesssesssessessssssessssssessesssessenssessenns

18.1.1 ASL Grammar NOBLIONc.eeueeuiruerteieeieeeueeestestesee e e esesseesesaessesseeeneeseesesaeseesseeeneeneesessessessessenseneenessas
18.1.2 ASL Name and PathName TEIMMIS.......cc.cirueiiriiiririeeriee ettt sttt b ettt be e naene e
18.1.3 ASL ROt and SECONUANY TEIMMISccuiiiiierieiieiietesteseste et ee e e st e te st e sae e e e e sesbestesbaaesseseesessestessesaenseseesennas
18.1.4 ASL Dataand Constant Terms......
18.1.5 ASL Opcode Terms........cccccevueeene
18.1.6 ASL Primary (Termina) Terms....
18.1.7 ASL Parameter KEYWOIA TEIMMIS......cciiuiiieieuieuieiestesiesteseeseeseetestestestesaesseseesessestessasaesseseesesssstessessensesessenses
18.1.8 ASL ReSOUICE TEMPIALE TEIMS.......oiuiiiieeeieeieeterteeeeee ettt st se e et be e see b e e e e e nesaesaeseesseseeneeneeneenas

18.2 ASL CONCEPLS..covvviieiririerienieniesie e

18.2.1 ASL Names
18.2.2 ASL Lit€ral CONSIANESicuieieiieeeicieiesteeiee st e ste e e st e e s eeste et et e e eesteeasesteeseesseensesseeseesseensesseeneesseanean
18.2.3 ASL RESOUICE TEMPIALEScveeveeeieieite ittt sttt s bt e s b et esaeseebesbesbesbesaenseseeneenas
L8.2.4 ASL IMIBEIOS ...eevitrteetestee ettt ettt b bttt h bt bR et b et et e bt e bRt b e b e e et e bt e bt eb e b e n e e e s e enennis
18.2.5 ASL DBIA TYPES ...cueeiteeieiateeuiesteet ettt ste ettt e e e sbe s e e abe e e e s b e s aeeeb e easesbeeseeab e eas e ebeemeeeReeasenbeereeabeensenbenneesneannas

18.3 ASL OPEIALOr SUIMIMAIY ...uvieueiieeiueeteeteeseesseestesseesseaseessesseeseesseasessesseeaseansesseaseesseansessesseeaseansessesseensesnsessesseens
18.4 ASL Operator SUMMAIY BY TYPE....iiiiiiiieiiesieiestiesieseestesieestesieeseessesssesbeseesbesssestessaessesssestessesssessenssessenns
18.5 ASL OPEratOr REFEIENCEottt ettt sttt et et ae e bt sbesaese e e e st eneesesbeseeseenseneeneeneaneas

18.5.1 ACQUITE (ACOUITE @MULEX)ecueiuiiieitiieieeetee it teste st ste et seete st e s te s b e e e e e seesesbestesse e enseseeseasestesseaenseseenennas
18.5.2 Add (Integer Add)
18.5.3 Alias (Declare Name Alias)....
18.5.4 And (Integer Bitwise And)ccoevervriennnne

18.5.5 Argx (Method Argument Data OBJECLS)c.cviiiiriirieieieiee st st enas
18.5.6 BankField (Declare Bank/Data Field)cccoiiiiiiiiieieeeeeese st
18.5.7 Break (Break from WHITE)cciiiiiiiiiieiceee sttt st ebeste bt eneeneenas
18.5.8 BreakPaint (EXECULioN Break POINT).........cc.cviiiiiiiriisieseeieeee e sieseese e e srestessesaesaesessessestessasaenseseesesss
18.5.9 Buffer (Declare BUFfer ODJECL)coi ittt st se e e e e e e e eneenas
18.5.10 Case (Expression for Conditional EXECULION)..........couereeerireririesieseeeeese st enas
18.5.11 Concatenate (Concatenate Data)..........cccevveeeereierienereeeeeee s

18.5.12 ConcatenateResTempl ate (Concatenate Resource Templates)
18.5.13 CondRefOf (Create Object Reference Conditionaly)

18.5.14 Continue (Continue Innermost ENclosSing WHIl€)..........cuciiiiiiiieiccece e
18.5.15 CopyObject (Copy and StOre OBJECE)ccveiiiiiriirieeeiei ettt seeneenas
18.5.16 CreateBitField (Create 1-Bit BUffer Field)coiueuiiinirieecnr et
18.5.17 CreateByteField (Create 8-Bit BUffer FIeld)ccuiiiiriieccineeeeeee e
18.5.18 CreateDWordField (Create 32-Bit Buffer Field)cccccveveeiirnee.

18.5.19 CreateField (Create Arbitrary Length Buffer Field)
18.5.20 CreateQWordField (Create 64-Bit Buffer Field)ccccooeevvnnene

18.5.21 CreateWordField (Create 16-Bit BUfer Field)cccooveieiiiiiiiisecceces e
18.5.22 DataTableRegion (Create Data Table Operation REJION)ccvierieieieiiisesesieieeee s
18.5.23 DebUg (DEDUGGET OULPUL) -...cueuereeteieeieeeieeueetesteseesteseesesaeetesaeseesseseeseesessesaeseessesseneeseesessessessessenseneenesnes
18.5.24 Decrement (INtEQEr DECTEIMENT)ouiiieieerieterieeeerie et e st see e see e seesesaeseesseseeneesessesaeseesseseeneaneeneenas
18.5.25 Default (Default Execution Path in Switch)
18.5.26 DefinitionBlock (Declare Definition Block)....
18.5.27 DerefOf (Dereference an Object Reference) ...
18.5.28 Device (Declare BUFDEVICE PACKAJE)cccviiiiiiriirieieieice sttt st ene st be st s e s enas
18.5.29 Divide (INtEJEr DIVITE) ...c.vcueeuiieiciiite ettt sttt be s te st et eseesesbestesbesaenseseenennas
18.5.30 DMA (DMA Resource DeSCIPLOr MBCIO)c.eiueruiriereeereeiesiestesiesee e esiesaeseesaeseeessessesseseesseseeeeneeneenas
18.5.31 DWordIO (DWord IO Resource DESCriptor MACIO)........ceeeeruireerieneeeeeeiesieseesieseeeeessessesee e seeneeneeseenes
18.5.32 DWordMemory (DWord Memory Resource Descriptor Macro)
18.5.33 DWordSpace (DWord Space Resource DeSCriptor MACr0)coeeeereeereruereesieseeeeeeesne e see e eeneenas

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

XV

18.5.34 EISAID (EISA ID String To Integer CONVErSION MaCIO)......c.ucoviruereeeeeriesieseesieseeeeessesnesee e seeseeseeneenes 595
18.5.35 EISE (AItErNAE EXECULTION).......eiuiitiiteieeieeeieeicet ettt et te e e e e e seeaesae e e se e e e enesaesaeseesseseeneeneeneenas 595
18.5.36 Elself (Alternate/Conditional EXECULION)ccciiiirieieieieeieseste et ste e se e stesvesaeseseeseenas 596
18.5.37 EndDependentFn (End Dependent Function Resource Descriptor Macro)c.eeveeeeeeveesesiesveseenene, 597
18.5.38 Event (Declare Event Synchronization ODJECE)coueeeereririesereeeeeeie et see e 597
18.5.39 Extendedl O (Extended 10 Resource DeSCriptor MaCr0)cccveerieieeeesiesiesiesieeeeee e sressessesseseeseenas 597
18.5.40 ExtendedMemory (Extended Memory Resource DesCcriptor Macro)..........ocuceeeveevieeeesesesesiesseseeeenes 599
18.5.41 ExtendedSpace (Extended Address Space Resource Descriptor Macro)coeveeeeeeerereseeneseeseeeeennes 600
18.5.42 External (Declare EXterNal ODJECLS)coveeririeriiieenieieeieeeie ettt see e e e eneenas
18.5.43 Fatal (Fatal Error ChECK)ccuiiiiiiiieieecieice sttt st seebe b ste s b e sae e neeneenas
18.5.44 Field (Declare Field ODJECLS).........ciririiiirireeiirire ittt
18.5.45 FindSetLeftBit (Find First Set Left Bit)

18.5.46 FindSetRightBit (Find First Set Right Bit)occiiiiiiniiceire e 605
18.5.47 Fixedl O (Fixed |O Resource DESCriPtor MACIO)c.ccveveieeiririesiesieeeseeessestessesaesesessessessessesaesseseesenss 605
18.5.48 FromBCD (ConVert BCD TO INTEOEY)ceeuerieierieeeeriereeceeeie et see e e e se s saeseessesee e e e eneenas 606
18.5.49 Function (Declare Control MethOd)..........ccocririiiieeeeeee et 606
18.5.50 If (Conditional EXECULION)ciiiitiiieieieieeieestesiesieseesee e etestestessesaesse e esessessessassenseseesessestessesaenseseesenss 607
18.5.51 Include (Include Additional ASL Fil€)c.ccuciiiiirieeeieice sttt enas 607
18.5.52 Increment (INtEGEr INCIEMENL)c..e ittt ettt sttt a e e e e e aesaeseeseeseeneeneeneenas 608
18.5.53 Index (Indexed Reference TO Member OBJECL)c.iveicieiciiiicesesee et 608
18.5.54 IndexField (Declare INdex/Data FieldS).........cccoviiiiirieieieiceie ettt st enas 610
18.5.55 Interrupt (Interrupt Resource DeSCriptor MACI0)coveeeererierierierie e s enes 611
18.5.56 10 (10 ReSOUrCe DESCIIPLOr MBEIO)uveueeueeueeieiteseesieneeeeie ettt st stesee e sesse e seesbe e e e nesaesaeseesseseeneeneeneenas 612
18.5.57 IRQ (Interrupt Resource DESCriptor MACI0)........uiirierieieieeiresiesieseeee et ste e sestesbesae s eseeseenas 613
18.5.58 IRQNoFlags (Interrupt Resource DESCIiptor MaCr)........ccucviiriererieieieesiesiesiesieseee e sse e ssesaesseseeseenas 613
18.5.59 LANG (LOGICAl ANvviiiriirerieieteieerisi ettt ettt ettt bbbt ne et bbbt nnenas 614
18.5.60 LEQUEl (LOGICaI EQUEL) ..cuveveeiiieieieiticieieteeee ettt sttt be sttt seeseenestesaesae s eseeneenas 614
18.5.61 LGreater (LOGiCal GIEALEr)cciieieriirieieieetietestestestesaeseeseetesbestestesaesaeseesessestessassenseseesessestessesaenseseesenss 614
18.5.62 LGreaterEqual (Logical Greater Than Or EQUEL)coccoerereiiieree e 615
18.5.63 LLESS (LOGICA LESS)uuiuiniieeeiiiieirisi ettt etttk ne bbbt nn e 615
18.5.64 LLessEqual (Logical Less Than OF EQUEL).........ccuviieieieieiii sttt enas 615
18.5.65 LINOE (LOGICE INOL)uuiuiririresieteteieeresis ettt sttt ettt sttt ee bbbt nn e 616
18.5.66 LNOtEQUal (LOGICal NOE EQUEL)) .euveieeieerieeieierie ettt se e e neenas 616
18.5.67 Load (Load DEefinition BIOCK)cccciiieieiiiciii ettt sttt st neenas 616
18.5.68 LoadTable (Load Definition BIOCK From XSDT) ...ccccucieiiiiisiesesieieeeesie st 617
18.5.69 Localx (Method LOCal Data ODJECLS).cceeruirieriereiniereeeeieeie st sie ettt se e s snesee e see e e e eneenas 618
18.5.70 LOT (LOGICE OF) .ueutvuieiitriresieieieietresis bttt se bbbt b et ss bbb st s e b bbb s et se e bbbt e e nnenas 618
18.5.71 Match (Find OBJECt MEICH)cvviiiiiiiiiirecir et 618
18.5.72 Memory24 (Memory Resource DesCriptor MACIO)ccceueererieriereeeeeeiesieseesiesee e sse e see e seeee e eneenas 619
18.5.73 Memory32 (Memory Resource DeSCriptor MACIO)ccceueeiuerieriereeeeeeiesieseesiesee e sse e see e seeeeseeneenas 620
18.5.74 Memory32Fixed (Memory Resource DESCIiptor MaCr0)ccceiereeeeeeeirisiesiesieieeee s sresie s sseeeseenas 621
18.5.75 Method (Declare Control MEthO)cveiiiiiiiiieeeec et enas 621
18.5.76 Mid (Extract Portion of BUFfer OF SEHNG)cceiiiireieeineee e e 623
R\ oo W Tq1= o= g1, oo (U1) SRS 623
18.5. 78 MUItiply (INtEJEr MUITIPIY) ..ocvviviieitiiieieecteee ettt te b seebesnestesbesaeneeseenennas 623
18.5.79 Mutex (Declare Synchronizati On/MULEX OBJECL)courerereririerierieeeeee et 624
18.5.80 Name (Declare NamMed ODJECL).........coueruerieereeierie ettt st e e e e se s seeseeseesee e eneeneenas 624
18.5.81 NANd (Integer BitWiSE NaNd)........cccuvuiiieiciiiciii ettt be st s b e sae e seeneenas 625
18.5.82 NOOP COUE (NO OPErGLON)......cuiitiiriitiieieieietestestesteseeseseetesbestessesaesseseesessessessessesseseesessestessesaenseseesenses 625
18.5.83 NOX (INtEQEr BItWISEINOI)cueiuiitiiteiieieeecee ettt ettt se et be e e e b e e e e e neeaesbeseeseeseeneeneeneenas 625
18.5.84 NOt (INtEQEr BItWISE INOL)ccueiuiitiitiiteieeeeee ettt se et ae e e e b e e e e e neeaesaeseeseeseeneeneeneenas 625
18.5.85 Notify (NOtify OBJECE OF EVENL).....cciiiiieicieiicese ettt st n e st b e seeneenas 626
18.5.86 OLJECLTYPE (Gt ODJECE TYPE) ...vevereeieeeieeieetertesterteseeieeieetesteseeseesee e e e esesaeseesseseeneenessessessesseseenseneeneanas 626
18.5.87 One (Constant ONE ODJECL)couiiiiieieieeee ettt ettt ae e et e e e neeaesaeseeseesee e eneeneenas 627
18.5.88 ONes (Constant ONES ODJECL)ceiuiriirieieieisestesiesteseee e este e st e sae e sessestesbesaesseseesessestesaesaeseseesenns 627
18.5.89 OperationRegion (Declare Operation REJION).........cceieieiiieiiiisesieieee e e et e e enas 627
18.5.90 OF (INTEYES BItWISE OF)ueeeeueeii et eeeie ettt sttt et aeste b e e e e e seeaesaesee s e e eneeneeaeseeseeaseseeneeneeneanas 629

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

XVi

18.5.91 Package (Declare Package OBDJECL)o oueeririerie ettt st enas 629
18.5.92 PowerResource (Declare POWEr RESOUICE)couiriereeereeerieseesieseenesesiesaeseesseseeessessesseseessessessseenesnas 630
18.5.93 Processor (DECare PrOCESSON)uiiiuirieieieieiestesiesieseeesseste e s tessesaesse e esessestessasaesseseesesssstessessenseseesenss 630
18.5.94 QWordIO (QWord IO Resource DESCriptor MaCI0).........ccueeiirienerieieeeessesiessesseseseesessessesseseesseseeseess 631
18.5.95 QWordMemory (QWord Memory Resource DeSCriptor MaCr0).......ccceeeeruereeriereeneeeeeseeseeseeseeseeneeneenes 632
18.5.96 QWordSpace (QWord Space Resource DeSCriptor MaCr0)ccevveveeeeiisiesesiesieeeesestesesaesseeeseenas 634
18.5.97 RefOf (Create ObJECE REFEIENCE)viiviieiciieiiciecie ettt nesbe et seeneenas 635
18.5.98 Register (Generic Register Resource DesCriptor MaCI0).......c..couirereereeiereresieseseeee e s see e e enas 635
18.5.99 Release (Release a Mutex Synchronization OBJECL)ccoeiiiireieiieeee e 636
18.5.100 Reset (Reset an Event Synchronization OBJECL)c.cveiiiiiiisieieiceeesc st 636
18.5.101 ResourceTemplate (Resource To Buffer Conversion Macro)..........cveveeeeveseniesieeeesesieseseesseseeseenas 637
18.5.102 Return (Return from Method EXECULION).........couiieiieieeieeeiesie st enas 637
18.5.103 Revision (Constant REVISION OBJECL).......cc.ccviiiiiiirieicieice sttt s se s enas 637
18.5.104 Scope (OPen NaAMEU SCOPE)ccveiririiierieiieieiestesiesteseeeesestesse e ssesaesseseesessessessessessesessessestessesseseseesesses 637
18.5.105 ShiftLeft (INtegEr Shift LEFL)ooeoieeieeeieeeresiee et e e s seene e 638
18.5.106 shiftRight (Integer Shift RIGNL)c.cooiiee e 639
18.5.107 Signa (Signal a Synchronization EVENL)ccccereieieieieiisese et se e stesae s ssese e enas 639
18.5.108 SizeOf (Get Data ODJECE SIZE).....c.civeuireeiiieieririeese ettt bbbttt b naene e 639
18.5.109 Sleep (MilliSECONAS SIEEMD) -...eouirieiteieeieeeeee ettt ettt se et e et se e b e e e e neeaesaeseeseesee e eneeneenas 639
18.5.110 Stall (Stall fOr @ SOt TIME)......ceierieieeeieiee sttt sb e s re st e e e eseesessesbessesaenseseesennas 640
18.5.111 StartDependentFn (Start Dependent Function Resource Descriptor Macro)c.ccveveveeseviesieeenene. 640
18.5.112 StartDependentFnNoPri (Start Dependent Function Resource Descriptor Macro).........cooevveeeeeeeeenene. 641
18.5.113 StOre (StOr€ 8N ODJECL)eeueeueruirierteiteiee ettt e e ae et be st et e e e e e seesesaeseesse e emeenesaesseseesseseeneeneeneenas 641
18.5.114 Subtract (INEEJEr SUDEIBCL)........cciiiiiiieeciei ettt s te st seebesbestesbesae e eseeneenas 641
18.5.115 Switch (Select Code To Execute Based On EXPreSSiON)cceeevveieeeesrisiesesieieeeesssssessessesseseesenss 642
18.5.116 ThermaZone (Declare ThermMal ZONE)cceiiieirereeieeeeee e e eneenas 644
18.5.117 Timer (Get 64-Bit TIMEr VAIUE)......uciieeceieicie ittt sttt be st be st s e eneenas 644
18.5.118 TOBCD (Convert INteger t0 BCD)......c.covcviieiiiiiciisieieiee et sttt ssestesbe e eseeneenas 645
18.5.119 ToBuffer (Convert Datato BUFFEN)ot 645
18.5.120 ToDecimal String (Convert Datato Decimal StriNG)........ccovieriererienirieeese e 645
18.5.121 ToHexString (Convert Datato Hexadecimal StriNG)......cccocvivvinerieieieeiie e e 646
18.5.122 Tolnteger (CONVErt Datato INTEOEN)cocceeirieieeeee ettt sttt sae st ae e e e e e eneenas 646
18.5.123 ToString (Convert BUFfer TO SEHNG)cveeeeeieririeeeeeee e enas 646
18.5.124 ToUUID (Convert String t0 UUID MaCI0)ccvvvirieieieiieieiisesieseeie e srestestesaesaese e s stessesaenseseeseenas 647
18.5.125 Unicode (String To Unicode ConVErSion MaCr0)cccccueeiueriinerieieeeesiesiesieseesesessesssssessessessesessenses 648
18.5.126 Unload (Unload Definition BIOCK)cccoiiiiiiiiieienieese et st 648
18.5.127 VendorLong (Long Vendor RESOUICE DESCITPLON)......ccueruerueruereeriereeeeeeiesaeseesiesee e esse e see e see e e e eneenas 648
18.5.128 VendorShort (Short Vendor RESOUICE DESCIIPION) ..c..cuveuieeiriiiisieeeieeeeste et 649
18.5.129 Wait (Wait for a SynchroniZation EVENL)cocoeieirieeie e enas 649
18.5.130 While (Conditional Loop)
18.5.131 WordBusNumber (Word Bus Number Resource Descriptor Macro)ccceeeveeeveeeeseseseseesieseeeenes 650
18.5.132 WordlO (Word IO Resource DESCriptor MACI0)cveieeiueiisesieeeeeessesiessesaesesessessessessesaesseseeseenas 651
18.5.133 WordSpace (Word Space Resource DeSCriptor MaCI0))co.eeerereereeiererieriesieseeeeesie s see e eneenas 652
18.5.134 X Or (INtEYEr BItWISE XOF)ueiuiruiiteieeieieueeueetesteseeseeseeaesseetesaessesseseeseeseesesaeseessesseneeneesessessessessensaneenesnes 654
18.5.135 Zero (Constant Zer0 OBJECL)........eiiiiiiieiciiiceite ettt te st seeressesbesbesae s eseeneenas 654
19 ACPI MACHINE LANGUAGE (AML) SPECIFICATION ...ociiiiiceseeeeeereeie et sesveseeeeaeseens 655
19.1 NOLALION CONVENTIONS. ...e.eitirerteieiteiirietese ettt sttt ae et b et e bt s b btk e e be st s b e st s b e bt st eb e e s b e st et e st s b ebeneebe e eaens 655
19.2 AML Grammar DEfINITIONccoiiiiiii ettt s b e e e e e et e neeaesbesaeseeseeeeneenennea 656
19.2.1 Table and Table Header ENCOTING.........cceiveiiieiiitisiesieieeee ettt sttt se e snestesaesae s eseeneenas 656
19.2.2 NamMe ObJECLS ENCOUINGvevveiiitieieiti ittt ettt be b s te b e e eseesessestessesaenseseeneenas 656
NS IZRCADL: =@ o)1= o] =g Tore o [1 oo PSSR 657
19.2.4 Package Length ENCOOINGccoceuireiirieieeeeeeetesie sttt se e s e seesbe e e e eneeaesaeseesseseeneeneeneenas 658
19.2.5 Term ObJECLS ENCOUINGcuveuieuiiiieieitesieietetee ettt ettt st e e b e sbesbesbe e esaeseeseebestessesaenseseesennas 658
19.2.6 Miscellaneous ObjECES ENCOTING........ccuerveieieiiiitisiesieseetee et ste e e e et steste s s seesessestesaesaenseseeseenas 664
19.3 AML Byte Stream BYLE VAIUEScoi ettt sttt st e st aeeaesbesae st e nee e e e eneeneas 665
19.4 AML Encoding of Namesin the NamESPACE.cccvierieieieieiisese ettt sb e eneas 669

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

A DEVICE CLASSPM SPECIFICATIONS. ...ttt sttt see e siae st nreesnree s
F N A @Y= VUSRS
A2 DEVICE POWES SEALES......cuieiteuireeiiiteie ettt ettt btttk b et b bbbt b et b e bt nb e b et eb e ket s b e b e ntene e

A.2.1 BUSPOWE MANAGEIMENT ..ottt ettt sttt b et be e e s bt e e e s be e s e sbeeseesbeeneesbeeseenseennenbesanens
A.2.2 Display POWEr MaANAQEIMENL...........cieieeeieieite ettt esee e e seeaesbesaeseesse e eneesesbesaessesseseenseneanesnes
A.2.3 PCMCIA/PCCARD/CardBus Power Management
A.2.4 PCIl Power Management........
A.25 USB Power Management
A.2.6 DeviceClasses.......ccovveruennne
A.3 Default Device Class.......ccocrrinenienns
A.3.1 Default POwer State DEfiNItIONScociiiiiiie ettt ne e ene e
A.3.2 Default Power Management POLICYc.ccuciviiiiieieieiceite ettt a et sa e eeneenas
A.3.3 DEFAUIT WAKE EVENES ..ottt ettt bbb nb et
A.3.4 Minimum POWer CapabilitiES.couioieiiiieii ettt et a e b e se e e e eae e
F N AN (o [o B D= Yot O = 1 USSR
AAL POWEr StAEE DEfINITIONS.c.eitiiiteiirieierete ettt bbbttt bbb sa et ne e
A.4.2 Power Management POLICYc.oiiieieieiiese ettt e e e et sbesaesee e e e e e e e eneenas
ALL3 WK EVENLS. ...ttt h e bt b et e s e et e st e Rt eae e e e eeeee e e e e eneeaeebeebeseeeee e eneeneenennas
A.4.4 Minimum POWEr CapabilitieS.........cceieiiiiiiicesieieie ettt b ettt e e e e seenennas
A5 COM POt DEVICE CIBSS ... uiteeeieeeieetestestee et et ettt stestesee e et e st eaestestesee e e e eseeaeabesaeeeeseneeneesesbeseesseseneenessenes
A.5.1 Power State Definitions.........
A.5.2 Power Management Poalicy
A53 WakeEvents.......coceoveenirnnnne
A.5.4 Minimum Power Capabilities
A6 DiSPlay DEVICE CIASS.......ccuiiiiitiiiieieieee st ste et e st st e sae st et e e ese s te s b e s ae st e e eseeseabesbesse s eseeseeseabesbesteseseeseesens
A.B.1 POWEr State DEfINITIONS.ccui ittt st et e e e et eaeebesaesee e e e e e eneeneseas
A.6.2 Power Management Policy for the Display Class........ccoiriiiriiereeeeeeee e
ALB.3 WEKE EVENES. ...ttt b bbbkt b et b et b ettt bt b e b et
A.6.4 Minimum POWEr CapabilitiES.........cceieiiiiiiiiisesieiee ettt r et s te st e e e e e e eneenas
A.6.5 Performance States for Display ClasS DEVICES......c..cceiriiirieieieeeeeeeee et
AT INPUE DEVICE CIASS.....cuiiiitiiiisieiieietete st ste ettt s b et et e e seebesbe st e st e s ese e st eseebesbesaenseseeseeseabesbesseseseeneesens
A.7.1 Power State Definitions.........
A.7.2 Power Management Policy
A.7.3 WakeEvents.........ccccocvvvrvinunnen
A.7.4 Minimum Power Capabilities
A8 MOUEM DEVICE CIASS ...ttt sttt sttt a e a e st et e s e e e e e eaeeaesbesaeeee s ene e st eaeabeseesseseneeneanenes
A.8.1 TEChNOIOGY OVEIVIEWocueiuiiieitiiieieieee et ste e ste st et e e etesbesbesbesae s eseeseesestesbesseseseenseseesessestessasaenseseanennas
A.8.2 POWEr StAEE DEfiNITIONS......c.eitiiiteiirieieriee ettt ettt bbb sa e
A.8.3 Power Management POLICYccoiioeieieiieie ettt st se et be b see e e e e e e e eneenas
ALB.A WAKE EVENLS. ...ttt ettt et be st e e e s e et e et e et e et eb e aeee e e e e eneeaeebesaeeeesee e eneeneenennas
A.8.5 Minimum Power Capabilities
ALD NELWOIK DEVICE CIBSS.... et itiieieeieieieeie st sie et ettt st ste e et et aeeaesbesbese e e e neeaeeaesbesaesee s eneeneeseabeseesseseneeneesenns
A.9.1 Power State Definitions.........
A.9.2 Power Management Poalicy
A.9.3 WakeEvents.......coceoeeenirnnnne
A.9.4 Minimum Power Capabilities
A.10 PC Card Controller DEVICE ClaSS........ccuiriiuirieiririenisieiseeiesie sttt bbbt bbbt e b saene e
A.10.1 POWEr StAEE DEFINITIONS....c..i ettt sttt s b e b e e e e e e e e e aeebesbesee e e e e e eneenesnas
A.10.2 Power Management POIICY ..ottt be e e se e e e e e ene e
ALL0.3 WEAKE EVENES. ...ttt b et b et b et b e bbbt e b nb et
A.10.4 Minimum POWEr CapabilitiS.......cceiueiiiiiiiiiseieiee sttt st st sa e neeneenas
F N S (o = Yo Tol B 1 Yo O - USSR
A111 POWEr SEAE DEfINITIONS.....ccuiiiteiirietirieieeiee ettt b et bbbt ne e
A.11.2 Power Management Palicy
A.11.3 WakeEvents.......ccoovveivieenncnne
A.11.4 Minimum Power Capabilities

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

XViii

B ACPI EXTENSIONSFOR DISPLAY ADAPTERS........c ettt 695
0 1 1 g [T o o SRS
B2 DEFINMITIONS .. ittt ettt s b et et e et e st e be e b e s b et e s e st e R e e ReeReeReeb et et e st eReeReebeeaenaenteaeneereaneas
B.3 ACPI NAIMESPACEo oteieeitieieeitt ittt ettt ettt b et e bt et e sbe e besbe e e e abeeasesbeeaeeabeemsesbeeseeaseeaeenbesseeaseensenbesrnens

B.4 Display-specific M ethods
B.4.1 _DOS (Enable/Disable Output Switching)

B.4.2 _DOD (Enumerate All Devices Attached to the Display Adapter)ccccoiiierereneiniene e 698
B.4.3 _ROM (Get ROM DELE)cccrvrveriiviiriiiirereieiii sttt sttt nnenas 701
B.4.4 _GPD (GEt POST DEVICE) ...cuecueiuiiieitiiiieeeieetstesteste e saesaesestesbe s e saesaesaeseesessestessessenseseesessestessessenseseesesss 702
B.45 _SPD (St POST DEVICE)c.crvreeuiiuiiresiieteieieresesesteteseseess s ssse et sssaebesssensas s bebesase st sessssesesesensasssssenas 702
B.4.6 VPO (Vide0 POST OPLIONS)....c.ciiiteieerieeeueruirtesteseeseeseeseeseetessessessessesasessessessessessensasessessessessessensesessesses 703
B.5 NOotificationsSfor DiSplay DEVICES.......cciieieieiiieii ettt te st saeste b et e s e e eseesesbesbessessesaenseseesens 703
B.6 Output Device-SPeCifiC MELNOAS.ottt st se e e eneenea 703
B.6.1 _ADR (Returnthe Unique ID for thiSDEVICE)ccceieieiiiii ettt 704
B.6.2 _BCL (Query List of Brightness Control Levels SUPPOEd)ccoevveieieiiiiesesieieeee e 704
B.6.3 _BCM (Set the BrightNeSS LEVED)cccoioiieeieee ettt st 704
B.6.4 _BQC (Brightness QUErY CUTENt TEVED)coiiiiiieiieieeeeee et st 705
B.6.5 _DDC (Returnthe EDID fOr thiSDEVICE)........coiiuiiiiiieieieiee ettt st st enas 705
B.6.6 _DCS (Return the Status of OULPUL DEVICE)ecuereiriereeieeeieie st see e eneenas 705
B.6.7 _DGS (QUENY GraphiCs SEALE).........eiuereeieieereeierieseesiereeeseeie e ste s e see e e e esesaeseeseeseeneesessesseseesseseenseneeneanes 706
B.6.8 DSS (DEVICE SEL SEALE) ...cuveueeueeeiiieitirieieeeiee e teste et e e et e e te st e s te st e e e e eseesesbestesbeeeneeseeseesestessesaenseneeneens 706
B.7 Notifications SPeCifiC t0 OULPUL DEVICES........ccviiviiiiiieieieiee sttt e st a e besbessesaesae e eseeseas 707
B.8 NOtESON SEALE CHANGES ... ettt ettt st et et et e e e st eaeseeseesee s e st eneenesbesaessenseneeneeneanens 708
INDEX ettt he e s bt e bt e et e ae e eh e e e Re 2 A b e e R b e e AR e SR EeeRe e eRe e Ee e Rt eaeeeReeeRe e Rt ebeenreeaeeareenbeerean 710

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

XX

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 21

1 Introduction

The Advanced Configuration and Power Interface (ACPI) specification was developed to establish industry
common interfaces enabling robust operating system (OS)-directed motherboard device configuration and
power management of both devices and entire systems. ACPI isthe key element in Operating System-
directed configuration and Power Management (OSPM).

ACPI evolved the existing pre-ACPI collection of power management BIOS code, Advanced Power
Management (APM) application programming interfaces (APIs, PNPBIOS API's, Multiprocessor
Specification (MPS) tables and so on into a well-defined power management and configuration interface
specification. ACPI provides the means for an orderly transition from existing (legacy) hardware to ACPI
hardware, and it allows for both ACPI and legacy mechanismsto exist in a single machine and to be used
as needed.

Further, system architectures being built at the time of the original ACPI specification’s inception,
stretched the limits of historical “Plug and Play” interfaces. ACPI evolved existing motherboard
configuration interfaces to support advanced architectures in a more robust, and potentially more efficient
manner.

Theinterfaces and OSPM concepts defined within this specification are suitable to al classes of computers
including (but not limited to) desktop, mobile, workstation, and server machines. From a power
management perspective, OSPM/ACPI promotes the concept that systems should conserve energy by
transitioning unused devices into lower power statesincluding placing the entire system in a low-power
state (sleeping state) when possible.

This document describes ACPI hardware interfaces, ACPI software interfaces and ACPI data structures
that, when implemented, enable support for robust OS-directed configuration and power management
(OSPM).

1.1 Principal Goals

ACPI isthe key element in implementing OSPM. ACPI-defined interfaces are intended for wide adoption
to encourage hardware and software vendors to build ACPI-compatible (and, thus, OSPM-compatible)
implementations.

The principal goals of ACPI and OSPM areto:
1. Enable all computer systems to implement motherboard configuration and power management
functions, using appropriate cost/function tradeoffs.

o Computer systemsinclude (but are not limited to) desktop, mobile, workstation, and server
machines.

e Machine implementers have the freedom to implement a wide range of solutions, from the very
simple to the very aggressive, while still maintaining full OS support.

e Wide implementation of power management will make it practical and compelling for applications
to support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.

e Power management policiestoo complicated to implement in a ROM BIOS can be implemented
and supported in the OS, allowing inexpensive power managed hardware to support very elaborate
power management policies.

e Gathering power management information from users, applications, and the hardware together
into the OS will enable better power management decisions and execution.

e Unification of power management algorithmsin the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

3. Facilitate and accel erate industry-wide implementation of power management.

e OSPM and ACPI reduces the amount of redundant investment in power management throughout
the industry, as thisinvestment and function will be gathered into the OS. Thiswill allow industry
participants to focus their efforts and investments on innovation rather than simple parity.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

22 Advanced Configuration and Power Interface Specification

The OS can evolve independently of the hardware, allowing al ACPI-compatible machines to
gain the benefits of OS improvements and innovations.

4. Createarobust interface for configuring motherboard devices.

Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale

It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the
OS and the hardware to achieve the principal goals set forth above.

Minimal support for power management inhibits application vendors from supporting or
exploiting it.

(0]

(0]

Moving power management functionality into the OS makes it available on every
machine on which the OSisinstalled. The level of functionality (power savings, and so
on) varies from machine to machine, but users and applications will see the same power
interfaces and semantics on all OSPM machines.

Thiswill enable application vendorsto invest in adding power management functionality
to their products.

Legacy power management algorithms were restricted by the information available to the BIOS
that implemented them. This limited the functionality that could be implemented.

(0]

Centralizing power management information and directives from the user, applications,
and hardware in the OS allows the implementation of more powerful functionality. For
example, an OS can have apolicy of dividing 1/0 operations into normal and lazy. Lazy
I/O operations (such as a word processor saving files in the background) would be
gathered up into clumps and done only when the required I/O device is powered up for
some other reason. A non-lazy 1/O request made when the required device was powered
down would cause the device to be powered up immediately, the non-lazy 1/0 request to
be carried out, and any pending lazy 1/0 operations to be done. Such a policy requires
knowing when 1/O devices are powered up, knowing which application 1/O requests are
lazy, and being able to assure that such lazy 1/0O operations do not starve.

Appliance functions, such as answering machines, require globally coherent power
decisions. For example, atelephone-answering application could call the OS and assert,
“1 am waiting for incoming phone calls; any sleep state the system enters must allow me
to wake and answer the telephonein 1 second.” Then, when the user presses the “ of f”
button, the system would pick the deepest sleep state consistent with the needs of the
phone answering service.

BIOS code has become very complex to deal with power management. It is difficult to make work
with an OS and is limited to static configurations of the hardware.

(0]

(0]

(0]

(0]

There is much less state information for the BIOS to retain and manage (because the OS
manages it).

Power management algorithms are unified in the OS, yielding much better integration
between the OS and the hardware.

Because additional ACPI tables (Definition Blocks) can be loaded, for example, when a
mobile system docks, the OS can deal with dynamic machine configurations.

Because the BIOS has fewer functions and they are simpler, it is much easier (and
therefore cheaper) to implement and support.

The exigting structure of the PC platform constrains OS and hardware designs.

Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the
hardware from the OS.

ACPI is by nature more portable across operating systems and processors. ACPI control methods
allow for very flexible implementations of particular features.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 23

1.3 Legacy Support

ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for
both mechanisms to exist in a single machine and be used as needed.

Table1-1 Hardware Typevs. OS Type Interaction

Hardware\OS Legacy OS ACPI OSwith OSPM
Legacy hardware A legacy OS on legacy hardware | If the OS lacks legacy support, legacy
does what it always did. support is completely contained within
the hardware functions.
Legacy and ACPI It worksjust like alegacy OS on | During boot, the OS tells the hardware
hardware support in legacy hardware. to switch from legacy to OSPM/ACPI
machine mode and from then on, the system has

full OSPM/ACPI support.

ACPI-only hardware There is no power management. | Thereisfull OSPM/ACPI support.

1.4 OEM Implementation Strategy

Any OEM is, asaways, freeto build hardware as they see fit. Given the existence of the ACPI

specification, two general implementation strategies are possible;

e Anorigina egquipment manufacturer (OEM) can adopt the OS vendor-provided ACPI OSPM software
and implement the hardware part of the ACPI specification (for a given platform) in one of many
possible ways.

e AnOEM can develop adriver and hardware that are not ACPI-compatible. This strategy opens up
even more hardware implementation possibilities. However, OEMs who implement hardware that is
OSPM-compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing
driversfor their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a leep button that isa
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or leeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a deep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off state without
OSPM interaction is also needed to deal with various rare, but problematic, situations.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

24 Advanced Configuration and Power Interface Specification

1.6 ACPI Specification and the Structure Of ACPI

This specification defines ACPI hardware interfaces, ACPI software interfaces and ACPI data structures.
This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to OSPM/ACPI and how they relate to
each other. This specification describes the interfaces between components, the contents of the ACPI
System Description Tables, and the related semantics of the other ACPI components. Notice that the ACPI
System Description Tables, which describe a particular platform’s hardware, are at heart of the ACPI
implementation and the role of the ACPI System Firmware is primarily to supply the ACPI Tables (rather
than a native instruction API).

ACPI is not a software specification; it is not a hardware specification, although it addresses both software
and hardware and how they must behave. ACPI is, instead, an interface specification comprised of both
software and hardware elements.

Dependent
Application
APIs

Kernel OSPM System Code

OS Specific

Device ACPI Driver/ ' technologies,
Driver AML Interpreter interfaces, and code

I ACPI ACPI Table Indegfndem |
Register Interface technologies
I Interfacs interfaces,
ACPI BIOS code, and I
_ Interface hardware
Existing
industry
standard I
register . ACPI BIOS ACPI Tables
interfaces to: '
CMOS, PIC,
PITs, ... —_— I

Platform Hardware <+—>» BIOS

- ACPI Spec Covers this area
- OS specific technology, not part of ACPI
- Hardware/Platform specific technology, not part of ACPI

Figure1-1 OSPM/ACPI Global System

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 25

There are three run-time components to ACPI

e ACPI System Description Tables. Describe the interfaces to the hardware. Some descriptions limit
what can be built (for example, some controls are embedded in fixed blocks of registers and the table
specifies the address of the register block). Most descriptions allow the hardware to be built in
arbitrary ways and can describe arbitrary operation sequences needed to make the hardware function.
ACPI Tables containing “Definition Blocks’ can make use of a pseudo-code type of language, the
interpretation of which is performed by the OS. That is, OSPM contains and uses an interpreter that
executes procedures encoded in the pseudo-code language and stored in the ACPI tables containing
“Definition Blocks.” The pseudo-code language, known as ACPI Machine Language (AML), isa
compact, tokenized, abstract type of machine language.

e ACPI Registers. The constrained part of the hardware interface, described (at least in location) by the
ACPI System Description Tables.

e ACPI System Firmware. Refers to the portion of the firmware that is compatible with the ACPI
specifications. Typically, thisisthe code that boots the machine (as legacy BIOSs have done) and
implements interfaces for sleep, wake, and some restart operations. It is called rarely, compared to a
legacy BIOS. The ACPI Description Tables are also provided by the ACPI System Firmware.

1.7 OS and Platform Compliance

The ACPI specification contains only interface specifications. ACPI does not contain any platform
compliance requirements. The following sections provide guidelines for class specific platform
implementations that reference ACPI-defined interfaces and guidelines for enhancements that operating
systems may require to completely support OSPM/ACPI. The minimum feature implementation
requirements of an ACPI-compatible OS are also provided.

1.7.1 Platform Implementations of ACPI-defined Interfaces

System platforms implement ACPI-defined hardware interfaces via the platform hardware and ACPI-
defined software interfaces and system description tables via the ACPI system firmware. Specific ACPI-
defined interfaces and OSPM concepts while appropriate for one class of machine (for example, a mobile
system), may not be appropriate for another class of machine (for example, a multi-domain enterprise
server). It is beyond the capability and scope of this specification to specify all platform classes and the
appropriate ACPI-defined interfaces that should be required for the platform class.

Platform design guide authors are encouraged to require the appropriate ACPI-defined interfaces and
hardware requirements suitabl e to the particular system platform class addressed in a particular design
guide. Platform design guides should not define alternative interfaces that provide similar functionality to
those defined in the ACPI specification.

1.7.1.1 Recommended Features and Interface Descriptions for Design
Guides

Common description text and category names should be used in design guides to describe all features,
concepts, and interfaces defined by the ACPI specification as requirements for a platform class. Listed
below is the recommended set of high-level text and category names to be used to describe the features,
concepts, and interfaces defined by ACPI.

Note: Where definitions or relational requirements of interfaces are localized to a specific section, the
section number is provided. The interface definitions and relational requirements of the interfaces specified
below are generally spread throughout the ACPI specification. The ACPI specification defines:

System address map reporting interfaces (Section 14)
ACPI System Description Tables (Section 5.2):

Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

26 Advanced Configuration and Power Interface Specification

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)

Differentiated System Description Table (DSDT)

Secondary System Description Table (SSDT)

Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)

Embedded Controller Boot Resources Table

System Resour ce Affinity Table (SRAT)

System Locality Information Table (SLIT)
ACPI-defined Fixed Registers Interfaces (Section 4, Section 5.2.9):
Power management timer control/status
Power or sleep button with S5 override (also possible in generic space)
Real time clock wakeup alarm control/status
SCI /SMI routing control/status for Power Management and Gener al-pur pose events
System power state controls (sleeping/wake control) (Section 7)
Processor power state control (c states) (Section 8)
Processor throttling control/status (Section 8)
Processor performance state control/status (Section 8)
General-purpose event control/status
Global Lock control/status
System Reset control (Section 4.7.3.6)
Embedded Controller control/status (Section 12)
SMVIBus Host Controller (HC) control/status (Section 13)
Smart Battery Subsystem (Section 10.1)

ACPI-defined Generic Register Interfaces and object definitions in the ACPI Namespace (Section 4.2,
Section 5.6.5):
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
Thermal zones (Section 11)
Power resource control (Section 7.1)
Device power state control (Section 7.2)
System power state control (Section 7.3)
System indicators (Section 9.1)
Devices and device controls (Section 9):
Processor (Section 8)
Control Method Battery (Section 10)
Smart Battery Subsystem (Section 10)
Mobile Lid
Power or sleep button with S5 override (also possible in fixed space)
Embedded controller (Section 12)
Fan
Generic Bus Bridge
ATA Controller
Floppy Controller
GPE Block
Module
Memory
Global Lock related interfaces

ACPI Event programming model (Section 5.6)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 27

ACPI-defined System BIOS Responsihilities (Section 15)

ACPI-defined State Definitions (Section 2):
Global system power states (G-states, S0, S5)
System sleeping states (S-states S1-$4) (Section 15)
Device power states (D-states (Appendix B))
Processor power states (C-states) (Section 8)
Device and processor performance states (P-states) (Section 3, Section 8)

1.7.1.2 Terminology Examples for Design Guides

The following provides an example of how aclient platform design guide, whose goal is to require robust
configuration and power management for the system class, could use the recommended terminology to
define ACPI requirements.

Important: Thisexampleis provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features, concepts, and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

Power or sleep button with S5 override (may also be implemented in generic register space)
Real time clock wakeup alarm control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and Gener al-pur pose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitionsin the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
Devices and device controls:
Processor
Control Method Battery (or Smart Battery Subsystem on a mobile system)
Smart Battery Subsystem (or Control Method Battery on a mobile system)
Power or sleep button with S5 override (may also be implemented in fixed register space)
Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments
e ACPI Event programming model (Section 5.6)
e ACPI-defined System BIOS Responsibilities (Section 15)
e ACPI-defined Sate Definitions:
System sleeping states (At least one system sleeping state, S1-S4, must be implemented)
Device power states (D-states must be implemented in accordance with device class
specifications)
Processor power states (All processors must support the C1 Power State)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

28 Advanced Configuration and Power Interface Specification

The following provides an example of how a design guide for systems that execute multiple OS instances,
whose goal isto require robust configuration and continuous availability for the system class, could use the
recommended terminology to define ACPI related requirements.

Important: Thisexampleis provided as a guideline for how ACPI terminology can be used. It should not
be interpreted as a statement of ACPI requirements.

Platforms compliant with this platform design guide must implement the following ACPI defined system
features and interfaces, along with their associated event models:

System address map reporting interfaces

ACPI System Description Tables provided in the system firmware

ACPI-defined Fixed Registers Interfaces:

Power management timer control/status

General-purpose event control/status

SCI /SMI routing control/status for Power Management and Gener al-pur pose events
(control required only if system supports legacy mode)

System power state controls (sleeping/wake control)

Processor power state control (for C1)

Global Lock control/status (if Global Lock interfaces are required by the system)

e ACPI-defined Generic Register Interfaces and object definitionsin the ACPI Namespace:
General-purpose event processing
Motherboard device identification, configuration, and insertion/removal (Section 6)
System power state control (Section 7.3)
System indicators
Devices and device controls:
Processor

Global Lock related interfaces when a logical register in the hardware is shared between OS
and firmware environments

e ACPI Event programming model (Section 5.6)

e ACPI-defined System BIOS Responsibilities (Section 15)

e ACPI-defined State Definitions:
Processor power states (All processors must support the C1 Power State)

1.7.2 OSPM Implementations

OS enhancements are needed to support ACPI-defined features, concepts, and interfaces, along with their
associated event models appropriate to the system platform class upon which the OS executes. Thisisthe
implementation of OSPM. The following outlines the OS enhancements and elements necessary to support
all ACPI-defined interfaces. To support ACPI through the implementation of OSPM, the OS needs to be
modified to:
o Use system address map reporting interfaces.
Find and consume the ACPI System Description Tables.
Interpret ACPI machine language (AML).
Enumerate and configure motherboard devices described in the ACPlI Namespace.
Interface with the power management timer.
Interface with the real-time clock wake alarm.
Enter ACPI mode (on legacy hardware systems).
I mplement device power management policy.
I mplement power resource management.
Implement processor power states in the scheduler idle handlers.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 29

e Control processor and device performance states.

e |mplement the ACPI thermal model.

Support the ACPI Event programming model including handling SCI interrupts, managing fixed
events, general -purpose events, embedded controller interrupts, and dynamic device support.
Support acquisition and release of the Global Lock.

Use the reset register to reset the system.

Provide APIsto influence power management policy.

Implement driver support for ACPI-defined devices.

Implement APIs supporting the system indicators.

Support al system states S1-Sb.

1.7.3 OS Requirements
The following list describes the minimum requirements for an OSPM/ACPI-compatible OS:

Use system address map reporting interfaces to get the system address map on Intel Architecture (1A)

platforms:

e INT 15H, E820H - Query System Address Map interface (see section 14, “ System Address Map
Interfaces’)

e EFI GetMemoryMap() Boot Services Function (see section 14, “ System Address Map Interfaces’)

Find and consume the ACPI System Description Tables (see section 5, “ ACPI Software Programming

Mode!”).

Implementation of an AML interpreter supporting all defined AML grammar elements (see section 19,

ACPI Machine Language Specification”).

Support for the ACPI Event programming model including handling SCI interrupts, managing fixed

events, general -purpose events, embedded controller interrupts, and dynamic device support.

Enumerate and configure motherboard devices described in the ACPlI Namespace.

Implement support for the following ACPI devices defined within this specification:

e Embedded Controller Device (see section 12, “ACPI Embedded Controller Interface
Specification”)

e GPE Block Device (see section 9.10, “GPE Block Device”)

e Module Device (see section 9.11, “Module Device”)

Implementation of the ACPI thermal model (see section 11, “Therma Management”).

Support acquisition and release of the Global Lock.

OS-directed power management support (device drivers are responsible for maintaining device context

as described by the Device Power Management Class Specifications described in Appendix A).

1.8 Target Audience

This specification isintended for the following users:

OEM s building hardware containing ACPI-compatible interfaces
Operating system and device driver developers

BIOS and ACPI system firmware devel opers

CPU and chip set vendors

Peripheral vendors

1.9 Document Organization

The ACPI specification document is organized into the following four parts:

Thefirst part of the specification (sections 1 through 3) introduces ACPI and provides an executive
overview.

The second part (sections 4 and 5) defines the ACPI hardware and software programming models.
The third part (sections 6 through 17) specifies the ACPI implementation details; this part of the
specification is primarily for developers.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

30 Advanced Configuration and Power Interface Specification

e Thefourth part (sections 18 and 19) istechnical reference material; section 18 isthe ACPI Source
Language (ASL) reference, parts of which are referred to by most of the other sectionsin the
document.

e Appendices contain device class specifications, describing power management characteristics of
specific classes of devices, and device class-specific ACPI interfaces.

1.9.1 ACPI Introduction and Overview

The first three sections of the specification provide an executive overview of ACPI.

Section 1: Introduction. Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-compatible
system, and provides referencesto related specifications.

Section 2: Definition of Terms. Defines the key terminology used in this specification. In particular, the
global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in
this section, along with the device power state definitions: Off (D3), D3hot, D2, D1, and Fully-On (DO).
Device and processor performance states (PO, P1, ...Pn) are also discussed.

Section 3: ACPI Overview. Gives an overview of the ACPI specification in terms of the functional areas
covered by the specification: system power management, device power management, processor power
management, Plug and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the
specification is primarily for system designers, devel opers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that
follow (all the rest of the sections of the specification) are based on the models defined in sections 4 and 5.
These sections are the heart of the ACPI specification. There are extensive cross-references between the
two sections.

Section 4: ACPI Hardwar e Specification. Defines a set of hardware interfaces that meet the goals of this
specification.

Section 5: ACPI Softwar e Programming M odel. Defines a set of software interfaces that meet the goals
of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation details necessary to actually build
components that work on an ACPI-compatible platform. This part of the specification is primarily for
developers.

Section 6: Configuration. Defines the reserved Plug and Play objects used to configure and assign
resources to devices, and share resources and the reserved objects used to track device insertion and
removal. Also defines the format of ACPI-compatible resource descriptors.

Section 7: Power and Performance M anagement. Defines the reserved device power-management
objects and the reserved-system power-management objects.

Section 8: Processor Configuration and Control. Defines how the OS manages the processors power
consumption and other controls while the system isin the working state.

Section 9: ACPI-Specific Device Objects. Lists the integrated devices that need support for some device-
specific ACPI controls, along with the device-specific ACPI controls that can be provided. Most device
objects are controlled through generic objects and control methods and have generic device IDs; this
section discusses the exceptions.

Section 10: Power Sour ce Devices. Defines the reserved battery device and AC adapter objects.

Section 11: Ther mal M anagement. Defines the reserved thermal management objects.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Introduction 31

Section 12: ACPI Embedded Controller Interface Specification. Defines the interfaces between an
ACPI-compatible OS and an embedded controller.

Section 13: ACPI System M anagement Bus | nter face Specification. Defines the interfaces between an
ACPI-compatible OS and a System Management Bus (SMBus) host controller.

Section 14: System Address M ap I nterfaces. Explainsthe special INT 15 call for usein I SA/EISA/PCI
bus-based systems. This call supplies the OS with a clean memory map indicating address ranges that are
reserved and ranges that are available on the motherboard. UEFI-based memory address map reporting
interfaces are also described.

Section 15: Waking and Sleeping. Definesin detail the transitions between system working and sleeping
states and their relationship to wake events. Refers to the reserved objects defined in sections 6, 7, and 8.

Section 16: Non-Uniform Memory Access (NUM A) Architectur e Platfor ms. Discussesin detail how
ACPI define interfaces can be used to describe a NUMA architecture platform. Refersto the reserved
objects defined in sections 5, 6, 8, and 9.

Section 17: ACPI Platform Error Interfaces. Definesinterfaces that enable OSPM to processes different
types of hardware error events that are detected by platform-based error detection hardware.

1.9.4 Technical Reference
The fourth part of the specification contains reference material for devel opers.

Section 18: ACPI Sour ce L anquage Refer ence. Defines the syntax of all the ASL statements that can be
used to write ACPI control methods, along with example syntax usage.

Section 19: ACPI M achine L anguage Specification. Defines the grammar of the language of the ACPI
virtual machine language. An ASL trandlator (compiler) outputs AML.

Appendix A: Device class specifications. Describes device-specific power management behavior on a per
device-class basis.

Appendix B: Video Extensions. Contains video device class-specific ACPI interfaces.

1.10 Related Documents

Power management and Plug and Play specifications for legacy hardware platforms are the following,
available from http://www.microsoft.com/whdc/resources/respec/specs/default. mspx:

e Advanced Power Management (APM) BIOS Specification, Revision 1.2.

e Plug and Play BIOS Specification, Version 1.0a.

Intel Architecture specifications are available from http://devel oper.intel.com:

Intel® Itanium™ Architecture Software Developer’s Manual, Volumes 1-4, Revision 2.1, Intel Corporation,
October 2002.

Itanium™ Processor Family System Abstraction Layer Specification, Intel Corporation, December 2003
(June 2004 Update).

Unified Extensible Firmware Interface Specifications are available from http://www.uefi.org:
Unified Extensible Firmware Interface Specification, Version 2.3, May 2009.

Documentation and specifications for the Smart Battery System components and the SMBus are available

from http://www.sbs-forum.org:

e Smart Battery Charger Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

e Smart Battery Data Specification, Revision 1.1, Smart Battery System |mplementers Forum,
December, 1998.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

32

Advanced Configuration and Power Interface Specification

Smart Battery Selector Specification, Revision 1.1, Smart Battery System I mplementers Forum,
December, 1998.

Smart Battery System Manager Specification, Revision 1.0, Smart Battery System Implementers
Forum, December, 1998.

System Management Bus Specification, Revision 1.1, Smart Battery System Implementers Forum,
December, 1998.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Definition of Terms 33

2 Definition of Terms
This specification uses a particular set of terminology, defined in this section. This section has three parts:
General ACPI terms are defined and presented alphabetically.

The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.

The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as awhole isin the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

Advanced Configuration and Power | nterface (ACPI)
As defined in this document, ACPI is a method for describing hardware interfaces in terms abstract
enough to allow flexible and innovative hardware implementations and concrete enough to allow
shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware
Computer hardware with the features necessary to support OSPM and with the interfaces to those
features described using the Description Tables as specified by this document.

ACPI Namespace
A hierarchical tree structure in OS-controlled memory that contains named objects. These objects may
be data objects, control method objects, bus/device package objects, and so on. The OS dynamically
changes the contents of the namespace at run-time by loading and/or unloading definition blocks from
the ACPI Tablesthat reside in the ACPI BIOS. All the information in the ACPI Namespace comes
from the Differentiated System Description Table (DSDT), which contains the Differentiated
Definition Block, and one or more other definition blocks.

ACPI Machine Language (AML)
Pseudo-code for avirtual machine supported by an ACPI-compatible OS and in which ACPI control
methods and objects are written. The AML encoding definitionis provided in section 19, “ACPI
Machine Language (AML) Specification.”

Advanced Programmable Interrupt Controller (APIC)
An interrupt controller architecture commonly found on Intel Architecture-based 32-bit PC systems.
The APIC architecture supports multiprocessor interrupt management (with symmetric interrupt
distribution across all processors), multiple 1/0 subsystem support, 8259A compatibility, and inter-
processor interrupt support. The architecture consists of local APICs commonly attached directly to
processors and I/O APICs commonly in chip sets.

ACPI Source Language (ASL)
The programming language equivalent for AML. ASL iscompiled into AML images. The ASL
statements are defined in section 18, “ACPI Source Language (ASL) Reference.”

Control Method
A control method is a definition of how the OS can perform a simple hardware task. For example, the
OS invokes control methods to read the temperature of athermal zone. Control methods are written in
an encoded language called AML that can be interpreted and executed by the ACPI-compatible OS.
An ACPI-compatible system must provide a minimal set of control methodsin the ACPI tables. The
OS provides a set of well-defined control methods that ACPI table devel opers can reference in their
control methods. OEM s can support different revisions of chip sets with one BIOS by either including
control methodsin the BIOS that test configurations and respond as needed or including a different set
of control methods for each chip set revision.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

34 Advanced Configuration and Power Interface Specification

Central Processing Unit (CPU) or Processor
The part of a platform that executes the instructions that do the work. An ACPI-compatible OS can
balance processor performance against power consumption and thermal states by manipulating the
processor performance controls. The ACPI specification defines a working state, labeled GO (S0), in
which the processor executes instructions. Processor sleeping states, labeled C1 through C3, are also
defined. In the dleeping states, the processor executes no instructions, thus reducing power
consumption and, potentially, operating temperatures. The ACPI specification also defines processor
performance states, where the processor (while in CO) executes instructions, but with lower
performance and (potentially) lower power consumption and operating temperature. For more
information, see section 8, “Processor Configuration and Control.”

Definition Block
A definition block contains information about hardware implementation and configuration detailsin
the form of data and control methods, encoded in AML. An OEM can provide one or more definition
blocksin the ACPI Tables. One definition block must be provided: the Differentiated Definition Block,
which describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the
contents of the Differentiated Definition Block into the ACPI Namespace. Other definition blocks,
which the OS can dynamically insert and remove from the active ACPlI Namespace, can contain
references to the Differentiated Definition Block. For more information, see section 5.2.11, “Definition
Blocks.”

Device
Hardware component outside the core chip set of a platform. Examples of devices are liquid crystal
display (LCD) panels, video adapters, Integrated Drive Electronics (IDE) CD-ROM and hard disk
controllers, COM ports, and so on. In the ACPI scheme of power management, buses are devices. For
more information, see section 3.3.2, “Device Power States.”

Device Context
The variable data held by the device; it is usually volatile. The device might forget thisinformation
when entering or leaving certain states (for more information, see section 2.3, “Device Power State
Definitions.”), in which case the OS software is responsible for saving and restoring the information.
Device Context refers to small amounts of information held in device peripherals. See System Context.

Differentiated System Description Table (DSDT)
An OEM must supply aDSDT to an ACPI-compatible OS. The DSDT contains the Differentiated
Definition Block, which supplies the implementation and configuration information about the base
system. The OS always inserts the DSDT information into the ACPI Namespace at system boot time
and never removesit.

Unified Extensible Firmware I nterface (UEFI)
An interface between the OS and the platform firmware. The interface isin the form of data tables that
contain platform related information, and boot and run-time service cals that are available to the OS
and loader. Together, these provide a standard environment for booting an OS.

Embedded Controller
The general class of microcontrollers used to support OEM-specific implementations, mainly in
mobile environments. The ACPI specification supports embedded controllersin any platform design,
aslong as the microcontroller conforms to one of the models described in this section. The embedded
controller performs complex low-level functions through a simple interface to the host
microprocessor(s).

Embedded Controller I nterface
A standard hardware and software communications interface between an OS driver and an embedded
controller. This allows any OS to provide a standard driver that can directly communicate with an
embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code).
Thisin turn enables the OEM to provide platform features that the OS and applications can use.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Definition of Terms 35

Firmware ACPI Control Structure (FACS)
A structure in read/write memory that the BIOS uses for handshaking between the firmware and the
OS. The FACS s passed to an ACPI-compatible OS viathe Fixed ACPI Description Table (FADT).
The FACS contains the system’ s hardware signature at last boot, the firmware waking vector, and the
Global Lock.

Fixed ACPI Description Table (FADT)
A table that contains the ACPI Hardware Register Block implementation and configuration details that
the OS needs to directly manage the ACPI Hardware Register Blocks, as well as the physical address
of the DSDT, which contains other platform implementation and configuration details. An OEM must
provide an FADT to an ACPI-compatible OSinthe RSDT/XSDT. The OS aways inserts the
namespace information defined in the Differentiated Definition Block in the DSDT into the ACPI
Namespace at system boot time, and the OS never removesit.

Fixed Features
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where
and how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that OSPM can directly access the fixed feature registers.

Fixed Feature Events
A set of eventsthat occur at the ACPI interface when a paired set of status and event bitsin the fixed
feature registers are set at the same time. When a fixed feature event occurs, a system control interrupt
(SCl israised. For ACPI fixed feature events, OSPM (or an ACPI-aware driver) acts as the event
handler.

Fixed Feature Registers
A set of hardware registersin fixed feature register space at specific address locationsin system 1/O
address space. ACPI defines register blocks for fixed features (each register block gets a separate
pointer from the FADT). For more information, see section 4.6, “ACPI Hardware Features.”

General-Purpose Event Registers
The general-purpose event registers contain the event programming model for generic features. All
general -purpose events generate SCIs.

Generic Feature
A generic feature of aplatform is value-added hardware implemented through control methods and
general-purpose events.

Global System States
Global system states apply to the entire system, and are visible to the user. The various global system
states are labeled GO through G3 in the ACPI specification. For more information, see section 2.2,
“Global System State Definitions.”

Ignored Bits
Some unused bitsin ACPI hardware registers are designated as “ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits, which always return
zero). Software ignores ignored bitsin ACPI hardware registers on reads and preservesignored bits on
writes.

Intel Architecture-Personal Computer (1 A-PC)
A general descriptive term for computers built with processors conforming to the architecture defined
by the Intel processor family based on the Intel Architecture instruction set and having an industry-
standard PC architecture.

[/OAPIC
An Input/Output Advanced Programmable Interrupt Controller routes interrupts from devices to the
processor’s local APIC.

/O SAPIC
An Input/Output Streamlined Advanced Programmable Interrupt Controller routes interrupts from
devicesto the processor’s local APIC.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

36 Advanced Configuration and Power Interface Specification

Legacy
A computer state where power management policy decisions are made by the platform
hardware/firmware shipped with the system. The legacy power management features found in today’s
systems are used to support power management in a system that uses alegacy OS that does not support
the OS-directed power management architecture.

Legacy Hardware
A computer system that has no ACPl or OSPM power management support.

Legacy OS
An OS that is not aware of and does not direct the power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Local APIC
A local Advanced Programmable Interrupt Controller receives interrupts from the [/0O APIC.

Local SAPIC
A local Streamlined Advanced Programmable Interrupt Controller receives interrupts from the I/0
SAPIC.

Multiple API C Description Table (MADT)
The Multiple APIC Description Table (MADT) is used on systems supporting the APIC and SAPIC to
describe the APIC implementation. Following the MADT isalist of APIC/SAPIC structures that
declare the APIC/SAPIC features of the machine.

Object
The nodes of the ACPI Namespace are objects inserted in the tree by the OS using the information in
the system definition tables. These objects can be data objects, package objects, control method
objects, and so on. Package objects refer to other objects. Objects also have type, size, and relative
name.

Object name
Part of the ACPI Namespace. Thereis a set of rules for naming objects.

Operating System-directed Power Management (OSPM)
A model of power (and system) management in which the OS plays a central role and uses global
information to optimize system behavior for the task at hand.

Package
An array of objects.

Power Button
A user push button or other switch contact device that switches the system from the sleeping/soft off
state to the working state, and signals the OS to transition to a sleeping/soft off state from the working
state.

Power Management
Mechanisms in software and hardware to minimize system power consumption, manage system
thermal limits, and maximize system battery life. Power management involves trade-offs among
system speed, noise, battery life, processing speed, and alternating current (AC) power consumption.
Power management is required for some system functions, such as appliance (for example, answering
machine, furnace control) operations.

Power Resources
Resources (for example, power planes and clock sources) that a device requires to operatein agiven
power state.

Power Sources
The battery (including a UPS battery) and AC line powered adapters or power supplies that supply
power to a platform.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Definition of Terms 37

Register Grouping
Consists of two register blocks (it has two pointers to two different blocks of registers). The fixed-
position bits within aregister grouping can be split between the two register blocks. This allows the
bits within a register grouping to be split between two chips.

Reserved Bits
Some unused bitsin ACPI hardware registers are designated as “ Reserved” in the ACPI specification.
For future extensibility, hardware-register reserved bits always return zero, and data writes to them
have no side effects. OSPM implementations must write zeros to all reserved bitsin enable and status
registers and preserve bitsin control registers.

Root System Description Pointer (RSDP)
An ACPI-compatible system must provide an RSDP in the system’s low address space. This
structure’ s only purpose is to provide the physical address of the RSDT and XSDT.

Root System Description Table (RSDT)
A table with the signature ‘RSDT,’ followed by an array of physical pointersto other system
description tables. The OS locates that RSDT by following the pointer in the RSDP structure.

Secondary System Description Table (SSDT)
SSDTs are a continuation of the DSDT. Multiple SSDTs can be used as part of a platform description.
After the DSDT isloaded into the ACPlI Namespace, each secondary description table listed in the
RSDT/XSDT with aunique OEM Table ID isloaded. This allows the OEM to provide the base
support in one table, while adding smaller system optionsin other tables.
Note: Additional tables can only add data; they cannot overwrite data from previous tables.

Sleep Button
A user push button that switches the system from the sleeping/soft off state to the working state, and
signalsthe OS to transition to a deeping state from the working state.

Smart Battery Subsystem
A battery subsystem that conforms to the following specifications: Smart Battery and either Smart
Battery System Manager or Smart Battery Charger and Selector—and the additional ACPI
requirements.

Smart Battery Table
An ACPI table used on platforms that have a Smart Battery subsystem. This table indicates the energy-
level trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a deeping state.

System Management Bus (SMBus)
A two-wire interface based upon the I12C protocol. The SMBusis alow-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface
A standard hardware and software communications interface between an OS bus driver and an SMBus
controller.

Streamlined Advanced Programmable I nterrupt Controller (SAPIC)
An advanced APIC commonly found on Intel Itanium™ Processor Family-based 64-hit systems.

System Context
The volatile datain the system that is not saved by a device driver.

System Control Interrupt (SCI)
A system interrupt used by hardware to notify the OS of ACPI events. The SCl isan active, low,
shareable, level interrupt.

System Management I nterrupt (SMI)
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will
not work). Hardware platforms that want to support both legacy operating systems and ACPI systems

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

38 Advanced Configuration and Power Interface Specification

must support away of re-mapping the interrupt events between SM1s and SCl's when switching
between ACPI and legacy models.

Thermal States
Thermal states represent different operating environment temperatures within thermal zones of a
system. A system can have one or more thermal zones; each thermal zone is the volume of space
around a particular temperature-sensing device. The transitions from one thermal state to another are

marked by trip points, which are implemented to generate an SCI when the temperature in a thermal
zone moves above or below the trip point temperature.

Extended Root System Description Table (XSDT)
The XSDT providesidentical functionality to the RSDT but accommodates physical addresses of

DESCRIPTION HEADERSs that are larger than 32-bits. Notice that both the XSDT and the RSDT can
be pointed to by the RSDP structure.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Definition of Terms 39

2.2 Global System State Definitions
Global system states (Gx states) apply to the entire system and are visible to the user.

Global system states are defined by six principa criteria:
1. Does application software run?
2. What isthe latency from external events to application response?
3. What isthe power consumption?
4. Isan OSreboot required to return to a working state?
5. Isit safeto disassemble the computer?
6. Can the state be entered and exited electronically?

Following isalist of the system states:

G3 Mechanical Off
A computer state that is entered and left by a mechanical means (for example, turning off the system’s
power through the movement of alarge red switch). It isimplied by the entry of this off state through a
mechanical means that no electrical current is running through the circuitry and that it can be worked
on without damaging the hardware or endangering service personnel. The OS must be restarted to
return to the Working state. No hardware context is retained. Except for the real-time clock, power
consumption is zero.

G2/S5 Soft Off
A computer state where the computer consumes a minimal amount of power. No user mode or system
mode code isrun. This state requires alarge latency in order to return to the Working state. The
system’s context will not be preserved by the hardware. The system must be restarted to return to the
Working state. It is not safe to disassemble the machine in this state.

G1 Sleeping
A computer state where the computer consumes a small amount of power, user mode threads are not
being executed, and the system “appears’ to be off (from an end user’ s perspective, the display is off,
and so on). Latency for returning to the Working state varies on the wake environment selected prior to
entry of this state (for example, whether the system should answer phone calls). Work can be resumed
without rebooting the OS because large elements of system context are saved by the hardware and the
rest by system software. It is not safe to disassemble the machine in this state.

GO Working
A computer state where the system dispatches user mode (application) threads and they execute. In this
state, peripheral devices (peripherals) are having their power state changed dynamically. The user can
select, through some Ul, various performance/power characteristics of the system to have the software
optimize for performance or battery life. The system responds to external eventsin real time. It is not
safe to disassemble the machine in this state.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

40 Advanced Configuration and Power Interface Specification

4 Non-Volatile Sleep

A specia global system state that allows system context to be saved and restored (relatively slowly)
when power islost to the motherboard. If the system has been commanded to enter $4, the OS will
write all system context to a file on non-volatile storage media and leave appropriate context markers.
The machine will then enter the $4 state. When the system leaves the Soft Off or Mechanical Off state,
transitioning to Working (G0) and restarting the OS, a restore from a NV S file can occur. Thiswill
only happen if avalid non-volatile sleep data set is found, certain aspects of the configuration of the
machine have not changed, and the user has not manually aborted the restore. If all these conditions are
met, as part of the OS restarting, it will reload the system context and activate it. The net effect for the
user iswhat looks like aresume from a Sleeping (G1) state (albeit slower). The aspects of the machine
configuration that must not change include, but are not limited to, disk layout and memory size. It
might be possible for the user to swap a PC Card or a Device Bay device, however.

Notice that for the machine to transition directly from the Soft Off or Sleeping states to $4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so that

the OS or BIOS can save the system context takes too long from the user’s point of view. The
transition from Mechanical Off to $4 islikely to be done when the user is not there to seeit.

Because the $4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table2-1 Summary of Global Power States

Safeto

Global Software Power OSrestart | disassemble | Exit state
system state | runs Latency consumption | required computer electronically
GO Working | Yes 0 Large No No Yes
G1 Sleeping | No >0, varieswith | Smaller No No Yes

deep state
G2/S5 Soft No Long Very near 0 Yes No Yes
Off
G3 No Long RTC battery | Yes Yes No
Mechanical
Off

Notice that the entries for G2/S5 and G3 in the Latency column of the above table are “Long.” Thisimplies
that a platform designed to give the user the appearance of “instant-on,” similar to a home appliance device,
will use the GO and G1 states almost exclusively (the G3 state may be used for moving the machine or

repairing it).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Definition of Terms 41

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole isin the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:

e Power consumption. How much power the device uses.

e Device context. How much of the context of the device is retained by the hardware. The OSis
responsible for restoring any lost device context (this may be done by resetting the device).

e Devicedriver. What the device driver must do to restore the device to full on.

e Restoretime. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes, only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For alist of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 (Off)
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devicesin this state do not decode their address lines. Devicesin this state have the longest
restore times. All classes of devices define this state.

D3hot
The meaning of the D3hot State is defined by each device class. Devices in the D3hot State are
required to be software enumerable. In general, D3hot is expected to save more power and optionally
preserve device context. If device context islost when this state is entered, the OS software will
reinitialize the device when transitioning to DO. Devices in this state can have long restore times. All
classes of devices define this state.

NOTE: The D3hot state differs from the D3 state in two distinct parameters; the main power rail is
present and software can access a device in D3hot. For devices that support both D3hot and D3
exposed to OSPM via_PR3, device software/drivers must always assume OSPM will target D3and
must assume device context will be lost.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
DO. Busesin D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

DO (Fully-On)
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember al relevant context continuously.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

42 Advanced Configuration and Power Interface Specification

Table2-2 Summary of Device Power States

Device State | Power Consumption Device Context Retained | Driver Restoration

DO - Fully-On | Asneeded for operation All None

D1 D0>D1>D2> D3hot>D3 | >D2 <D2

D2 D0>D1>D2> D3hot>D3 | <D1 >D1

D3hot D0>D1>D2>D3hot>D3 Optional None <->Full initialization
and load

D3 - Off 0 None Full initialization and |oad

Note: Devices often have different power modes within a given state. Devices can use these modes as long
asthey can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device isin. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

2.4 Sleeping State Definitions

Sleeping states (Sx states) are types of sleeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section
7.3.4,“System\ Sx States.” For a detailed definition of the transitions between each of the Sx states, see
section 15.1, “Sleeping States.”

S1 Sleeping State
The S1 deeping state is alow wake latency deeping state. In this state, no system context islost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 deeping state is alow wake latency deeping state. This stateis similar to the S1 sleeping state
except that the CPU and system cache context islost (the OS is responsible for maintaining the caches
and CPU context). Control starts from the processor’ s reset vector after the wake event.

S3 Sleeping State
The S3 deeping state is alow wake latency seeping state where all system context islost except
system memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory
context and restores some CPU and L2 configuration context. Control starts from the processor’s reset
vector after the wake event.

4 Sleeping State
The $4 deeping state is the lowest power, longest wake latency sleeping state supported by ACPI. In
order to reduce power to a minimum, it is assumed that the hardware platform has powered off all
devices. Platform context is maintained.

S5 Soft Off State
The S5 stateis similar to the $4 state except that the OS does not save any context. The systemisin
the “soft” off state and requires a complete boot when it wakes. Software uses a different state value to
distinguish between the S5 state and the $4 state to alow for initial boot operations within the BIOS to
distinguish whether or not the boot is going to wake from a saved memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states within
the global working state, GO. The Cx states possess specific entry and exit semantics and are briefly defined
below. For amore detailed definition of each Cx state, see section 8.1, “Processor Power States.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Definition of Terms 43

CO Processor Power State
While the processor isin this state, it executesinstructions.

C1 Processor Power State
This processor power state has the lowest latency. The hardware latency in this state must be low
enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it. Aside from putting the processor in a non-executing power state, this state has no
other software-visible effects.

C2 Processor Power State
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for
this state is provided viathe ACPI system firmware and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting
the processor in a non-executing power state, this state has no other software-visible effects.

C3 Processor Power State
The C3 state offers improved power savings over the C1 and C2 states. The worst-case hardware
latency for this state is provided via the ACPI system firmware and the operating software can use this
information to determine when the C2 state should be used instead of the C3 state. Whilein the C3
state, the processor’ s caches maintain state but ignore any snoops. The operating software is
responsible for ensuring that the caches maintain coherency.

2.6 Device and Processor Performance State Definitions

Device and Processor performance states (Px states) are power consumption and capability states within the
active/executing states, CO for processors and DO for devices. The Px states are briefly defined below. For a
more detailed definition of each Px state from a processor perspective, see section 8.4.4, “ Processor
Performance Control.” For a more detailed definition of each Px state from a device perspective see section
3.6, “Device and Processor Performance States,” and the device class specificationsin Appendix A.

PO Performance State
While a device or processor isin this state, it uses its maximum performance capability and may
consume maximum power.

P1 Performance State
In this performance power state, the performance capability of adevice or processor is limited below
its maximum and consumes |ess than maximum power.

Pn Performance State
In this performance state, the performance capability of a device or processor is at its minimum level
and consumes minimal power while remaining in an active state. State n is a maximum number and is
processor or device dependent. Processors and devices may define support for an arbitrary number of
performance states not to exceed 16.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

44 Advanced Configuration and Power Interface Specification

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 45

3 ACPI Overview

Platforms compliant with the ACPI specification provide OSPM with direct and exclusive control over the
power management and motherboard device configuration functions of a computer. During OS
initialization, OSPM takes over these functions from legacy implementations such as the APM BIOS,

SMM -based firmware, legacy applications, and the PNPBIOS. Having done this, OSPM isresponsible for
handling motherboard device configuration events as well asfor controlling the power, performance, and
thermal status of the system based on user preference, application requests and OS imposed Quality of
Service (QOS) / usability goals. ACPI provides low-level interfaces that allow OSPM to perform these
functions. The functional areas covered by the ACPI specification are:

e System power management. ACPI defines mechanisms for putting the computer as a wholein and
out of system sleeping states. It also provides a general mechanism for any device to wake the
computer.

e Device power management. ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

e Processor power management. While the OSisidle but not sleeping, it will use commands described
by ACPI to put processors in low-power states.

e Device and processor performance management. While the systemis active, OSPM will transition
devices and processors into different performance states, defined by ACPI, to achieve adesirable
balance between performance and energy conservation goals as well as other environmental
requirements (for example, visibility and acoustics).

e Configuration / Plug and Play. ACPI specifiesinformation used to enumerate and configure
motherboard devices. Thisinformation is arranged hierarchically so when events such as docking and
undocking take place, the OS has precise, a priori knowledge of which devices are affected by the
event.

e System Events. ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, and so on. This
mechanism is very flexible in that it does not define specifically how events are routed to the core logic
chip set.

e Battery management. Battery management policy moves from the APM BIOS to the ACPI OS. An
ACPI-compatible battery device needs either a Smart Battery subsystem interface, which is controlled
by the OS directly through the embedded controller interface, or a Control Method Battery interface. A
Control Method Battery interface is completely defined by AML control methods, alowing an OEM to
choose any type of the battery and any kind of communication interface supported by ACPI. The
battery must comply with the requirements of itsinterface, as described either herein or in other
applicable standards. The OS may choose to alter the behavior of the battery, for example, by adjusting
the Low Battery or Battery Warning trip point. When there are multiple batteries present, the battery
subsystem is not required to perform any synthesis of a“composite battery” from the data of the
separate batteries. In cases where the battery subsystem does not synthesize a“composite battery”
from the separate battery’ s data, the OS must provide that synthesis.

e Thermal management. Since the OS controls the power and performance states of devices and
processors, ACPI also addresses system thermal management. It provides a simple, scalable model that
allows OEMsto define thermal zones, thermal indicators, and methods for cooling thermal zones.

e Embedded Controller. ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This alows any OS to provide a standard
bus enumerator that can directly communicate with an embedded controller in the system, thus
allowing other drivers within the system to communicate with and use the resources of system
embedded controllers. Thisin turn enables the OEM to provide platform features that the OS and
applications can use.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

46 Advanced Configuration and Power Interface Specification

e SMBusController. ACPI defines a standard hardware and software communications interface
between an OS bus driver and an SMBus Controller. This allows any OS to provide a standard bus
driver that can directly communicate with SMBus devices in the system. Thisin turn enables the OEM
to provide platform features that the OS and applications can use.

OSPM’s mission isto optimally configure the platform and to optimally manage the system’ s power,
performance, and thermal status given the user’ s preferences and while supporting OS imposed Quality of
Service (QOS) / usability goals. To achieve these goals, ACPI requires that once an ACPI compliant
platformisin ACPlI mode, the platform’s hardware, firmware, or other non-OS software must not
manipulate the platform’ s configuration, power, performance, and thermal control interfaces independently
of OSPM. OSPM alone is responsible for coordinating the configuration, power management, performance
management, and thermal control policy of the system. Manipulation of these interfaces independently of
OSPM undermines the purpose of OSPM/ACPI and may adversely impact the system’s configuration,
power, performance, and thermal policy goals. There are two exceptionsto this requirement. Thefirstisin
the case of the possibility of damage to a system from an excessive thermal conditions where an ACPI
compatible OS is present and OSPM latency is insufficient to remedy an adverse thermal condition. In this
case, the platform may exercise a failsafe thermal control mechanism that reduces the performance of a
system component to avoid damage. If this occurs, the platform must notify OSPM of the performance
reduction if the reduction is of significant duration (in other words, if the duration of reduced performance
could adversely impact OSPM’ s power or performance control policy - operating system vendors can
provide guidance in this area). The second exception is the case where the platform contains Active cooling
devices but does not contain Passive cooling temperature trip points or controls,. In this case, a hardware
based Active cooling mechanism may be implemented without impacting OSPM’s goals. Any platform that
requires both active and passive cooling must allow OSPM to manage the platform thermals via ACPI
defined active and passive cooling interfaces.

3.1 System Power Management

Under OSPM, the OS directs all system and device power state transitions. Employing user preferences and
knowledge of how devices are being used by applications, the OS puts devices in and out of low-power
states. Devices that are not being used can be turned off. Similarly, the OS uses information from
applications and user settings to put the system as a whole into alow- power state. The OS uses ACPI to
control power state transitions in hardware.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 47

3.2 Power States

From a user-visible level, the system can be thought of as being in one of the states in the following
diagram:
Power

Failure/
Power Off

G3 -Mech
Off

BIOS
Routine

GO (SO) -
Working)

S1

G1-
Sleeping

Performance
State Px

Co

G2 (S5) -

Soft Off

Figure3-1 Global System Power Statesand Transitions
See section 2.2, “Global System State Definitions,” for detailed definitions of these states.

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do work. User-mode application threads are dispatched and running. Individual devices
can be in low-power (Dx) states and processors can be in low-power (Cx) statesif they are not being used.
Any device the system turns off because it is not actively in use can be turned on with short latency. (What
“short” means depends on the device. An LCD display needs to come on in sub-second times, whileit is
generally acceptable to wait a few seconds for a printer to wake.)

The net effect of thisisthat the entire machine is functional in the Working state. Various Working sub-
states differ in speed of computation, power used, heat produced, and noise produced. Tuning within the
Working state is largely about trade-offs among speed, power, heat, and noise.

When the computer isidle or the user has pressed the power button, the OS will put the computer into one
of the slegping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states
differ in what events can arouse the system to a Working state, and how long this takes. When the machine
must awaken to all possible events or do so very quickly, it can enter only the sub-states that achieve a
partial reduction of system power consumption. However, if the only event of interest is a user pushing on
aswitch and alatency of minutesis allowed, the OS could save all system context into an NV Sfile and
transition the hardware into the $4 deeping state. In this state, the machine draws almost zero power and
retains system context for an arbitrary period of time (years or decades if needed).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

48 Advanced Configuration and Power Interface Specification

The other states are used |ess often. Computers that support legacy BIOS power management interfaces
boot in the Legacy state and transition to the Working state when an ACPI OS loads. A system without
legacy support (for example, a RISC system) transitions directly from the Mechanical Off state to the
Working state. Userstypically put computers into the Mechanical Off state by flipping the computer’s
mechanical switch or by unplugging the computer.

3.2.1 Power Button

In legacy systems, the power button typically either forces the machine into Soft Off or Mechanical Off or,
on alaptop, forcesit to some sleeping state. No allowance is made for user policy (such as the user wants
the machine to “come on” in less than 1 second with all context as it was when the user turned the machine
“off"), system alert functions (such as the system being used as an answering machine or fax machine), or
application function (such as saving a user file).

Inan OSPM system, there are two switches. Oneisto transition the system to the Mechanical Off state. A
mechanism to stop current flow isrequired for legal reasons in some jurisdictions (for example, in some
European countries). The other isthe “main” power button. Thisisin some obvious place (for example,
beside the keyboard on alaptop). Unlike legacy on/off buttons, all it doesis send a request to the system.
What the system does with this request depends on policy issues derived from user preferences, user
function requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC

Mobile PCs will continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are thermal management (see section
11, “Therma Management”) and the embedded controller interface (see section 12, “ACPI Embedded
Controller Interface Specification™).

3.2.2.2 Desktop PCs
Power-managed desktops will be of two types, though the first type will migrate to the second over time.

e Ordinary “Green PC.” Here, new appliance functions are not the issue. The machineisrealy only
used for productivity computations. At least initially, such machines can get by with very minimal
function. In particular, they need the normal ACPI timers and controls, but don’t need to support
elaborate deeping states, and so on. They, however, do need to allow the OS to put as many of their
devices/resources as possible into device standby and device off states, as independently as possible (to
allow for maximum compute speed with minimum power wasted on unused devices). Such PCs will
also need to support wake from the sleeping state by means of atimer, because this alows
administrators to force them to turn on just before people are to show up for work.

e Home PC. Computers are moving into home environments where they are used in entertainment
centers and to perform tasks like answering the phone. A home PC needs all of the functionality of the
ordinary green PC. In fact, it has all of the ACPI power functionality of alaptop except for docking
and lid events (and need not have any legacy power management). Note that there is also a thermal
management aspect to a home PC, as a home PC user wants the system to run as quietly as possible,
often in athermally constrained environment.

3.2.2.3 Multiprocessor and Server PCs

Perhaps surprisingly, server machines often get the largest absolute power savings. Why? Because they
have the largest hardware configurations and because it’s not practical for somebody to hit the off switch
when they leave at night.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 49

e Day Mode. In day mode, servers are power-managed much like a corporate ordinary green PC, staying
in the Working state all the time, but putting unused devicesinto low-power states whenever possible.
Because servers can be very large and have, for example, many disk spindles, power management can
result in large savings. OSPM allows careful tuning of when to do this, thus making it workable.

e Night Mode. In night mode, serverslook like home PCs. They sleep as deeply as they can and are till
able to wake and answer service requests coming in over the network, phone links, and so on, within
specified latencies. So, for example, a print server might go into deep sleep until it receives a print job
at 3 A.M., at which point it wakes in perhaps less than 30 seconds, prints the job, and then goes back to
deep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN
adapter that can wake the system in response to an interesting received packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power
management are discussed, the wake operation devices use to wake the computer from a sleeping state is
described, and an example of ACPI-compatible device management using a modem is given.

3.3.1 Power Management Standards

To manage power of all the devicesin the system, the OS needs standard methods for sending commands
to adevice. These standards define the operations used to manage power of devices on a particular 1/0
interconnect and the power states that devices can be put into. Defining these standards for each I/O
interconnect creates a baseline level of power management support the OS can utilize. Independent
Hardware Vendors (IHV's) do not have to spend extra time writing software to manage power of their
hardware, because simply adhering to the standard gains them direct OS support. For OS vendors, the I/O
interconnect standards allow the power management code to be centralized in the driver for each I/0
interconnect. Finally, 1/O interconnect-driven power management allows the OS to track the states of all
devices on agiven I/O interconnect. When all the devices arein a given state (or example, D3 - off), the OS
can put the entire 1/0O interconnect into the power supply mode appropriate for that state (for example, D3 -
off).

I/O interconnect-level power management specifications are written for a number of buses including:
e PCI

PCl Express

CardBus

USB

|EEE 1394

3.3.2 Device Power States

To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generally, these states are defined in terms of the following criteria:

e Power consumption. How much power the device uses.

e Device context How much of the context of the device is retained by the hardware.
e Devicedriver. What the device driver must do to restore the device to fully on.

e Restorelatency. How long it takes to restore the device to fully on.

More specifically, power management specifications for each class of device (for example, modem,
network adapter, hard disk, and so on) more precisely define the power states and power policy for the
class. See section 2.3, “Device Power State Definitions,” for the detailed description of the general device
power states (DO-D3).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

50 Advanced Configuration and Power Interface Specification

3.3.3 Device Power State Definitions

The device power state definitions are device-independent, but classes of devices on a bus must support
some consistent set of power-related characteristics. For example, when the bus-specific mechanism to set
the device power state to agiven level isinvoked, the actions a device might take and the specific sorts of
behaviors the OS can assume while the deviceisin that state will vary from device type to device type. For
afully integrated device power management system, these class-specific power characteristics must also be
standardized:

e Device Power State Characteristics. Each class of device has a standard definition of target power
consumption levels, state-change latencies, and context |oss.

e Minimum Device Power Capabilities. Each class of device has a minimum standard set of power
capabilities.

e Device Functional Characteristics. Each class of device has a standard definition of what subset of
device functionality or featuresis available in each power state (for example, the net card can receive,
but cannot transmit; the sound card is fully functional except that the power amps are off, and so on).

o Device Wakeup Characteristics. Each class of device has a standard definition of its wake policy.

The Microsoft Device Class Power Management specifications define these power state characteristics for
each class of device.

3.4 Controlling Device Power

ACPI interfaces provides control and information needed to perform device power management. ACPI
interfaces describe to OSPM the capabilities of al the devicesit controls. It also gives the OS the control
methods used to set the power state or get the power status for each device. Finally, it has a general scheme
for devicesto wake the machine.

Note: Other buses enumerate some devices on the main board. For example, PCI devices are reported
through the standard PCI enumeration mechanisms. Power management of these devicesis handled
through their own bus specification (in this case, PCI). All other devices on the main board are handled
through ACPI. Specifically, the ACPI table lists legacy devices that cannot be reported through their own
bus specification, the root of each busin the system, and devices that have additional power management or
configuration options not covered by their own bus specification.

For more detailed information see section 7, “Power and Performance Management.”

3.4.1 Getting Device Power Capabilities

Asthe OS enumerates devices in the system, it getsinformation about the power management features that
the device supports. The Differentiated Definition Block given to the OS by the BIOS describes every
device handled by ACPI. This description contains the following information:

e A description of what power resources (power planes and clock sources) the device needs in each
power state that the device supports. For example, a device might need a high power bus and aclock in
the DO state but only a low-power bus and no clock in the D2 state.

e A description of what power resources a device needs in order to wake the machine (or noneto
indicate that the device does not support wake). The OS can use thisinformation to infer what device
and system power states from which the device can support wake.

e Theoptiona control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7,
“Power and Performance Management.”

3.4.2 Setting Device Power States
OSPM uses the Set Power State operation to put a device into one of the four power states.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 51

When adeviceis put in alower power state, it configuresitself to draw as little power from the bus as
possible. The OS tracks the state of all devices on the bus, and will put the bus in the best power state based
on the current device requirements on that bus. For example, if al devices on abus are in the D3 state, the
OS will send a command to the bus control chip set to remove power from the bus (thus putting the busin
the D3 state). If a particular bus supports alow-power supply state, the OS puts the bus in that state if all
devicesareinthe D1 or D2 state. Whatever power state adeviceisin, the OS must be able to issue a Set
Power State command to resume the device.

Note: The device does not need to have power to do this. The OS must turn on power to the device before
it can send commands to the device.

OSPM also uses the Set Power State operation to enable power management features such as wake
(described in section 7, “Power and Performance Management.”).

When adeviceisto be set in a particular power state using the ACPI interface, the OSfirst decides which
power resources will be used and which can be turned off. The OStracks all the devices on a given power
resource. When all the devices on aresource have been turned off, the OS turns off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needsto
be turned on, the OS first turns on the power resource using a control method and then signals the device to
turn on. The time that the OS must wait for the power resource to stabilize after turning it on or off is
described in the description table. The OS uses the time base provided by the Power Management Timer to
measure these time intervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the
devicein that power state. Notice that this might not mean that power is removed from the device. If other
active devices are sharing a power resource, the power resources will remain on.

3.4.3 Getting Device Power Status

OSPM uses the Get Power Status operation to determine the current power configuration (states and
features), as well asthe status of any batteries supported by the device. The device can signal an SCI to
inform the OS of changesin power status. For example, a device can trigger an interrupt to inform the OS
that the battery has reached low power level.

Devices use the ACPI event model to signal power status changes (for example, battery status changes) to
OSPM. The platform signals events to the OS viathe SCI interrupt. An SCI interrupt status bit is set to
indicate the event to the OS. The OS runs the control method associated with the event. This control
method signal's to the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information and
batteries that support the Smart Battery System Implementers Forum Smart Battery Specification. For
batteries that report only basic battery status information (such as total capacity and remaining capacity),
the OS uses control methods from the battery’ s description table to read this information. To read status
information for Smart Batteries, the OS can use a standard Smart Battery driver that directly interfacesto
Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The wake operation enables devices to wake the computer from a sleeping power state. This operation must
not depend on the CPU because the CPU will not be executing instructions.

The OS ensures any bridges between the device and the core logic are in the lowest power state in which
they can till forward the wake signal. When a device with wake enabled decides to wake the machine, it
sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using the
appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (for example, an ACPI
chip set), which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake
the machine based on application requests, and then enables wake on those devicesin adevice and bus
specific manner.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

52 Advanced Configuration and Power Interface Specification

The OS enables the wake feature on devices by setting that device' s SCI Enable bit. The location of this bit
islisted in the device' s entry in the description table. Only devices that have their wake feature enabled can
wake the machine. The OS keeps track of the power states that the wake devices support, and keeps the
machine in a power state in which the wake can still wake the machine® (based on capabilities reported in
the description table).

When the computer isin the Sleeping state and a wake device decides to wake the machine, it signalsto the
ACPI chip set. The SCI status bit corresponding to the device waking the machineis set, and the ACPI chip
set resumes the machine. After the OSisrunning again, it clears the bit and handles the event that caused
the wake. The control method for this event then uses the Notify command to tell the OS which device
caused the wake.

Note: Besides using ACPI mechanism to enable a particular device to wake the system, an ACPI platform
must also be able to record and report the wake source to OSPM. When a system is woken from certain
states (such asthe $4 state), it may start out in non-ACPI mode. In this case, the SCI status bit may be
cleared when ACPI mode is re-entered. However the platform must till attempt to record the wake source
for retrieval by OSPM at alater point.

Note: Although the above description explains how a device can wake the system, note that a device can
also be put into alow power state during the SO system state, and that this device may generate a wake
signal in the SO state as the following exampleillustrates.

! Some OS policies may require the OS to put the machine into a global system state for which the device
can no longer wake the system. Such as when a system has very low battery power.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 53

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem.
(Thisexampleis greatly simplified for the purposes of this discussion.) The power states of a modem are
defined as follows (this is an excerpt from the Modem Device Class Power Management Specification):

DO Modem controller on
Phone interface on
Speaker on
Can be on hook or off hook
Can be waiting for answer

D1 Modem controller in low-power mode (context retained by device)
Phone interface powered by phone line or in low-power mode
Speaker off
Must be on hook

D2 Sameas D3

D3 Modem controller off (context lost)
Phone interface powered by phone line or off
Speaker off
On hook
The power policy for the modem is defined as follows:
D311 D0 COM port opened
DO,D111D3 COM port closed
DO D1 Modem put in answer mode
D111 DO Application requests dial or the phone rings while the modem isin answer mode

The wake policy for the modem is very simple: When the phone rings and wake is enabled, wake the
machine.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

54 Advanced Configuration and Power Interface Specification

Based on that policy, the modem and the COM port to which it is attached can be implemented in hardware
as shown in Figure 3-2. Thisisjust an example for illustrating features of ACPI. This example is not
intended to describe how OEMSs should build hardware.

PWR1 PWR2
25 25
PWRLEN — | | 7 ®
PWR2_EN | ﬁ
MDM_D3
MDM D1 |
COM_D3
- v A \ A
ACPI core /o /o /o
chip set COM port Modem Control Phone Phone
(UART) controller interface line
RI
WAKE «

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has some isolation logic so that the part isisolated
when power is removed from it. Isolation logic controls are implemented as power resources in the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Obtaining the Modem Capabilities

The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s
entry in the Differentiated Definition Block. In this case, the entry for the modem would report:

The device supports DO, D1, and D3:

DO requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)

To wake the machine, the modem needs no power resources (implying it can wake the machine from DO,
D1, and D3)

Control methods for setting power state and resources

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 55

3.4.5.2 Setting the Modem Power State

While the OSisrunning (GO state), it switches the modem to different power states according to the power
policy defined for modems.

When an application opens the COM port, the OS turns on the modem by putting it in the DO state. Then if
the application puts the modem in answer mode, the OS puts the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In
this case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use
of the PWR2 power resource. If the resource is no longer needed, the OSPM uses the _ OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power
plane. This control method sends the appropriate commands to the core chip set to stop asserting the
PWR2_EN line. Then, OSPM runs a control method (_PS1) provided in the modem’ s entry to put the
devicein the D1 state. This control method assertsthe MDM_D1 signal that tells the modem controller to
go into alow-power mode.

OSPM does not always turn off power resources when a given device is put in alower power state. For
example, assume that the PWR1 power plane also powers an active line printer (LPT) port. Suppose the
user terminates the modem application, causing the COM port to be closed, and therefore causing the
modem to be shut off (state D3). As always, OSPM checks to see which power resources are no longer
needed. Because the LPT port is still active, PWR1 isin use. OSPM does not turn off the PWRL1 resource.
It continues the state transition process by running the modem’ s control method to switch the device to the
D3 power state. The control method causes the MDM_D3 line to be asserted. The modem controller now
turns off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM
port is closed, the same sequence of events will take place to put it in the D3 state. Notice that these
registers might not be in the device itself. For example, the control method could read the register that
controlsMDM_Da3.

3.4.5.3 Obtaining the Modem Power Status

Integrated modems have no batteries; the only power status information for the device is the power state of
the modem. To determine the modem’ s current power state (DO-D3), OSPM runs a control method (_ PSC)
supplied in the modem’ s entry in the Differentiated Definition Block. This control method reads from the
necessary registers to determine the modem’s power state.

3.4.5.4 Waking the Computer

Asindicated in the modem capabilities, this modem can wake the machine from any device power state.
Before putting the computer in a sleep state, the OS enables wake on any devices that applications have
requested to be able to wake the machine. Then, it chooses the lowest sleeping state that can till provide
the power resources necessary to allow all enabled wake devices to wake the machine. Next, the OS puts
each of those devices in the appropriate power state, and puts al other devicesin the D3 state. In this case,
the OS puts the modem in the D3 state because it supports wake from that state. Finally, the OS saves a
resume vector and puts the machine into a sleep state through an ACPI register.

Waking the computer via modem starts with the modem'’ s phone interface asserting its ring indicate (RI)
line when it detects aring on the phone line. Thisline is routed to the core chip set to generate a wake
event. The chip set then wakes the system and the hardware will eventually passes control back to the OS
(the wake mechanism differs depending on the sleeping state). After the OSisrunning, it putsthe devicein
the DO state and begins handling interrupts from the modem to process the event.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

56 Advanced Configuration and Power Interface Specification

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3)
when the OSisidle. In these low-power states, the CPU does not run any instructions, and wakes when an
interrupt, such as the OS scheduler’ s timer interrupt, occurs.

The OS determines how much timeis being spent in itsidle loop by reading the ACPI Power Management
Timer. Thistimer runs at a known, fixed frequency and allows the OS to precisely determineidle time.
Depending on thisidle time estimate, the OS will put the CPU into different quality low-power states
(which vary in power and latency) when it entersitsidle loop.

The CPU states are defined in detail in section 8, “Processor Configuration and Control.”

3.6 Device and Processor Performance States

This section describes the concept of device and processor performance states. Device and processor
performance states (Px states) are power consumption and capability states within the active/executing
states, CO for processors and DO for devices. Performance states allow OSPM to make tradeoffs between
performance and energy conservation. Device and processor performance states have the greatest impact
when the states invoke different device and processor efficiency levels as opposed to alinear scaling of
performance and energy consumption. Since performance state transitions occur in the active/executing
device states, care must be taken to ensure that performance state transitions do not adversely impact the
system.

Examples of device performance states include:

e A hard drive that provides levels of maximum throughput that correspond to levels of power
consumption.

e An LCD pand that supports multiple brightness levels that correspond to levels of power consumption.

e A graphics component that scales performance between 2D and 3D drawing modes that corresponds to
levels of power consumption.

e Anaudio subsystem that provides multiple levels of maximum volume that correspond to levels of
maximum power consumption.

e A Direct-RDRAM™ controller that provides multiple levels of memory throughput performance,
corresponding to multiple levels of power consumption, by adjusting the maximum bandwidth
throttles.

Processor performance states are described in Section 8, “Processor Configuration and Control.”

3.7 Configuration and “Plug and Play”

In addition to power management, ACPI interfaces provide controls and information that enable OSPM to
configure the required resources of motherboard devices along with their dynamic insertion and removal.
ACPI Definition Blocks, including the Differentiated System Description Table (DSDT) and Secondary
System Description Tables (SSDTs), describe motherboard devicesin a hierarchical format called the
ACPI namespace. The OS enumerates motherboard devices simply by reading through the ACPI
Namespace looking for devices with hardware I1Ds.

Each device enumerated by ACPI includes ACPI-defined objects in the ACPlI Namespace that report the
hardware resources that the device could occupy, an object that reports the resources that are currently used
by the device, and objects for configuring those resources. The information is used by the Plug and Play OS
(OSPM) to configure the devices.

ACPI is used primarily to enumerate and configure motherboard devices that do not have other hardware
standards for enumeration and configuration. For example, PCI devices on the motherboard need not be
enumerated by ACPI; Plug and Play information for these devices need not be included in the APCI
Namespace. However, power management information and insertion/removal control for these devices can
still appear in the namespace if the devices' power management and/or insertion/removal is to be controlled
by OSPM via ACPI-defined interfaces.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 57

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes
boot devices described in the ACPI system description tables as well as devices that are controlled through
other standards.

3.7.1 Device Configuration Example: Configuring the Modem

Returning to the modem device example above, the OS will find the modem and load a driver for it when
the OSfindsit inthe DSDT. Thistable will have control methods that give the OS the following
information:

e Thedevice canuseIRQ 3, 1/0 3F8-3FF or IRQ 4, 1/0O 2E8-2EF

e Thedeviceiscurrently using IRQ 3, 1/0 3F8-3FF

The OS configures the modem’ s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, OSPM configures the device
for those resources by running a control method supplied in the modem'’ s section of the Differentiated
Definition Block. This control method will write to any 1/O ports or memory addresses necessary to
configure the device to the given resources.

3.7.2 NUMA Nodes

Systems employing a Non Uniform Memory Access (NUMA) architecture contain collections of hardware
resources including processors, memory, and I/O buses, that comprise what is commonly known as a
“NUMA node”. Processor accesses to memory or 1/0O resources within the local NUMA nodeis generally
faster than processor accesses to memory or 1/O resources outside of the local NUMA node. ACPI defines
interfaces that allow the platform to convey NUMA node topology information to OSPM both statically at
boot time and dynamically at run time as resources are added or removed from the system.

3.8 System Events

ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events.
There are two registers that make up the event model: an event status register and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the
corresponding bit in the enable register is set, the core logic will assert the SCI to signal the OS. When the
OS receivesthisinterrupt, it will run the control methods corresponding to any bits set in the event status
register. These control methods use AML commands to tell the OS what event occurred.

For example, assume a machine has all of its Plug and Play, Thermal, and Power Management events
connected to the same pin in the core logic. The event status and event enable registers would only have
one hit each: the bit corresponding to the event pin.

When the computer is docked, the core logic sets the status bit and signals the SCI. The OS, seeing the
status bit set, runs the control method for that bit. The control method checks the hardware and determines
the event was a docking event (for example). It then signals to the OS that a docking event has occurred,
and can tell the OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform
implementations. The single pin model above isjust one example. Another design might have Plug and
Play, Thermal, and Power Management events wired to three different pins so there would be three status
bits (and three enable bits). Y et another design might have every individual event wired to its own pin and
status bit. This design, at the opposite extreme from the single pin design, allows very complex hardware,
yet very simple control methods. Countless variations in wiring up events are possible. However, note that
care must be taken to ensure that if events share asignal that the event that generated the signal can be
determined in the corresponding event handling control method allowing the proper device notification to
be sent.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

58 Advanced Configuration and Power Interface Specification

3.9 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. Batteries must
comply with the requirements of their associated interfaces, as described either herein or in other applicable
standards. The OS may choose to alter the behavior of the battery, for example, by adjusting the Low
Battery or Battery Warning trip point. When there are multiple batteries present, the battery subsystemis
not required to perform any synthesis of a“composite battery” from the data of the separate batteries. In
cases where the battery subsystem does not synthesize a “ composite battery” from the separate battery's
data, the OS must provide that synthesis.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method
Battery interface.

e Smart Battery is controlled by the OS directly through the embedded controller (EC). For more
information about the ACPI Embedded Controller SMBus interface, see section 12.9, “SMBus Host
Controller Interface via Embedded Controller.” For additional information about the Smart Battery
subsystem interface, see section 10.1, “Smart Battery Subsystems.”

e Control Method Battery is completely accessed by AML code control methods, allowing the OEM to
choose any type of battery and any kind of communication interface supported by ACPI. For more
information about the Control Method Battery Interface, see section 10.2, “ Control Method Batteries.”

This section describes concepts common to al battery types.

3.9.1 Battery Communications

Both the Smart Battery and Control Method Battery interfaces provide a mechanism for the OS to query
information from the platform’s battery system. This information may include full charged capacity,
present battery capacity, rate of discharge, and other measures of the battery’ s condition. All battery system
types must provide notification to the OS when there is a change such asinserting or removing a battery, or
when a battery starts or stops discharging. Smart Batteries and some Control Method Batteries are also able
to give notifications based on changes in capacity. Smart batteries provide extrainformation such as
estimated run-time, information about how much power the battery is able to provide, and what the run-
time would be at a predetermined rate of consumption.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 59

3.9.2 Battery Capacity

Each battery must report its designed capacity, latest full-charged capacity, and present remaining capacity.
Remaining capacity decreases during usage, and it also changes depending on the environment. Therefore,
the OS must use latest full-charged capacity to calculate the battery percentage. In addition the battery
system must report warning and low battery levels at which the user must be notified and the system
transitioned to a sleeping state. See Figure 3-3 for the relation of these five values.

A system may use either rate and capacity [mA/mAh] or power and energy [mW/mWAh] for the unit of
battery information calculation and reporting. Mixing [mA] and [mW] is not allowed on a system.

- Designed capacity
L [EEEERER TR Last full charged capacity

””” <4+— Present remaining capacity

| e OEM designed initial capacity for warning
- _ IR EEETEEEE OEM designed initial capacity for low

Figure 3-3 Reporting Battery Capacity

3.9.3 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%)] using the following formula:

- Battery Remaining Capacity [mAh/mWh]
Remaining Battery Percentage[%] = * 100

Last Full Charged Capacity [mMAh/mWh]

Control Method Battery also reports the Present Drain Rate [mA or mW] for calculating the remaining
battery life. At the most basic level, Remaining Battery life is calculated by following formula:

Battery Remaining Capacity [mAh/mWh]
Battery Present Drain Rate [mA/mW]

Remaining Battery Life [h]=

Smart Batteries also report the present rate of drain, but since they can directly report the estimated run-
time, this function should be used instead as it can more accurately account for variations specific to the
battery.

3.9.4 Low Battery Levels

A system has an OEM-designed initial capacity for warning, initial capacity for low, and a critical battery
level or flag. The values for warning and low represent the amount of energy or battery capacity needed by
the system to take certain actions. The critical battery level or flag is used to indicate when the batteriesin
the system are completely drained. OSPM can determine independent warning and low battery capacity
values based on the OEM-designed levels, but cannot set these values lower than the OEM-designed
values, as shown in the figure below

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

60 Advanced Configuration and Power Interface Specification

Full — :
K Last full charged capacity

OSPM-selected low battery warning capacity

AMA

Warning

E "‘J:OW

Critical AN OEM-defined Battery Critical flag

OEM-designed initial capacity for warning (minimum)

OSPM-selected low battery

OEM-designed initial capacity for low (minimum)

Figure3-4 Low Battery and Warning

Each Control Method Battery in a system reports the OEM-designed initial warning capacity and OEM-
designed initial low capacity as well asaflag to report when that battery has reached or is below its critical
energy level. Unlike Control Method Batteries, Smart Batteries are not necessarily specific to one particular

machine type, so the OEM-designed warning, low, and critical levels are reported separately in a Smart
Battery Table described in section 5.2.13.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 61

The table below describes how these values should be set by the OEM and interpreted by the OS.

Table3-1 Low Battery Levels

Level

Description

Warning

When the total available energy (mWh) or capacity (mAh) in the batteries falls below this
level, the OS will notify the user through the Ul. This value should allow for afew minutes
of run-time before the “Low” level is encountered so the user has time to wrap up any
important work, change the battery, or find a power outlet to plug the system in.

Low

Thisvalueis an estimation of the amount of energy or battery capacity required by the
system to transition to any supported sleeping state. When the OS detects that the total
available battery capacity is less than this value, it will transition the system to a user
defined system state (S1-S5). In most situations this should be $4 so that system stateis not
lost if the battery eventually becomes completely empty. The design of the OS should
consider that users of a multiple battery system may remove one or more of the batteriesin
an attempt replace or charge it. This might result in the remaining capacity falling below
the “Low” level not leaving sufficient battery capacity for the OS to safely transition the
system into the sleeping state. Therefore, if the batteries are discharging simultaneously,
the action might need to be initiated at the point when both batteries reach thislevel.

Critical

The Critical battery state indicates that all available batteries are discharged and do not
appear to be able to supply power to run the system any longer. When this occurs, the OS
must attempt to perform an emergency shutdown as described below.

For a smart battery system, this would typically occur when all batteries reach a capacity of
0, but an OEM may choose to put alarger value in the Smart Battery Table to provide an
extramargin of safely.

For a Control Method Battery system with multiple batteries, the flag is reported per
battery. If any battery in the systemisin acritically low state and is still providing power
to the system (in other words, the battery is discharging), the systemis considered to bein
acritical energy state. The BST control method is required to return the Critical flag on a
discharging battery only when all batteries have reached acritical state; the ACPI BIOSis
otherwise required to switch to a non-critical battery.

3.9.4.1 Emergency Shutdown

Running until all batteriesin a system are critical is not a situation that should be encountered normally,
since the system should be put into a dleeping state when the battery becomes low. In the case that this does
occur, the OS should take steps to minimize any damage to system integrity. The emergency shutdown
procedure should be designed to minimize bad effects based on the assumption that power may be lost at
any time. For example, if a hard disk is spun down, the OS should not try to spin it up to write any data,
since spinning up the disk and attempting to write data could potentially corrupt filesif the write were not
completed. Even if adisk is spun up, the decision to attempt to save even system settings data before
shutting down would have to be evaluated since reverting to previous settings might be less harmful than
having the potential to corrupt the settingsif power was lost halfway through the write operation.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

62 Advanced Configuration and Power Interface Specification

3.9.5 Battery Calibration

The reported capacity of many batteries generally degrade over time, providing less run time for the user.
However, it is possible with many battery systems to provide more useable runtime on an old battery if a
calibration or conditioning cycle is run occasionally. The user has typically been able to perform a
calibration cycle either by going into the BIOS setup menu, or by running a custom driver and calibration
application provided by the OEM. The calibration process typically takes several hours, and the laptop
must be plugged in during this time. Ideally the application that controls this should make this as good of a
user experience as possible, for example allowing the user to schedule the system to wake up and perform
the calibration at some time when the system will not be in use. Since the calibration user experience does
not need to be different from system to system it makes sense for this service to be provided by the OSPM.
.Inthisway OSPM can provide a common experience for end users and eliminate the need for OEMs to
develop custom battery calibration software.

In order for OSPM to perform generic battery calibration, generic interfaces to control the two basic
calibration functions are required. These functions are defined in section 10.2.2.5 and 10.2.2.6. First, there
isameansto detect when it would be beneficial to calibrate the battery. Second there is a means to perform
that calibration cycle. Both of those functions may be implemented by dedicated hardware such as a battery
controller chip, by firmware in the embedded controller, by the BIOS, or by OSPM. From here on any
function implemented through AML, whether or not the AML code relies on hardware, will be referred to
as“AML controlled” since the interface is the same whether the AML passes control to the hardware or
not.

Detection of when calibration is necessary can be implemented by hardware or AML code and be reported
through the _ BMD method. Alternately, the BMD method may simply report the number of cycles before
calibration should be performed and let the OS attempt to count the cycles. A counter implemented by the
hardware or the BIOS will generally be more accurate since the batteries can be used without the OS
running, but in some cases, a system designer may opt to simplify the hardware or BIOS implementation.

When calibration is desirable and the user has scheduled the calibration to occur, the calibration cycle can
be AML controlled or OSPM controlled. OSPM can only implement a very simple a gorithm since it
doesn’t have knowledge of the specifics of the battery system. It will simply discharge the battery until it
quits discharging, then charge it until it quits charging. In the case where the AC adapter cannot be
controlled through the BMC, it will prompt the user to unplug the AC adapter and reattach it after the
system powers off. If the calibration cycle is controlled by AML, the OS will initiate the calibration cycle
by calling BMC. That method will either give control to the hardware, or will control the calibration cycle
itself. If the control of the calibration cycle isimplemented entirely in AML code, the BIOS may avoid
continuously running AML code by having the initial call to_BMC start the cycle, set some state flags, and
then exit. Control of later parts of the cycle can be accomplished by putting code that checks these state
flagsin the battery event handler (_Qxx, _Lxx, or _Exx).

Details of the control methods for this interface are defined in section 10.2.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Overview 63

3.10 Thermal Management

ACPI alowsthe OSto play arolein the therma management of the system while maintaining the
platform’s ability to mandate cooling actions as necessary. In the passive cooling mode, OSPM can make
cooling decisions based on application load on the CPU as well as the thermal heuristics of the system.
OSPM can also gracefully shutdown the computer in case of high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC isone
large thermal zone, but an OEM can partition the system into several logical thermal zones if necessary.
Figure 3-5 is an example mobile PC diagram that depicts a single thermal zone with a central processor as
the thermal -coupled device. In this example, the whole notebook is covered as one large thermal zone. This
notebook uses one fan for active cooling and the CPU for passive cooling.

Thermal e CPU/
assive Cooling Memory/ a
Zone CPU g : PCI Bridge
2 A

v
(@)
7\
v

eralyl]

Fan
*| (Active Cooling)

L

—
(@]
lw)

0

Pl

3

Graphics
E] USB
‘ [Pt 4L Docking
Momentary |
F v Vv 4.>| Keyboard
FO: PIC, PITs, F2: Embedded
DMA, RTC, EIO, .. USB Controller pS/2
PO ports
4_@ Mouse
F1: BM A
IDE
DPRO Ir P
v SIO: < FDD

EPROM COMs, DPR1
LPT, 4_’| ld—H) com

FDC, ——»() LPT
ACPI

Figure3-5 Thermal Zone

The following sections are an overview of the thermal control and cooling characteristics of a computer.
For some thermal implementation examples on an ACPI platform, see section 11.5, “Thermal Zone
Interface Requirements.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

64 Advanced Configuration and Power Interface Specification

3.10.1 Active and Passive Cooling Modes
ACPI defines two cooling modes, Active and Passive:

e Passive cooling. OS reduces the power consumption of devices at the cost of system performance to
reduce the temperature of the machine.

e Activecooling. OS increases the power consumption of the system (for example, by turning on afan)
to reduce the temperature of the machine.

These two cooling modes are inversely related to each other. Active cooling requires increased power to
reduce the heat within the system while Passive cooling requires reduced power to decrease the
temperature. The effect of this relationship is that Active cooling allows maximum system performance,
but it may create undesirable fan noise, while Passive cooling reduces system performance, but is
inherently quiet.

3.10.2 Performance vs. Energy Conservation

A robust OSPM implementation provides the means for the end user to convey to OSPM a preference (or a
level of preference) for either performance or energy conservation. Allowing the end user to choose this
preference is most critical to mobile system users where maximizing system run-time on a battery charge
often has higher priority over realizing maximum system performance.

A user’s preference for performance corresponds to the Active cooling mode while a user’s preference for
energy conservation corresponds to the Passive cooling mode. ACPI defines an interface to convey the
cooling mode to the platform. Active cooling can be performed with minimal OSPM thermal policy
intervention. For example, the platform indicates through thermal zone parameters that crossing athermal
trip point requires afan to be turned on. Passive cooling requires OSPM thermal policy to manipulate
device interfaces that reduce performance to reduce thermal zone temperature.

3.10.3 Acoustics (Noise)

Active cooling mode generally implies that fans will be used to cool the system and fans vary in their
audible output. Fan noise can be quite undesirable given the loudness of the fan and the ambient noise
environment. In this case, the end user’s physical requirement for fan silence may override the preference
for either performance or energy conservation.

A user’'sdesire for fan silence corresponds to the Passive cooling mode. Accordingly, auser’s desire for fan
silence also means a preference for energy conservation.

For more information on thermal management and examples of platform settings for active and passive
cooling, see section 11, “Thermal Management.”

3.10.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in acomplex system, ACPI specifies a multiple thermal zone implementation. Under a multiple
thermal zone model, OSPM will independently manage several thermal-coupled devices and a designated
thermal zone for each thermal-coupled device, using Active and/or Passive cooling methods available to
each thermal zone. Each thermal zone can have more than one Passive and Active cooling device.
Furthermore, each zone might have unique or shared cooling resources. In a multiple thermal zone
configuration, if one zone reaches a critical state then OSPM must shut down the entire system.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 65

4 ACPI Hardware Specification

ACPI defines standard interface mechanisms that allow an ACPI-compatible OS to control and
communicate with an ACPI-compatible hardware platform. This section describes the hardware aspects of
ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the
existing legacy programming model the same; however, to meet certain feature goal's, designated features
conform to a specific addressing and programming scheme. Hardware that falls within this category is
referred to as “fixed.”

Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert alegacy-only hardware model to an ACPI/Legacy hardware
model or an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed
category meets the programming and behavior specifications of ACPI. Hardware that falls within the
generic category has a wide degree of flexibility in itsimplementation.

4.1 Fixed Hardware Programming Model

Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits the
features specified by fixed hardware. Fixed hardware features are defined by the following criteria:
e Performance sensitive features

e Featuresthat driversrequire during wake

e Featuresthat enable catastrophic OS software failure recovery

ACPI defines register-based interfaces to fixed hardware. CPU clock control and the power management
timer are defined as fixed hardware to reduce the performance impact of accessing this hardware, which
will result in more quickly reducing athermal condition or extending battery life. If thislogic were allowed
toresidein PCI configuration space, for example, several layers of drivers would be called to access this
address space. This takes along time and will either adversely affect the power of the system (when trying
to enter alow-power state) or the accuracy of the event (when trying to get atime stamp value).

Access to fixed hardware by OSPM allows OSPM to control the wake process without having to load the
entire OS. For example, if PCI configuration space access is needed, the bus enumerator is loaded with all
drivers used by the enumerator. Defining these interfaces in fixed hardware at addresses with which OSPM
can communi cate without any other driver’s assistance, allows OSPM to gather information prior to
making a decision as to whether it continues loading the entire OS or putsit back to sleep.

If elements of the OSfail, it may be possible for OSPM to access address spaces that need no driver
support. In such a situation, OSPM will attempt to honor fixed power button requests to transition the
system to the G2 state. In the case where OSPM event handler is no longer able to respond to power button
events, the power button override feature provides a back-up mechanism to unconditionally transition the
system to the soft-off state.

4.1.1 Functional Fixed Hardware

ACPI definesthe fixed hardware low-level interfaces as a meansto convey to the system OEM the
minimum interfaces necessary to achieve alevel of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined in
this specification, conveysto OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

66 Advanced Configuration and Power Interface Specification

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI as Functional Fixed
Hardware.

In 1A-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach is not recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach isthat functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

The hardware register definition was expanded, in ACPI 2.0, to allow registersto exist in address spaces
other than the System 1/0O address space. This is accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information).

When specifically directed by the CPU manufacturer, the system firmware may define an interface as
functional fixed hardware by supplying a special address space identifier, FfixedHW (0x7F), in the address
space ID field for register definitions. It is emphasized that functional fixed hardware definitions may be
declared in the ACPI system firmware only asindicated by the CPU Manufacturer for specific interfaces
as the use of functional fixed hardware requires specific coordination with the OS vendor.

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it areliance on OS specific
software that must be considered. OEM s should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

4.2 Generic Hardware Programming Model

Although the fixed hardware programming model requires hardware registers to be defined at specific
address locations, the generic hardware programming model allows hardware registers to reside in most
address spaces and provides system OEM s with a wide degree of flexibility in the implementation of
specific functions in hardware. OSPM directly accesses the fixed hardware registers, but relies on OEM-
provided ACPI Machine Language (AML) code to access generic hardware registers.

AML code alows the OEM to provide the means for OSPM to control a generic hardware feature's control
and event logic.

The section entitled “ ACPI Source Language Reference” describes the ACPI Source Language (ASL)—a
programming language that OEMs use to create AML. The ASL language provides many of the operators
found in common object-oriented programming languages, but it has been optimized to enable the
description of platform power management and configuration hardware. An ASL compiler converts ASL
source code to AML, which is avery compact machine language that the ACPI AML code interpreter
executes.

AML does two things:
e Abstracts the hardware from OSPM
o Buffers OEM code from the different OS implementations

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 67

One goal of ACPI isto allow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardware isthat it is all implemented differently. To enable
OSPM to execute properly on different types of value added hardware, ACPI defines higher level “control
methods’ that it callsto perform an action. The OEM provides AML code, which is associated with control
methods, to be executed by OSPM. By providing AML code, generic hardware can take on almost any
form.

Another important goal of ACPI isto provide OS independence. To do this, the OEM AML code hasto
execute the same under any ACPI-compatible OS. ACPI alows for this by making the AML code
interpreter part of OSPM. This allows OSPM to take care of synchronizing and blocking issues specific to
each particular OS.

The generic feature model is represented in the following block diagram. In this model the generic feature
is described to OSPM through AML code. This description takes the form of an object that sitsin the ACPI
Namespace associated with the hardware to which it is adding value.

ACPI Driver
and AML-
Interpreter

Generic Event
Logic

Figure4-1 Generic Hardware Feature M odel

As an example of a generic hardware control feature, a platform might be designed such that the IDE
HDD’s D3 state has value-added hardware to remove power from the drive. The IDE drive would then
have areference to the AML Power Resour ce object (which controls the value added power plane) in its
namespace, and associated with that object would be control methods that OSPM invokes to control the D3
state of the drive:

e PS0. A control method to sequence the IDE drive to the DO state.
e PS3. A control method to sequence the IDE drive to the D3 state.
e PSC. A control method that returns the status of the IDE drive (on or off).

The control methods under this object provide an abstraction layer between OSPM and the hardware.
OSPM understands how to control power planes (turn them on or off or to get their status) through its
defined Power Resour ce object, while the hardware has platform-specific AML code (contained in the
appropriate control methods) to perform the desired function. In this example, the platform would describe
its hardware to the ACPI OS by writing and placing the AML code to turn the hardware off within the
_PS3 control method. This enables the following sequence:

When OSPM decidesto place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
driveinto the D3 state (at which point the driver saves the device's context).

When the IDE driver returns control, OSPM places the drive in the D3 state.

OSPM finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.

OSPM executes the appropriate _PS3 control method to control the value-added “generic” hardware to
place the HDD into an even lower power state.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

68 Advanced Configuration and Power Interface Specification

As an example of a generic event feature, a platform might have a docking capability. In this case, it will
want to generate an event. Notice that all ACPI events generate an SCI, which can be mapped to any
shareable system interrupt. In the case of docking, the event is generated when a docking has been detected
or when the user requests to undock the system. This enables the following sequence:

OSPM responds to the SCI and calls the AML code event handler associated with that generic event. The
ACPI table associates the hardware event with the AML code event handler.

The AML-code event handler collects the appropriate information and then executes an AML Notify
command to indicate to OSPM that a particular bus needs re-enumeration.

The following sections describe the fixed and generic hardware feature set of ACPI. These sections enable
areader to understand the following:
e Which hardware registers are required or optional when an ACPI feature, concept or interface is
required by a design guide for aplatform class
e How to design fixed hardware features
e How to design generic hardware features
e The ACPI Event Model

4.3 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

& Write-only control bit
& Enable, control or status bit
X Sticky status bit

Query value

The half round symbol with an inverted “V” represents a write-only control bit. This bit has the behavior
that it generates its control function when it is set. Reads to write-only bits are treated asignore by software
(the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software setting
or clearing this bit will result in the bit being read as set or clear (unless otherwise noted). As a status bit it
directly represents the value of the signal.

The square symbol represents a sticky status hit. A sticky status bit is set by the level (not edge) of a
hardware signal (active high or active low). The bit is only cleared by software writing a“1” toits bit
position.

The rectangular symbol represents a query value from the embedded controller. Thisisthe value the
embedded controller returns to the system software upon a query command in response to an SCI event.
The query value is associated with the event control method that is scheduled to execute upon an embedded
controller event.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 69

4.4 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a
notation that easily references the register name and bit position. The notation is as follows:

Registername.Bit
Regi stername contains the name of the register asit appearsin this specification
Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit residesin the PM1x_CNT register bit 13 and would be represented in
diagram notation as:

SLP_EN
PM1x_CNT.13

45 The ACPI Hardware Model

The ACPI hardware model is defined to allow OSPM to sequence the platform between the various global
system states (GO-G3) asillustrated in the following figure by manipulating the defined interfaces. When
first powered on, the platform finds itself in the global system state G3 or “Mechanical Off.” Thisstateis
defined as one where power consumption is very close to zero—the power plug has been removed;
however, the real-time clock device till runs off a battery. The G3 state is entered by any power failure,
defined as accidental or user-initiated power loss.

The G3 dtate transitions into either the GO working state or the Legacy state depending on what the
platform supports. If the platform isan ACPI-only platform, then it allows a direct boot into the GO
working state by always returning the status bit SCI_EN set (1) (for more information, see section 4.7.2.5,
“Legacy/ACPI Select and the SCI Interrupt”). If the platform supports both legacy and ACPI operations
(which is necessary for supporting a non-ACPI OS), then it would always boot into the Legacy state
(illustrated by returning the SCI_EN clear (0)). In either case, atransition out of the G3 state requires a total
boot of OSPM.

The Legacy system state isthe global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “ Soft Off,” or the GO “Working” states only if the hardware
supports both Legacy and ACPI modes. In the Legacy state, the ACPI event model is disabled (no SCls are
generated) and the hardware uses legacy power management and configuration mechanisms. Whilein the
Legacy state, an ACPI-compliant OS can reguest atransition into the GO working state by performing an
ACPI mode request. OSPM performs this transition by writing the ACPI_ENABLE value to the
SMI_CMD, which generates an event to the hardware to transition the platform into ACPI mode. When
hardware has finished the transition, it sets the SCI_EN bit and returns control back to OSPM. While in the
GO “working state,” OSPM can request atransition to Legacy mode by writing the ACPI_DISABLE value
to the SMI_CMD register, which results in the hardware going into legacy mode and resetting the SCI_EN
bit LOW (for more information, see section 4.7.2.5, “Legacy/ACPI Select and the SCI Interrupt”).

The GO “Working” state is the normal operating environment of an ACPI machine. In this state different
devices are dynamically transitioning between their respective power states (DO, D1, D2, D3hot, or D3)
and processors are dynamically transitioning between their respective power states (C0O, C1, C2 or C3). In
this state, OSPM can make a policy decision to place the platform into the system G1 “sleeping” state. The
platform can only enter a single sleeping state at atime (referred to as the global G1 state); however, the
hardware can provide up to four system sleeping states that have different power and exit latencies
represented by the S1, S2, S3, or $4 states. When OSPM decides to enter a sleeping state it picks the most
appropriate sleeping state supported by the hardware (OS policy examines what devices have enabled wake
events and what sleeping states these support). OSPM initiates the sleeping transition by enabling the
appropriate wake events and then programming the SLP_TY Px field with the desired sleeping state and
then setting the SLP_ENX bit. The system will then enter a sleeping state; when one of the enabled wake
events occurs, it will transition the system back to the working state (for more information, see section 15,
“Waking and Sleeping”).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

70 Advanced Configuration and Power Interface Specification

Another global state transition option while in the GO “working” state isto enter the G2 “soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows OSPM to bring the
system down in an orderly fashion (unloading applications, closing files, and so on). The policy for these
types of transitions can be associated with the ACPI power button, which when pressed generates an event
to the power button driver. When OSPM is finished preparing the operating environment for a power 10ss,
it will either generate a pop-up message to indicate to the user to remove power, in order to enter the G3
“Mechanical Off” state, or it will initiate a G2 “ soft-off” transition by writing the value of the S5 “ soft off”
system state to the SLP_TY Px register and setting the SLP_EN bit.

The G1 deeping state is represented by four possible sleeping states that the hardware can support. Each
sleeping state has different power and wake latency characteristics. The deeping state differs from the
working state in that the user’ s operating environment is frozen in alow-power state until awakened by an
enabled wake event. No work is performed in this state, that is, the processors are not executing
instructions. Each system sleeping state has requirements about who is responsible for system context and
wake sequences (for more information, see section 15, Waking and Sleeping”).

The G2 “soft off” stateis an OS initiated system shutdown. This stateisinitiated similar to the deeping
dtate transition (SLP_TY Px is set to the S5 value and setting the SLP_EN bit initiates the sequence).
Exiting the G2 soft-off state requires rebooting the system. In this case, an ACPI-only machine will re-enter
the GO state directly (hardware returns the SCI_EN bit set), while an ACPI/Legacy machine transitions to
the Legacy state (SCI_EN bit is clear).

Power
Failure/
Power Off CDROM
D3
D2
D1

Legacy
Boot
(SCI_EN=0)

ACPI
Boot
(SCI_EN=1)

S4BIOS F —— g BIOS

S4BIOS RZQ Routine

ACPI_ENABLE

(SCI_EN=1) \ -
GO (SO) _ SLP_TY:nxd—(Sl-SA) S354
Working SLP*EN?A s2
ACPI_DISABLE___—

(SCI_EN=0)

Sleeping

Performance
State Px
Co
C1

c24

ACPI
Boot
Legacy (SCI_EN=1)
Boot
(SCI_EN=0) SLP_TYPx=S5
and
SLP_EN

or
PWRBTN_OR

Figure4-2 Global Statesand Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement
this behavior model. Events are used to notify OSPM that some action is needed, and control logic is used
by OSPM to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A
hardware event is one that causes the hardware to unconditionally perform some operation. For example,
any wake event will sequence the system from a sleeping state (S1, S2, S3, and $4 in the global G1 state) to
the GO working state (see Figure 15-1).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 71

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, OSPM or
an ACPI-aware driver acts as the event handler. For generic logic events OSPM will schedule the execution
of an OEM-supplied AML control method associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as a System
Management Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible
interrupt that is shareable; edge-style interrupts will not work. Hardware platforms that want to support
both legacy operating systems and ACPI systems support away of re-mapping the interrupt events between
SMIs and SClIs when switching between ACPI and legacy models. Thisisillustrated in the following block
diagram.

Legacy Only Event Logic

ACPI/Legacy Event Logic
Timers ACPI Only Event Logic

Device | ACPI/Legacy Generic Control Features
Traps ACPIl/Legacy Fixed Control Features
GLBL STBY
Timer

SCILEN SMI Arbiter SMI#

PWRBTN

User
LID Interface

SCI Arbiter

SCI#

Sleep/Wake
Logic

Power Plane

DOCK
STS_CHG Hardware — SMI Events Control

Events Generic Space
SCI/SMI Events

— Wake-up Events CPU Clock
Control

Figure4-3 Example Event Structurefor a Legacy/ACPI Compatible Event M odel

RI

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI
event models. This example platform supports a number of external events that are power-related (power
button, LID open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic
represents the three different types of events:

e OSTransparent Events. These events represent OEM-specific functions that have no OS support and
use software that can be operated in an OS-transparent fashion (that is, SMls).

e Interrupt Events. These events represent features supported by ACPI-compatible operating systems,
but are not supported by legacy operating systems. When alegacy OS is loaded, these events are
mapped to the transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped
to an OS-visible shareable interrupt (SCI#). Thislogic is represented by routing the event logic through
the decoder that routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI#
arbiter when the SCI_EN hit is set.

e Hardwareevents. These events are used to trigger the hardware to initiate some hardware sequence
such as waking, resetting, or putting the machine to sleep unconditionally.

In this example, the legacy power management event logic is used to determine device/system activity or
idleness based on device idle timers, device traps, and the global standby timer. Legacy power management
models use the idle timers to determine when a device should be placed in alow-power state becauseiit is
idle—that is, the device has not been accessed for the programmed amount of time. The device traps are
used to indicate when a device in alow-power state is being accessed by OSPM. The global standby timer
is used to determine when the system should be allowed to go into a sleeping state because it is idle—that
is, the user interface has not been used for the programmed amount of time.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

72 Advanced Configuration and Power Interface Specification

These legacy idle timers, trap monitors, and global standby timer are not used by OSPM in the ACPI mode.
Thiswork is handled by different software structures in an ACPI-compatible OS. For example, the driver
model of an ACPI-compatible OSisresponsible for placing its device into alow-power state (D1, D2,
D3hot, or D3) and transitioning it back to the On state (D0) when needed. And OSPM is responsible for
determining when the system isidle by profiling the system (using the PM Timer) and other knowledge it
gains through its operating structure environment (which will vary from OS to OS). When the system is
placed into the ACPI mode, these events no longer generate SMIs, as OSPM handles this function. These
events are disabled through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking,
the power button, and so on) and this type of interrupt event changes to an SCI event when enabled for
ACPI. The ACPI OS will generate arequest to the platform’s hardware (BIOS) to enter into the ACPI
mode. The BIOS setsthe SCI_EN bit to indicate that the system has successfully entered into the ACPI
mode, so thisisa convenient mechanism to map the desired interrupt (SM1 or SCI) for these events (as
shown in Figure 4-3).

The ACPI architecture specifies some dedicated hardware not found in the legacy hardware model: the
power management timer (PM Timer). Thisis afree running timer that the ACPI OS usesto profile system
activity. The frequency of thistimer is explicitly defined in this specification and must be implemented as
described.

Although the ACPI architecture reuses most legacy hardware asis, it does place restrictions on where and
how the programming model is generated. If used, all fixed hardware features are implemented as
described in this specification so that OSPM can directly access the fixed hardware feature registers.

Generic hardware features are manipulated by ACPI control methods residing in the ACPI Namespace.
These interfaces can be very flexible; however, their use islimited by the defined ACPI control methods
(for more information, see section 9, “ACPI Devices and Device Specific Objects’). Generic hardware
usually controls power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt
status hits can be accessed via generic hardware interfaces; however, they have a“parent” interrupt status
bit in the GP_STS register. ACPI defines eight address spaces that may be accessed by generic hardware
implementations. These include:

System 1/0O space

System memory space

PCI configuration space

Embedded controller space

System Management Bus (SMBus) space
CMOS

PCl BAR Target

IPMI space

Generic hardware power management features can be implemented accessing spare /0O portsresiding in
any of these address spaces. The ACPI specification defines an optional embedded controller and SMBus
interfaces needed to communicate with these associated address spaces.

45.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them
have no side affects. OSPM implementations must write zeros to reserved bits in enable and status registers
and preserve bitsin control registers, and they will treat these bits as ignored.

4.5.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to a register with ignored bit fields, it
preserves the ignored bit fields.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 73

4.5.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a 1
to their bit position. Reads to write-only bit positions generate undefined results. Upon readsto registers
with write-only bits, software masks out all write-only bits.

4.5.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of
other unrelated devices, or allows other unrelated devices to interfere with its behavior. This conditionis
not supportable and can cause platform failures. ACPI provides no support for cross device dependencies
and suggests that devices be designed to not exhibit this behavior. The following two examples describe
cross device dependencies:

45.4.1 Example 1: Related Device Interference

This exampleillustrates a cross device dependency where a device interferes with the proper operation of
other unrelated devices. Device A has a dependency that when it is being configured it blocks all accesses
that would normally be targeted for Device B. Thus, the device driver for Device B cannot access Device B
while Device A is being configured; therefore, it would need to synchronize access with the driver for
Device A. High performance, multithreaded operating systems cannot perform this kind of synchronization
without serioudly impacting performance.

To further illustrate the point, assume that Device A isaseria port and Device B isahard drive controller.
If these devices demonstrate this behavior, then when a software driver configures the serial port, accesses
to the hard drive need to block. This can only be done if the hard disk driver synchronizes access to the disk
controller with the serial driver. Without this synchronization, hard drive data will be lost when the serial
port is being configured.

4.5.4.2 Example 2: Unrelated Device Interference

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows
other unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior
that requires atomic back-to-back write accesses to successfully write to itsregisters; if any other platform
access is able to break between the back-to-back accesses, then the write to Device A is unsuccessful. If the
Device A driver is unable to generate atomic back-to-back accessesto its device, then it relies on software
to synchronize accesses to its device with every other driver in the system; then a device cross dependency
is created and the platform is prone to Device A failure.

4.6 ACPI Hardware Features

This section describes the different hardware features defined by the ACPI interface. These features are
categorized as the following:

e Fixed Hardware Features

e Generic Hardware Features

Fixed hardware features reside in a number of the ACPI-defined address spaces at the locations described
by the ACPI programming model. Generic hardware features reside in one of four address spaces (system
1/0O, system memory, PCI configuration, embedded controller, or serial device I/O space) and are described
by the ACPI Namespace through the declaration of AML control methods.

Fixed hardware features have exact definitions for their implementation. Although many fixed hardware
features are optional, if implemented they must be implemented as described since OSPM manipul ates the
registers of fixed hardware devices and expects the defined behavior. Functional fixed hardware provides
functional equivalents of the fixed hardware feature interfaces as described in section 4.1.1, “Functional
Fixed Hardware.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

74 Advanced Configuration and Power Interface Specification

Generic hardware feature implementation is flexible. Thislogic is controlled by OEM-supplied AML code
(for more information, see section 5, “ACPI Software Programming Model”), which can be written to
support awide variety of hardware. Also, ACPI provides specialized control methods that provide

capabilities for specialized devices. For example, the Notify command can be used to notify OSPM from a
generic hardware event handler (control method) that a docking or thermal event has taken place. A good
understanding of this section and section 5 of this specification will give designers a good understanding of
how to design hardware to take full advantage of an ACPI-compatible OS.

Notice that the generic features are listed for illustration only, the ACPI specification can support many
types of hardware not listed.

Table4-1 Feature/Programming Model Summary

Feature Name

Description

Programming M odel

Power Management
Timer

24-bit or 32-bit free running timer.

Fixed Hardware Feature Control
Logic

between the working and sleeping state.

Power Button User pushes button to switch the system | Fixed Hardware Event and
between the working and sleeping states. | Control Logic or Generic

Hardware Event and Logic

Sleep Button User pushes button to switch the system | Fixed Hardware Event and

Control Logic or Generic
Hardware Event and Logic

Power Button Override

User sequence (press the power button
for 4 seconds) to turn off a hung system.

Real Time Clock Alarm

Programmed time to wake the system.

Optional Fixed Hardware Event?

Sleep/Wake Control
Logic

Logic used to transition the system
between the sleeping and working states.

Fixed Hardware Control and
Event Logic

Embedded Controller
Interface

ACPI Embedded Controller protocol and
interface, as described in section 12,
“ACP|I Embedded Controller Interface
Specification.”

Generic Hardware Event Logic,
must reside in the general -
purpose register block

Legacy/ACPI Select

Status bit that indicates the systemis
using the legacy or ACPI power
management model (SCI_EN).

Fixed Hardware Control Logic

power state.

Lid switch Button used to indicate whether the Generic Hardware Event Feature
system’slid is open or closed (mobile
systems only).

C1 Power State Processor instruction to place the Processor 1SA
processor into alow-power state.

C2 Power Control Logic to place the processor into a C2 Fixed Hardware Control Logic
power state.

C3 Power Control Logic to place the processor into a C3 Fixed Hardware Control Logic

2 RTC wakeup alarm is required, the fixed hardware feature status bit is optional.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 75

Feature Name Description Programming M odel
Thermal Control Logic to generate thermal events at Generic Hardware Event and
specified trip points. Control Logic (See description of

thermal logic in section 3.10,
“Thermal Management.”)

Device Power Control logic for switching between Generic Hardware control logic

M anagement different device power states.

AC Adapter Logic to detect the insertion and removal | Generic Hardware event logic
of the AC adapter.

Docking/device Logic to detect device insertion and Generic Hardware event logic

insertion and removal removal events.

4.7 ACPI Register Model

ACPI hardware resides in one of six address spaces.
e Systeml/O

System memory

PCI configuration

SMBus

Embedded controller

Functional Fixed Hardware

Different implementations will result in different address spaces being used for different functions. The
ACPI specification consists of fixed hardware registers and generic hardware registers. Fixed hardware
registers are required to implement ACPI-defined interfaces. The generic hardware registers are needed for
any events generated by value-added hardware.

ACPI definesregister blocks. An ACPI-compatible system provides an ACPI table (the FADT, built in
memory at boot-up) that contains alist of pointers to the different fixed hardware register blocks used by
OSPM. The bits within these registers have attributes defined for the given register block. The types of
registersthat ACPI defines are;

o Statug/Enable Registers (for events)

e Control Registers

If aregister block is of the status/enable type, then it will contain aregister with status bits, and a
corresponding register with enable bits. The status and enable bits have an exact implementation definition
that needsto be followed (unless otherwise noted), which isillustrated by the following diagram:

Status Bit

Event Input >—|Z|—j—> Event Output

Enable Bit (L

Figure4-4 Block Diagram of a Status/Enable Cell

Notice that the status bit, which hardware sets by the Event Input being set in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or
resetting of the status bit; it only determinesif the SET status bit will generate an “Event Output,” which
generates an SCI when set if its enable bit is set.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

76 Advanced Configuration and Power Interface Specification

ACPI also defines register groupings. A register grouping consists of two register blocks, with two pointers
to two different blocks of registers, where each hit location within a register grouping is fixed and cannot
be changed. The bits within a register grouping, which have fixed bit positions, can be split between the
two register blocks. This allows the bits within a register grouping to reside in either or both register
blocks, facilitating the ability to map bits within several different chips to the same register thus providing
the programming model with a single register grouping bit structure.

OSPM treats aregister grouping as a single register; but located in multiple places. To read aregister
grouping, OSPM will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TY P field is an exception to thisrule). Reserved bits, or
unused bits within aregister block always return zero for reads and have no side effects for writes (which is
arequirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object \ Sx
containsaSLP_TYPaand aSLP_TYPb field. That is, the object returns a package with two integer values
of 0-7 init. OSPM will always write the SLP_TY Pavalueto the “A” register block followed by the
SLP_TYPb value within the field to the “B” register block. All other bit locations will be written with the
same value. Also, OSPM does not read the SLP_TY Px value but throws it away.

& @ et @?

7] |
S T N s e
/i

Figure4-5 Example Fixed Hardware Feature Register Grouping

Register Block A

Register Block B

As an example, the above diagram represents a register grouping consisting of register block A and register
block b. Bits“a” and “d” are implemented in register block B and register block A returns a zero for these
bit positions. Bits“b”, “c” and “€” areimplemented in register block A and register block B returns a zero
for these bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, OSPM must read register block a, followed by reading register
block b. OSPM then does alogical OR of the two registers and then operates on the results.

When writing to this register grouping, OSPM will write the desired value to register group A followed by
writing the same value to register group B.

ACPI definesthe following fixed hardware register blocks. Each register block gets a separate pointer from
the FADT. These addresses are set by the OEM as static resources, so they are never changed—OSPM
cannot re-map ACPI resources. The following register blocks are defined:

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 77

Registers Register Blocks Register Groupings
Pmi‘gsgz " }——PM1a_EVT BLK
PM1b STS :>— PM1 EVT Grouping
PM1b_EN _ F——PM1b_EVT_BLK
PMla_CNT

PMla_CNT_BLK
:>— PM1 CNT Grouping

PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
Ggggasgﬁ ~ }—— GPEO_BLK General Purpose Event 0
= Block
GPE1_STS
GPEI_EN I GPEL_BLK General Purpose Event 1
Block

Figure4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a EVT and PM1b_EVT register blocks, which contain the
fixed hardware feature event bits. Each event register block (if implemented) contains two registers: a
status register and an enable register. Each register grouping has a defined bit position that cannot be
changed; however, the bit can be implemented in either register block (A or B). The A and B register
blocks for the events allow chipsets to vary the partitioning of events into two or more chips. For read
operations, OSPM will generate aread to the associated A and B registers, OR the two val ues together, and
then operate on this result. For write operations, OSPM will write the value to the associated register in
both register blocks. Therefore, there are two rules to follow when implementing event registers:

e Reserved or unimplemented bits always return zero (control or enable).

e Writesto reserved or unimplemented bits have no affect.

The PM1 CNT grouping contains the fixed hardware feature control bits and consists of the
PMla CNT_BLK and PM1b CNT_BLK register blocks. Each register block is associated with asingle
control register. Each register grouping has a defined bit position that cannot be changed; however, the bit
can be implemented in either register block (A or B). There are two rules to follow when implementing
CNT registers:

e Reserved or unimplemented bits always return zero (control or enable).

e Writesto reserved or unimplemented bits have no affect.

The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function. The
general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCls. Generic event status bits can reside anywhere; however, the top-
level generic event resides in one of the general-purpose register blocks. Any generic feature event status
not in the general -purpose register space is considered a child or sibling status bit, whose parent status bit is
in the general-purpose event register space. Notice that it is possible to have N levels of general-purpose
events prior to hitting the GPE event status.

General-purpose event registers are described by two register blocks: The GPEO_BLK or the GPE1 BLK.
Each register block is pointed to separately from within the FADT. Each register block is further broken
into two registers. GPEx_STS and GPEx_EN. The status and enabl e registers in the general-purpose event
registers follow the event model for the fixed hardware event registers.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

78 Advanced Configuration and Power Interface Specification

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:

Table4-2 PM1 Event Registers

Register Size (Bytes) Address (relativeto register block)
PMla STS | PM1_EVT_LEN/2 <PMla EVT_BLK >
PM1la EN PM1_EVT_LEN/2 <PM1la EVT _BLK >+PM1 EVT_LEN/2
PM1b_STS | PM1_EVT_LEN/2 <PM1b_EVT_BLK >
PM1b_EN PM1_EVT_LEN/2 <PM1b EVT _BLK >+PM1 EVT_LEN/2
Table4-3 PM1 Control Registers
Register Size (Bytes) Address (relativeto register block)
PM1_CNTa | PM1_CNT_LEN <PMla CNT_BLK >
PM1_CNTb | PM1_CNT_LEN <PM1b_CNT_BLK >
Table4-4 PM2 Control Register
Register Size (Bytes) Address (relativeto register block)
PM2_CNT PM2_CNT_LEN <PM2_CNT_BLK >
Table4-5 PM Timer Register
Register Size (Bytes) Address (relativeto register block)
PM_TMR PM_TMR_LEN <PM_TMR_BLK >
Table4-6 Processor Control Registers
Register Size (Bytes) Address (relative to register block)
P_CNT 4 Either <P_BLK> or specified by the PTC object (See section
8.3.1, “ PTC [Processor Throttling Control].”)
P_LVL2 1 <P_BLK>+4h
P_LVL3 1 <P_BLK>+5h
Table4-7 General-Purpose Event Registers
Register Size (Bytes) Address (relative to register block)
GPEO_STS | GPEO_LEN/2 <GPEO_BLK>
GPEO_EN GPEO_LEN/2 <GPEO_BLK>+GPEO_LEN/2
GPE1_STS | GPE1_LEN/2 <GPE1_BLK>
GPE1_EN GPE1_LEN/2 <GPE1 BLK>+GPE1_LEN/2

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 79

4.7.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1a EVT_BLK isarequired register
block when the following ACPI interface categories are required by a class specific platform design guide:
e Power management timer control/status

Processor power state control/status

Global Lock related interfaces

Power or Sleep button (fixed register interfaces)

System power state controls (sleeping/wake control)

ThePM1b EVT BLK isan optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bitsto be partitioned between two chips. If the
PM1b EVT_BLK isnot supported, its pointer contains a value of zero in the FADT.

Each register block in the PM 1 event grouping contains two registers that are required to be the same size:
the PM1x_STSand PM1x_EN (where x can be“a’ or “b"). The length of the registersis variable and is
described by the PM1_EVT_LEN field inthe FADT, which indicates the total length of the register block
in bytes. Hence if alength of “4” isgiven, thisindicates that each register contains two bytes of 1/0 space.
The PM1 event register block has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers

The PM1 control register grouping contains two register blocks: the PM1a CNT_BLK isarequired
register block when the following ACPI interface categories are required by a class specific platform design
guide:

e SCI/SMI routing control/status for power management and general -purpose events

e Processor power state control/status

e Global Lock related interfaces

e System power state controls (sleeping/wake control)

ThePM1b_CNT_BLK isan optional register block. Each register block has a unique 32-bit pointer in the
Fixed ACPI Table (FADT) to allow the PM1 event bitsto be partitioned between two chips. If the
PM1b CNT_BLK isnot supported, its pointer contains a value of zero in the FADT.

Each register block in the PM 1 control grouping contains a single register: the PM1x_CNT. The length of
theregister is variable and is described by the PM1_CNT_LEN field in the FADT, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register

The PM2 control register is contained inthe PM2_CNT_BLK register block. The FADT contains alength
variable for thisregister block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register
(the only register in thisregister block). Thisregister block is optional, if not supported its block pointer
and length contain a value of zero.

4.7.1.4 PM Timer Register

The PM timer register is contained inthe PM_TMR_BLK register block, which isarequired register block
when the power management timer control/status ACPI interface category is required by a class specific
platform design guide.

Thisregister block contains the register that returns the running value of the power management timer. The
FADT also contains alength variable for thisregister block (PM_TMR_LEN) that is equal to the sizein
bytes of the PM_TMR register (the only register in this register block).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

80 Advanced Configuration and Power Interface Specification

4.7.1.5 Processor Control Block (P_BLK)

Thereisan optional processor control register block for each processor in the system. Asthisisa
homogeneous feature, all processors must have the same level of support. The ACPI OS will revert to the
lowest common denominator of processor control block support. The processor control block contains the
processor control register (P_CNT-a 32-bit performance control configuration register), and the P_LVL2
and P_LVL3 CPU sleep state control registers. The 32-bit P_CNT register controls the behavior of the
processor clock logic for that processor, the P_LVL2 register is used to place the CPU into the C2 state,
and the P_LVL3 register is used to place the processor into the C3 state.

4.7.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level events for all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPEO_BLK and GPE1 BLK. These are separate register blocks and are not a register grouping, because
there is no need to maintain an orthogonal bit arrangement. Also, each register block containsits own
length variable in the FADT, where GPEO_LEN and GPEL_LEN represent the length in bytes of each
register block.

Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (where x is0 or 1).
The length of the GPEO_STS and GPEQ_EN registersis equal to half the GPEO_LEN. The length of the
GPE1_STSand GPE1 EN registersisequal to half the GPEL_LEN. If ageneric register block is not
supported then its respective block pointer and block length valuesin the FADT table contain zeros. The
GPEO LEN and GPEL1_LEN do not need to be the same size.

4.7.2 Fixed Hardware Features
This section describes the fixed hardware features defined by ACPI.

4.7.2.1 Power Management Timer

The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management
timer provides an accurate time function while the system is in the working (GO0) state. To allow software to
extend the number of bitsin the timer, the power management timer generates an interrupt when the last bit
of the timer changes (from 0 to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management
timer. The PM Timer is accessed directly by OSPM, and its programming model is contained in fixed
register space. The programming model can be partitioned in up to three different register blocks. The
event bits are contained in the PM1_EVT register grouping, which has two register blocks, and the timer
value can be accessed through the PM_TMR_BLK register block. A block diagram of the power
management timer isillustrated in the following figure:

TMR_STS
Ve PM1x_STS.0
_Counter PMTMR_PME
3579545 MHH—[B1S(23/31-0)
- 24/32 TMR_EN
PM1x_EN.O

TMR_VAL
PM_TMR.0-23/0-31

Figure4-7 Power Management Timer

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 81

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FADT to determine whether the PM Timer is a 32-bit or
24-hit timer. The programming model for the PM Timer consists of event logic, and aread port to the
counter value. The event logic consists of an event status and enable bit. The status bit is set any time the
last bit of the timer (bit 23 or bit 31) goes from set to clear or clear to set. If the TMR_EN bit is set, then the
setting of the TMR_STS will generate an ACPI event inthe PM1_EVT register grouping (referred to as
PMTMR_PME in the diagram). The event logic is only used to emulate alarger timer.

OSPM usesthe read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. OSPM never assumes an initial value of the TMR_VAL field; instead, it reads an initial
TMR_VAL upon loading OSPM and assumes that the timer is counting. It is allowable to stop the Timer
when the system transitions out of the working (G0/S0) state. The only timer reset requirement is that the
timer functions while in the working state.

The PM Timer's programming model isimplemented as a fixed hardware feature to increase the accuracy
of reading the timer.

4.7.2.2 Console Buttons

ACPI defines user-initiated events to request OSPM to transition the platform between the GO working
state and the G1 deeping, G2 soft off and G3 mechanical off states. ACPI also defines a recommended
mechanism to unconditionally transition the platform from a hung GO working state to the G2 soft-off state.

ACPI operating systems use power button events to determine when the user is present. As such, these
ACPI events are associated with buttons in the ACPI specification.

The ACPI specification supports two button models:

e A single-button model that generates an event for both sleeping and entering the soft-off state. The
function of the button can be configured using OSPM UI.

e A dual-button model where the power button generates a soft-off transition request and a sl eeping
button generates a deeping transition request. The type of button implies the function of the button.

Control of these button events is either through the fixed hardware programming model or the generic
hardware programming model (control method based). The fixed hardware programming model has the
advantage that OSPM can access the button at any time, including when the system is crashed. In a crashed
system with a fixed hardware power button, OSPM can make a“best” effort to determine whether the
power button has been pressed to transition to the system to the soft-off state, because it doesn’t require the
AML interpreter to access the event bits.

4.7.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-button
model, the user button acts as both a power button for transitioning the system between the GO and G2
states and a sleeping button for transitioning the system between the GO and G1 states. The action of the
user pressing the button is determined by software policy or user settings. In the dual-button model, there
are separate buttons for sleeping and power control. Although the buttons till generate events that cause
software to take an action, the function of the button is now dedicated: the sleeping button generates a
sleeping request to OSPM and the power button generates a waking request.

Support for a power button isindicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Table4-8 Power Button Support

Indicated Support PWR_BUTTON Flag | Power Button Device Object
Fixed hardware power button | Clear Absent
Control method power button | Set Present

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

82 Advanced Configuration and Power Interface Specification

The power button can also have an additional capability to unconditionally transition the system from a
hung working state to the G2 soft-off state. In the case where OSPM event handler is no longer able to
respond to power button events, the power button override feature provides a back-up mechanism to
unconditionally transition the system to the soft-off state. This feature can be used when the platform
doesn’t have a mechanical off button, which can aso provide this function. ACPI defines that holding the
power button active for four seconds or longer will generate a power button override event.

4.7.2.2.1.1 Fixed Power Button

Seb » PWRBTN
PWRBTN# ebounce PWRBTN P Over-ride
Logic Statemachine

PWRBTN Event

PWRBTN_STS
PM1x_STS.8

PWRBTN_EN
PMix_EN.8

Figure 4-8 Fixed Power Button Logic

The fixed hardware power button has its event programming model inthe PM1x_EVT_BLK. Thislogic
consists of asingle enable bit and sticky status bit. When the user presses the power button, the power
button status bit (PWRBTN_STS) is unconditionally set. If the power button enable bit (PWRBTN_EN) is
set and the power button status bit is set (PWRBTN_STS) due to a button press while the system isin the
GO state, then an SCI is generated. OSPM responds to the event by clearing the PWRBTN_STS bit. The
power button logic provides debounce logic that setsthe PWRBTN_STS bit on the button press “edge.”

While the system isin the G1 or G2 global states (S1, S2, S3, 4 or S5 states), any further power button
press after the button press that transitioned the system into the sleeping state unconditionally sets the
power button status bit and wakes the system, regardless of the value of the power button enable bit. OSPM
responds by clearing the power button status bit and waking the system.

4.7.2.2.1.2 Control Method Power Button

The power button programming model can also use the generic hardware programming model. This allows
the power button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the power button isimplemented using generic hardware, then the
OEM needs to define the power button as a device with an _HID object value of “PNPOCOC,” which then
identifies this device as the power button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a power button event was generated. While the system isin the working
state, a power button pressis a user request to transition the system into either the sleeping (G1) or soft-off
state (G2). In these cases, the power button event handler issues the Notify command with the device
specific code of 0x80. Thisindicates to OSPM to pass control to the power button driver (PNPOCOC) with
the knowledge that a transition out of the GO state is being requested. Upon waking from a G1 sleeping
state, the AML event handler generates a notify command with the code of 0x2 to indicate it was
responsible for waking the system.

The power button device needs to be declared as a device within the ACPI Namespace for the platform and
only requiresan _HID. An example definition follows.

This example ASL code performs the following:

e Creates adevice named “PWRB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOC.”

e ThePlug and Play identifier associates this device object with the power button driver.

e Creates an operational region for the control method power button’s programming model: System
1/0 space at 0x200.

e Fieldsthat are not accessed are written as zeros. These status bits clear upon writing a 1 to their bit
position, therefore preserved would fail in this case.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 83

e Createsafield within the operational region for the power button status bit (called PBP). In this
case the power button status bit is a child of the general-purpose event status bit 0. When this hit is
set, it isthe responsibility of the ASL-code to clear it (OSPM clears the general -purpose status
bits). The address of the status bit is 0x200.0 (bit O at address 0x200).

e Creates an additional status hit called PBW for the power button wake event. Thisisthe next bit
and its physical address would be 0x200.1 (bit 1 at address 0x200).

e Generates an event handler for the power button that is connected to bit O of the general-purpose
event status register 0. The event handler does the following:

Clears the power button status bit in hardware (writes a one to it).
Notifies OSPM of the event by calling the Notify command passing the power button object and
the device specific event indicator 0x80.

/1 Define a control nethod power button
Devi ce(\ _SB. PRB) {
Nanme(_HI D, EI SAI D(“ PNPOCOC"))
Nane(_PRW Package(){0, 0x4})

Oper ati onRegi on(\ PHO, System O 0x200, 0x1)

Fi el d(\ PHO ByteAcc, NoLock, WiteAsZeros){
PBP, 1, /1 sl eep/off request
PBW 1 /1 wakeup request

} /1 end of power button device object

Scope(\ _GPE) { /! Root |evel event handlers
Met hod(_L00) { /1 uses bit 0 of GPO_STS register
I f (\PBP){
St ore(One, \ PBP) I/ clear power button status

Notify(_SB. PWRB, 0x80) // Notify OS of event

}
I f (\PBW {
St ore(One, \ PBW
Noti fy(_SB. PWRB, 0x2)

}
} /1 end of _LOO handl er
} /1 end of _GPE scope

4.7.2.2.1.3 Power Button Override

The ACPI specification also allows that if the user presses the power button for more than four seconds
while the system isin the working state, a hardware event is generated and the system will transition to the
soft-off state. This hardware event is called a power button override. In reaction to the power button
override event, the hardware clears the power button status bit (PWRBTN_STS).

4.7.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request OSPM to
transition the platform between the GO working and G1 sleeping states. Support for a leep button is
indicated by a combination of the SLEEP_BUTTON flag and the deep button device object:

Table4-9 Sleep Button Support

Indicated Support SLEEP BUTTON Flag | Sleep Button Device Object
No sleep button Set Absent
Fixed hardware seep button Clear Absent
Control method sleep button Set Present

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

84 Advanced Configuration and Power Interface Specification

4.7.2.2.2.1 Fixed Hardware Sleeping Button

SLPBTN_STS
PM1x_STS.9

SLPBTN# Defg;gce >: Sta?tle-':ni?:ine
SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure4-9 Fixed Hardware Sleep Button Logic

The fixed hardware sleep button has its event programming model inthe PM1x_EVT_BLK. Thislogic
consists of asingle enable bit and sticky status bit. When the user presses the sleep button, the sleep button
status bit (SLPBTN_STS) isunconditionally set. Additionally, if the sleep button enable bit (SLPBTN_EN)
is set, and the sleep button status bit is set (SLPBTN_STS, due to a button press) while the systemisin the
GO state, then an SCI is generated. OSPM responds to the event by clearing the SLPBTN_STS hit. The
sleep button logic provides debounce logic that setsthe SLPBTN_STS hit on the button press “edge.”

While the system is dleeping (in either the SO, S1, S2, S3 or $4 states), any further sleep button press (after
the button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and wakes the system if the SLP_EN bit is set. OSPM responds by clearing the sleep
button status bit and waking the system.

4.7.2.2.2.2 Control Method Sleeping Button

The dleegp button programming model can also use the generic hardware programming model. This allows
the sleep button to reside in any of the generic hardware address spaces (for example, the embedded
controller) instead of fixed space. If the deep button isimplemented via generic hardware, then the OEM
needs to define the sleep button as a device with an _HID object value of “PNPOCOE”, which then
identifies this device as the sleep button to OSPM. The AML event handler then generates a Notify
command to notify OSPM that a sleep button event was generated. While in the working state, a sleep
button pressis a user request to transition the system into the sleeping (G1) state. In these cases the sleep
button event handler issues the Notify command with the device specific code of 0x80. Thiswill indicate to
OSPM to pass control to the sleep button driver (PNPOCOE) with the knowledge that the user is requesting
atransition out of the GO state. Upon waking-up from a G1 sleeping state, the AML event handler
generates a Notify command with the code of 0x2 to indicate it was responsible for waking the system.

The sleep button device needs to be declared as a device within the ACPI Namespace for the platform and
only requiresan _HID. An example definition is shown below.

The AML code below does the following:

e Createsadevice named “SLPB” and associates the Plug and Play identifier (through the HID
object) of “PNPOCOE.”

e ThePlug and Play identifier associates this device object with the sleep button driver.

e Creates an operational region for the control method sleep button’ s programming model: System
I/O space at 0x201.

e Fieldsthat are not accessed are written as “1s” (these status bits clear upon writing a“1” to their
bit position, hence preserved would fail in this case).

e Createsafield within the operational region for the sleep button status bit (called PBP). In this
case the sleep button status bit is a child of the general-purpose status bit 0. When this bit is set it
isthe responsibility of the AML code to clear it (OSPM clears the general -purpose status hits).
The address of the status hit is 0x201.0 (bit O at address 0x201).

e Creates an additional status bit called PBW for the sleep button wake event. Thisis the next bit
and its physical address would be 0x201.1 (bit 1 at address 0x201).

e Generates an event handler for the sleep button that is connected to bit O of the general-purpose
status register 0. The event handler does the following:

e Clearsthe sleep button status bit in hardware (writesa“1” to it).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 85

e Notifies OSPM of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

/1 Define a control nethod sleep button
Devi ce(\ _SB. SLPB){
Narme(_HI D, El SAI D(“ PNPOCOE"))
Nane(_PRW Package(){0x01, 0x04})
Oper at i onRegi on(\ Boo, System O 0x201, 0x1)
Fi el d(\ Boo, ByteAcc, NoLock, WiteAsZeros){

SBP, 1, /1 sleep request
SBW 1 /1 wakeup request
} /1 end of field definition
}
Scope(\ _GPE) { /! Root |evel event handlers
Met hod(_LO1) { /1 uses bit 1 of GPO_STS register
I f(\SBP){
St ore(One, \ SBP) /1 clear sleep button status
Noti fy(_SB. SLPB, 0x80) /1 Notify OS of event
}
I f(\SBW {

St ore(One, \ SBW
Notify(_SB. SLPB, 0x2)

} /1 end of _LO1 handler
} /1 end of _GPE scope

4.7.2.3 Sleeping/Wake Control

The deeping/wake logic consists of logic that will sequence the system into the defined low-power
hardware sleeping state (S1-S4) or soft-off state (S5) and will wake the system back to the working state
upon awake event. Notice that the SABIOS state is entered in a different manner (for more information, see
section 15.1.4.2, “The $ABIOS Transition”).

SLP_EN SLP_TYP:3
PMix_CNT.S4.13 PM1x_CNT.S4.[10-12]

X
Lad ® WAK_STS
PM1x_STS.S0.15

Sleeping D—g

"OR" or all
Wake H — Wakeup/
Events
Sleep
Logic
PWRBTN_OR

Figure4-10 Sleeping/Wake Logic

Thelogicis controlled viatwo bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TYPx). The type
of deep state desired is programmed into the SLP_TY Px field and upon assertion of the SLP_EN the
hardware will sequence the system into the defined sleeping state. OSPM gets values for the SLP_TY Px
field from the\ Sx objects defined in the static definition block. If the object is missing OSPM assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, OSPM will read
the designated _Sx object and place thisvalueinthe SLP_TYP field.

Additionally ACPI defines afail-safe Off protocol called the “ power button override,” which allows the
user to initiate an Off sequence in the case where the system software is no longer able to recover the
system (the system has hung). ACPI defines that this sequence be initiated by the user pressing the power
button for over 4 seconds, at which point the hardware unconditionally sequences the system to the Off
state. Thislogicis represented by the PWRBTN_OR signal coming into the sleep logic.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

86 Advanced Configuration and Power Interface Specification

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (GO). The “Wake Status” bit (WAK_STS) is provided for OSPM to “spin-
on” after setting the SLP_EN/SLP_TY P hit fields. When waking from the S1 deeping state, execution
control is passed backed to OSPM immediately, whereas when waking from the S2-S5 states execution
control is passed to the BIOS software (execution begins at the CPU’ s reset vector). The WAK_STS bit
provides a mechanism to separate OSPM’ s dleeping and waking code during an S1 sequence. When the
hardware has sequenced the system into the sleeping state (defined here as the processor is no longer able
to execute instructions), any enabled wake event is allowed to set the WAK_STS bit and sequence the
system back on (to the GO state). If the system does not support the S1 deeping state, the WAK_STS bit
can always return zero.

-If more than asingle sleeping state is supported, then the sleeping/wake logic is required to be able to
dynamically sequence between the different sleeping states. Thisis accomplished by waking the system;
OSPM programs the new deep state into the SLP_TY P field, and then setsthe SLP_EN hit—placing the
system again in the sleeping state.

4.7.2.4 Real Time Clock Alarm

If implemented, the Real Time Clock (RTC) alarm must generate a hardware wake event when in the
sleeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used to
generate a wake event when the system isin a sleeping state. ACPI provides for additional hardware to
support OSPM in determining that the RTC was the source of the wake event: the RTC_STSand RTC_EN
bits. Although these bits are optional, if supported they must be implemented as described here.

If the RTC_STSand RTC_EN bits are not supported, OSPM will attempt to identify the RTC as apossible
wake source; however, it might miss certain wake events. If implemented, the RTC wake featureis
required to work in the following sleeping states: S1-S3. S4 wake is optional and supported through the
RTC_$4 flag within the FADT (if set, then the platform supports RTC wake in the S$4 state)®.

When the RTC generates a wake event the RTC_STS bit will be set. If the RTC_EN bit isset, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

RTC_STS
PM1x_STS.10

Real Time Clock
e (,IQZ) o¢ g RTC Wake-up
Event
RTC_EN
PM1x_EN.10

Figure4-11 RTC Alarm

The RTC wake event status and enable bits are an optional fixed hardware feature and a flag within the
FADT (FIX_RTC) indicates if the register bits are to be used by OSPM. If the RTC wake event status and
enable bits are implemented in fixed hardware, OSPM can determine if the RTC was the source of the
wake event without loading the entire OS. This also gives the platform the capability of indicating an RTC
wake source without consuming a GPE bit, as would be required if RTC wake was not implemented using
the fixed hardware RTC feature. If the fixed hardware feature event bits are not supported, then OSPM will
attempt to determine this by reading the RTC' s status field. If the platform implements the RTC fixed
hardware feature, and this hardware consumes resources, the _FIX method can be used to correlate these
resources with the fixed hardware. See section 6.2.5, “_FIX (Fixed Register Resource Provide’, for details.

% Notice that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will
disable the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 87

OSPM supports enhancements over the existing RTC device (which only supports a 99 year date and 24-
hour alarm). Optional extensions are provided for the following features:

e Day Alarm. The DAY_ALRM field pointsto an optional CMOS RAM location that selectsthe
day within the month to generate an RTC alarm.

e Month Alarm. The MON_ALRM field points to an optional CMOS RAM location that selects
the month within the year to generate an RTC alarm.

e Centenary Value. The CENT field pointsto an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).

The RTC_STS bit may be set through the RTC interrupt (IRQ8 in | A-PC architecture systems). OSPM wiill
insure that the periodic and update interrupt sources are disabled prior to sleeping. Thisalowsthe RTC's
interrupt pin to serve as the source for the RTC_STS bit generation. Note however that if the RTC interrupt
pinisused for RTC_STS generation, the RTC_STS hit value may not be accurate when waking from 4. If
this value is accurate when waking from $4, the platform should set the S4 RTC_STS VALID flag, so that
OSPM can utilize the RTC_STS information.

Table4-10 Alarm Field Decodings within the FADT

Address (Location) in RTC CMOS

Field Value RAM (Must be Bank 0)

DAY_ALRM | Eight bit value that can represent 0x01-0x31 | The DAY_ALRM field inthe FADT
daysin BCD or 0x01-Ox1F daysin binary. will contain a non-zero value that
Bits 6 and 7 of thisfield are treated as represents an offset into the RTC's
Ignored by software. The RTC isinitialized CMOS RAM areathat contains the day
such that thisfield contains a“don’t care’ alarm value. A value of zero in the
value when the BIOS switches from legacy DAY _ALRM field indicates that the day
to ACPI mode. A don’'t care value can beany | alarm feature is not supported.
unused value (not 0x1-0x31 BCD or 0x01-

Ox1F hex) that the RTC reverts back to a 24
hour alarm.

MON_ALRM | Eight bit value that can represent 01-12 The MON_ALRM field inthe FADT
monthsin BCD or 0x01-0xC monthsin will contain a non-zero value that
binary. The RTC isinitialized such that this represents an offset intothe RTC's
field contains adon’t care value when the CMOS RAM areathat contains the
BIOS switches from legacy to ACPI mode. A | month alarm value. A value of zero in
“don’t care” value can be any unused value the MON_ALRM field indicates that the
(not 1-12 BCD or x01-xC hex) that the RTC | month alarm feature is not supported. If
reverts back to a 24 hour alarm and/or 31 day | the month alarmis supported, the day
alarm). alarm function must also be supported.

CENTURY 8-bit BCD or binary value. Thisvalue The CENTURY field inthe FADT will

indicates the thousand year and hundred year
(Centenary) variables of the datein BCD (19
for this century, 20 for the next) or binary
(x13 for this century, x14 for the next).

contain a non-zero value that represents
an offset into the RTC's CMOS RAM
areathat contains the Centenary value
for the date. A value of zero in the
CENTURY field indicates that the
Centenary value is not supported by this
RTC.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

88 Advanced Configuration and Power Interface Specification

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware
sequence. ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems
use some type of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler).
ACPI-compatible hardware can choose to support both legacy and ACPI modes or just an ACPI mode.
Legacy hardware is needed to support these features for non-A CPI-compatible operating systems. When
the ACPI OS loads, it scans the BIOS tables to determine that the hardware supports ACPI, and then if the
it findsthe SCI_EN bit reset (indicating that ACPI is not enabled), issues an ACPI activate command to the
SMI handler through the SM1 command port. The BIOS acknowledges the switching to the ACPlI model of
power management by setting the SCI_EN bit (this bit can also be used to switch over the event mechanism
asillustrated below):

SCI_EN
PM1x_CNT.O
Power ¢——» SMI_EVNT
Management —————— Dec
Event Logic l——%» SCI_EVNT
Shareable
Interrupt

Figure4-12 Power Management Eventsto SM1/SCI Control Logic

Theinterrupt events (those that generate SMIsin legacy mode and SClsin ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt eventsto
the SMI interrupt logic. For ACPI mode this hit is set, which routes interrupt events to the SCI interrupt
logic. Thisbit always returns set for ACPI-compatible hardware that does not support a legacy power
management mode (in other words, the bit iswired to read as“1” and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses
a shareable protocol. The FADT has an entry that indicates what interrupt the SCI interrupt is mapped to
(see section 5.2.6, “ System Description Table Header”).

If the ACPI platform supports both legacy and ACPI modes, it has aregister that generates a hardware
event (for example, SMI for |A-PC processors). OSPM uses this register to make the hardware switch in
and out of ACPI mode. Within the FADT are three values that signify the address (SM1_CMD) of this port
and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable the ACPI state
(ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would
occur:
e ACPI driver checksthat the SCI_EN bit is zero, and that it isin the Legacy mode.

e OSPM doesan OUT to the SMI_CMD port with the datain the ACPI_ENABLE field of the
FADT.

e OSPM pollsthe SCI_EN hit until it issampled as SET.

To transition an ACPI/Legacy platform from the ACPI mode to the Legacy mode the following would
occur:

e ACPI driver checksthat the SCI_EN bit is one, and that it isin the ACPI mode.

e OSPM doesan OUT to the SMI_CMD port with the datain the ACPI_DISABLE field of the
FADT.

e OSPM pollsthe SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI alwaysreturn a1 for the SCI_EN bit. In this case OSPM skipsthe
Legacy to ACPI transition stated above.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 89

4.7.2.6 Processor Control

The ACPI specification defines several processor controls including power state control, throttling control,
and performance state control. See Section 8, “Processor Configuration and Control,” for a complete
description of the processor controls.

4.7.3 Fixed Hardware Registers

The fixed hardware registers are manipulated directly by OSPM. The following sections describe fixed
hardware features under the programming model. OSPM owns all the fixed hardware resource registers;
these registers cannot be manipulated by AML code. Registers are accessed with any width up to its
register width (byte granular).

4.7.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks.
This allows these registers to be partitioned between two chips, or al placed in asingle chip. Although the
bits can be split between the two register blocks (each register block has a unique pointer within the
FADT), the bit positions are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 PML1 Status Registers

Regi ster Location: <PMla_EVT _BLK / PMLb_EVT_BLK> System |/ O or Menory Space
Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_EVT_LEN/ 2

The PM1 status registers contain the fixed hardware feature status bits. The bits can be split between two
registers: PM1a STSor PM1b_STS. Each register grouping can be at a different 32-bit aligned address and
ispointed to by the PM1a EVT_BLK or PM1b EVT_BLK. The values for these pointersto the register
space are found in the FADT. Accessesto the PM 1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state thisregister is
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the GO working state thisregister is cleared prior to entering the GO working state.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

90 Advanced Configuration and Power Interface Specification

Table4-11 PM1 Status Registers Fixed Hardwar e Featur e Status Bits

Bit Name

Description

0 TMR_STS

Thisisthe timer carry status bit. This bit gets set any time the most
significant bit of a 24/32-bit counter changes from clear to set or set to clear.
While TMR_EN and TMR_STS are set, an interrupt event is raised.

1-3 Reserved

Reserved

4 BM_STS

Thisisthe bus master status bit. This bit is set any time a system bus master
reguests the system bus, and can only be cleared by writing a“1” to this bit
position. Notice that this bit reflects bus master activity, not CPU activity
(this bit monitors any bus master that can cause an incoherent cache for a
processor in the C3 state when the bus master performs a memory
transaction).

5 GBL_STS

Thishit is set when an SCI is generated due to the BIOS wanting the
attention of the SCI handler. BIOS will have a control bit (somewhere within
its address space) that will raise an SCI and set this bit. Thisbit issetin
response to the BIOS releasing control of the Global Lock and having seen
the pending bit set.

6-7 Reserved

Reserved. These bits always return a value of zero.

8 PWRBTN_STS

This optional bit is set when the Power Button is pressed. In the system
working state, while PWRBTN_EN and PWRBTN_STS are both set, an
interrupt event israised. In the sleeping or soft-off state, a wake event is
generated when the power button is pressed (regardless of the PWRBTN_EN
bit setting). Thisbit is only set by hardware and can only be reset by software
writing a“1” to this bit position.

ACPI defines an optional mechanism for unconditional transitioning a system
that has stopped working from the GO working state into the G2 soft-off state
called the power button override. If the Power Button is held active for more
than four seconds, this bit is cleared by hardware and the system transitions
into the G2/S5 Soft Off state (unconditionally).

Support for the power button isindicated by the PWR_BUTTON flag in the
FADT being reset (zero). If the PWR_BUTTON flag is set or a power button
device object is present in the ACPI Namespace, then this bit field isignored
by OSPM.

If the power button was the cause of the wake (from an S1-$4 state), then this
bit is set prior to returning control to OSPM.

9 SLPBTN_STS

This optional bit is set when the sleep button is pressed. In the system
working state, while SLPBTN_EN and SLPBTN_STS are both set, an
interrupt event israised. In the sleeping or soft-off states awake event is
generated when the sleeping button is pressed and the SLPBTN_EN bit is set.
Thisbit isonly set by hardware and can only be reset by software writing a
“1” to thisbit position.

Support for the sleep button is indicated by the SLP_ BUTTON flag in the
FADT being reset (zero). If the SLP_BUTTON flag is set or a sleep button
device object is present in the ACPI Namespace, then this bit field isignored
by OSPM.

If the sleep button was the cause of the wake (from an S1-$4 state), then this
bit is set prior to returning control to OSPM.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 91

Bit

Name

Description

10

RTC_STS

This optional bit is set when the RTC generates an alarm (assertsthe RTC
IRQ signal). Additionally, if the RTC_EN bit is set then the setting of the
RTC_STSbit will generate a power management event (an SCI, SMI, or
resume event). Thisbit is only set by hardware and can only be reset by
software writing a“1” to this bit position.

If the RTC was the cause of the wake (from an S1-S3 state), then this bit is
set prior to returning control to OSPM. If the RTC_$4 flag within the FADT
is set, and the RTC was the cause of the wake from the $4 state), then this bit
is set prior to returning control to OSPM.

11

Ignore

Thisbit field isignored by software.

12-13

Reserved

Reserved. These bits always return a value of zero.

14

PCIEXP_WAKE
_STS

Thisbit isrequired for chipsets that implement PCI Express. Thisbit is set by
hardware to indicate that the system woke due to a PCl Express wakeup
event. A PCI Express wakeup event is defined as the PCl Express WAKE#
pin being active , one or more of the PCl Express ports being in the beacon
state, or receipt of a PCl Express PME message at aroot port. This bit should
only be set when one of these events causes the system to transition from a
non-S0 system power state to the SO system power state. This bit is set
independent of the state of the PCIEXP_WAKE_DIS hit.

Software writes a 1 to clear this bit. If the WAKE# pinis still active during
the write, one or more PCl Express portsisin the beacon state or the PME
message received indication has not been cleared in the root port, then the bit
will remain active (i.e. all inputsto thisbit are level-sensitive).

Note: Thisbit does not itself cause a wake event or prevent entry to a
deeping state. Thusif the bit is 1 and the system is put into a sleeping state,
the system will not automatically wake.

15

WAK_STS

Thisbit is set when the system isin the sleeping state and an enabled wake
event occurs. Upon setting this bit system will transition to the working state.
Thishit is set by hardware and can only be cleared by software writinga“1”
to this bit position.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

92 Advanced Configuration and Power Interface Specification

4.7.3.1.2 PM1 Enable Registers

Regi ster Location: <PMla_EVT_BLK / PMLb_EVT_BLK> + PML_EVT_LEN / 2 System 1/ O or
Menory Space

Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_EVT_LEN / 2

The PM1 enable registers contain the fixed hardware feature enable bits. The bits can be split between two
registers. PM1a EN or PM1b_EN. Each register grouping can be at a different 32-hit aligned address and
ispointed to by the PM1a EVT_BLK or PM1b EVT BLK. The values for these pointersto the register
space are found in the FADT. Accesses to the PM 1 Enable registers are done through byte or word
aCCesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state the enables are
cleared by BIOS prior to setting the SCI_EN bit (and thus passing control to OSPM). For ACPI-only
platforms (where SCI_EN is always set), when transitioning from either the mechanical off (G3) or soft-off
state to the GO working state thisregister is cleared prior to entering the GO working state.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats the enable bits as write as zero.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 93

Table4-12 PM1 Enable Registers Fixed Har dwar e Featur e Enable Bits

Name

Description

TMR_EN

Thisisthe timer carry interrupt enable bit. When this bit is set then an
SCI event is generated anytime the TMR_STS bit is set. When this bit
isreset then no interrupt is generated when the TMR_STS bit is set.

Reserved

Reserved. These bits always return a value of zero.

GBL_EN

The global enable bit. When both the GBL_EN bit and the GBL_STS
bit are set, an SCl israised.

Reserved

Reserved

PWRBTN_EN

This optional bit is used to enable the setting of the PWRBTN_STS bit
to generate a power management event (SCI or wake). The
PWRBTN_STS hit is set anytime the power button is asserted. The
enable bit does not have to be set to enable the setting of the
PWRBTN_STS bit by the assertion of the power button (see
description of the power button hardware).

Support for the power button isindicated by the PWR_BUTTON flag
inthe FADT being reset (zero). If the PWR_BUTTON flagisset or a
power button device object is present in the ACPI Namespace, then
this bit field isignored by OSPM.

SLPBTN_EN

This optional bit is used to enable the setting of the SLPBTN_STS bit
to generate a power management event (SCI or wake). The
SLPBTN_STS hit is set anytime the sleep button is asserted. The
enable bit does not have to be set to enable the setting of the
SLPBTN_STS hit by the active assertion of the sleep button (see
description of the sleep button hardware).

Support for the sleep button is indicated by the SLP_ BUTTON flagin
the FADT being reset (zero). If the SLP_ BUTTON flagisset or a
sleep button device object is present in the ACPI Namespace, then this
bit field isignored by OSPM.

10

RTC_EN

This optional bit is used to enable the setting of the RTC_STS hit to
generate awake event. The RTC_STS hit is set any timethe RTC
generates an alarm.

11-13

Reserved

Reserved. These bits always return a value of zero.

14

PCIEXP_WAKE_DIS

Thishit isrequired for chipsets that implement PCI Express. This bit
disables the inputs to the PCIEXP_WAKE_STS bit in the PM1 Status
register from waking the system. Modification of this bit has no
impact on the value of the PCIEXP_WAKE_STS bit.

15

Reserved

Reserved. These bits always return a value of zero.

4.7.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This
allows these registers to be partitioned between two chips, or all placed in asingle chip. Although the bits
can be split between the two register blocks (each register block has a unique pointer within the FADT), the
bit positions specified here are maintained. The register block with unimplemented bits (that is, those
implemented in the other register block) returns zeros, and writes have no side effects.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

94 Advanced Configuration and Power Interface Specification

4.7.3.2.1 PM1 Control Registers

Regi ster Location: <PMLa_CNT_BLK / PMLb_CNT_BLK> System |/ O or Menory Space
Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_CNT_LEN

The PM1 control registers contain the fixed hardware feature control bits. These bits can be split between
two registers: PM1a CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned
address and is pointed to by the PM1a CNT_BLK or PM1b_CNT_BLK. The values for these pointersto
the register space are found in the FADT. Accessesto PM 1 control registers are accessed through byte and
word accesses.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table4-13 PM1 Control Registers Fixed Hardware Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SM1 interrupt for
the following events. When this bit is set, then power management events will
generate an SCI interrupt. When this bit is reset power management events wil
generate an SMI interrupt. It isthe responsibility of the hardware to set or reset
this bit. OSPM always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request to cause any
processor in the C3 state to transition to the CO state. When this bit is reset, the
generation of a bus master request does not affect any processor in the C3 state.

2 GBL_RLS Thiswrite-only bit is used by the ACPI software to raise an event to the BIOS
software, that is, generates an SMI to pass execution control to the BIOS for | A-
PC platforms. BIOS software has a corresponding enable and status bit to
control its ability to receive ACPI events (for example, BIOS_EN and

BIOS STS). The GBL_RLShit is set by OSPM to indicate arelease of the
Global Lock and the setting of the pending bit in the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by OSPM.

9 Ignore Software ignores this bit field.

10-12 | SLP_TYPX Defines the type of sleeping state the system enters when the SLP_EN bit is set
to one. This 3-bit field defines the type of hardware sleep state the system enters
when the SLP_EN bit is set. The\ Sx object contains 3-bit binary values
associated with the respective sleeping state (as described by the object). OSPM
takes the two values from the \ Sx object and programs each value into the
respective SLP_TYPx field.

13 SLP_EN Thisisawrite-only bit and reads to it always return a zero. Setting this bit
causes the system to sequence into the sleeping state associated with the
SLP_TY Px fields programmed with the values from the \ Sx object.

14-15 | Reserved Reserved. Thisfield always returns zero.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 95

4.7.3.3 Power Management Timer (PM_TMR)

Regi ster Location: <PM TMR_BLK> System |/ O or Menory Space

Def aul t Val ue: 00h
Attribute: Read- Onl 'y
Si ze: 32 bits

This read-only register returns the current value of the power management timer (PM timer). The FADT
has aflag caled TMR_VAL_EXT that an OEM setsto indicate a 32-bit PM timer or reset to indicate a 24-
bit PM timer. When the last bit of the timer togglesthe TMR_STS bit is set. Thisregister is accessed as 32
bits.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table4-14 PM Timer Bits

Bit Name Description

0-23 | TMR VAL Thisread-only field returns the running count of the power management timer.
Thisisa 24-bit counter that runs off a 3.579545-MHz clock and counts while
in the SO working system state. The starting value of the timer is undefined,
thus allowing the timer to be reset (or not) by any transition to the SO state
from any other state. The timer is reset (to any initial value), and then
continues counting until the system’s 14.31818 MHz clock is stopped upon
entering its Sx state. If the clock is restarted without a reset, then the counter
will continue counting from where it stopped.

24-31 | E TMR_VAL | Thisread-only field returns the upper eight bits of a 32-bit power management
timer. If the hardware supports a 32-bit timer, then this field will return the
upper eight bits; if the hardware supports a 24-bit timer then this field returns
all zeros.

4.7.3.4 PM2 Control (PM2_CNT)

Regi ster Location: <PM2_CNT_BLK> System /O, System Menory, or
Functional Fi xed Hardware Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: PM2_CNT_LEN

Thisregister block is naturally aligned and accessed based on its length. For ACPI 1.0 thisregister is byte
aligned and accessed as a byte.

Thisregister contains optional features enabled or disabled within the FADT. If the FADT indicates that
the feature is not supported as a fixed hardware feature, then software treats these bits as ignored.

Table4-15 PM2 Control Register Bits

Bit Name Description

0 ARB _DIS Thisbit is used to enable and disable the system arbiter. When thisbit is
CLEAR the system arbiter is enabled and the arbiter can grant the bus to other
bus masters. When thisbit is SET the system arbiter is disabled and the default
CPU has ownership of the system.

OSPM clears this bit when using the CO, C1 and C2 power states.

>0 Reserved Reserved

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

96 Advanced Configuration and Power Interface Specification

4.7.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one unique processor
register block per processor in the system. For more information about controlling processors and control
methods that can be used to control processors, see section 8, “Processor Configuration and Control.” This
register block is DWORD aligned and the context of this register block is not maintained across S3 or 4
dleeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Regi ster Location: Either <P_BLK>: System |/ O Space
or specified by _PTC (bject: Systeml|/O System Menory, or
Functional Fi xed Hardware Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: 32 bits

Thisregister is accessed asa DWORD. The CLK_VAL field is where the duty setting of the throttling
hardware is programmed as described by the DUTY_WIDTH and DUTY_OFFSET valuesin the FADT.
Software treats al other CLK_VAL bits asignored (those not used by the duty setting value).

Table4-16 Processor Control Register Bits

Bit Name Description
0-3 CLK_VAL | Possiblelocationsfor the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set inthe CLK_VAL field.

THT_EN bit must be reset LOW when changing the CLK_VAL field (changing
the duty setting).

5-31 CLK_VAL | Possiblelocationsfor the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Regi ster Location: Either <P_BLK> + 4: System |/ O Space
or specified by _CST Cbject: Systeml/O System Menory, or
Functional Fi xed Hardware Space

Def aul t Val ue: 00h
Attribute: Read- Onl 'y
Si ze: 8 bits

Thisregister is accessed as a byte.
Table4-17 Processor LVL 2 Register Bits

Bit Name Description

0-7 P LVL2 Reads to this register return all zeros; writesto this register have no effect. Reads
to thisregister also generate an “enter a C2 power state” to the clock control
logic.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 97

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8

Regi ster Location: Either <P_BLK> + 5: System |/ O Space
or specified by _CST Cbject: Systeml|/O System Menory, or
Functi onal Fi xed Hardware Space

Def aul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 8 bits

Thisregister is accessed as a byte.
Table4-18 Processor LVL 3 Register Bits

Bit Name Description

0-7 P LVL3 Reads to this register return all zeros; writesto thisregister have no effect. Reads
to thisregister also generate an “enter a C3 power state” to the clock control
logic.

4.7.3.6 Reset Register

The optional ACPI reset mechanism specifies a standard mechanism that provides a complete system reset.
When implemented, this mechanism must reset the entire system. Thisincludes processors, core logic, al
buses, and all peripherals. From an OSPM perspective, asserting the reset mechanism is the logical
equivalent to power cycling the machine. Upon gaining control after areset, OSPM will perform actionsin
like manner to a cold boot.

The reset mechanism isimplemented via an 8-bit register described by RESET _REG inthe FADT (always
accessed viathe natural alignment and size described in RESET_REG). To reset the machine, software will
write avalue (indicated in RESET_VALUE in FADT) to the reset register. The RESET_REG field in the
FADT indicates the location of the reset register.

The reset register may exist only in 1/0 space, Memory space, or in PCI Configuration space on afunction
in bus 0. Therefore, the Address_Space ID valuein RESET_REG must be set to 1/O space, Memory space,
or PCI Configuration space (with a bus number of 0). Asthe register is only 8 bits, Register Bit_Width
must be 8 and Register Bit_Offset must be 0.

The system must reset immediately following the write to this register. OSPM assumes that the processor
will not execute beyond the write instruction. OSPM should execute spin loops on the CPUs in the system
following a write to this register.

4.7.4 Generic Hardware Registers

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to
OSPM in the ACPI Namespace. There are a number of rules to be followed when designing ACPI-
compatible hardware.

Programming bits can reside in any of the defined generic hardware address spaces (system 1/0O, system
memory, PCI configuration, embedded controller, or SMBus), but the top-level event bits are contained in
the general -purpose event registers. The general-purpose event registers are pointed to by the GPEO_BLK
and GPE1_BLK register blocks, and the generic hardware registers can be in any of the defined ACPI
address spaces. A device' s generic hardware programming model is described through an associated object
in the ACPI Namespace, which specifies the bit’s function, location, address space, and address location.

The programming model for devicesis normally broken into status and control functions. Status bits are
used to generate an event that allows OSPM to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bits reside in either the GPEQ_STS or GPE1_STSregisters, and “child”
event status bits can reside in generic address space.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

98 Advanced Configuration and Power Interface Specification

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned
into two chips: a chipset and an embedded controller.

e The chipset contains the interrupt logic, performs the power button (which is part of the fixed
register space, and is not discussed here), the lid switch (used in portables to indicate when the
clam shell lid is open or closed), and the RI# function (which can be used to wake a sleeping
system).

e The embedded controller chip is used to perform the AC power detect and dock/undock event
logic. Additionally, the embedded controller supports some system management functions using
an OS-transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

Momentary
Power i
PWRBTN#

8

<& »
ol >

EC CS# l ACH
Button Embedded |¢——
< EXToME Controller

EXTPME#

ACPI-Compatib
Chip Set

&
l

DOCK# Docking
Chip

Momentary

LID
Switch © ez RI#

| Embedded Controller Interface

SMI Onl | EXTSMIE SMi-only
GPx_REG Events EXTSMI# |] EXTSMI% sources
o AC_STS
Block AC.
EC_STS
GP_STS.0 ExXTPME book st
1 # =
%:EM o P0.40.1
EC_EN
SCI# a
Shareable GP_EN.0
Interrupt RI_STS

GP_sTS.1
:@&—% RI#
RIEN
GP_EN.1

LID_STS

GP_STS.2

L o< HC
ELIDEN
GP_EN.2

& LID_POL
$33.2

Other SCI
sources

Figure4-13 Example of General-Purposevs. Generic Har dware Events

At the top level, the generic eventsin the GPEX_STSregister are the:
e Embedded controller interrupt, which contains two query events. one for AC detection and one for
docking (the docking query event has a child interrupt status bit in the docking chip).
e Ringindicate status (used for waking the system).
e Liddtatus.

The embedded controller event status bit (EC_STS) is used to indicate that one of two query eventsis
active,
e A query event is generated when the AC# signal is asserted. The embedded controller returns a
query value of 34 (any byte number can be used) upon a query command in response to this event;
OSPM will then schedule for execution the control method associated with query value 34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. OSPM will then schedule the control method associated with the query
value of 35 to be executed, which services the docking event.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 99

For each of the status bitsin the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Notice that the child status bits do not necessarily need enable bits (see the DOCK _STS hit).

Thelid logic contains a control bit to determine if its status bit is set when the LID isopen (LID_POL is set
and LID isset) or closed (LID_POL isclear and LID isclear). This control bit residesin generic 1/0O space
(in this case, bit 2 of system /O space 33h) and would be manipulated with a control method associated
with the lid object.

Aswith fixed hardware events, OSPM will clear the status bitsin the GPEXx register blocks. However,
AML code clears all sibling status bitsin the generic hardware.

Generic hardware features are controlled by OEM supplied control methods, encoded in AML. ACPI
provides both an event and control model for development of these features. The ACPI specification also
provides specific control methods for notifying OSPM of certain power management and Plug and Play
events. Section 5, “ACPI Software Programming Model,” provides information on the types of hardware
functionality that support the different types of subsystems. The following isalist of features supported by
ACPI. Thelist is not intended to be complete or comprehensive.

e Deviceinsertion/gjection (for example, docking, device bay, A/C adapter)
Batteries’
Platform thermal subsystem
Turning on/off power resources
Mobile lid Interface
Embedded controller
System indicators
OEM -specific wake events
Plug and Play configuration

4.7.4.1 General-Purpose Event Register Blocks

ACPI supports up to two general -purpose register blocks as described in the FADT (see section 5, “ACPI
Software Programming Model”) and an arbitrary number of additional GPE blocks described as devices
within the ACPI namespace. Each register block contains two registers: an enable and a status register.
Each register block is 32-bit aligned. Each register in the block is accessed as a byte. It is up to the specific
design to determine if these bits retain their context across sleeping or soft-off states. If they lose their
context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing control
to the OS upon waking.

4.7.4.1.1 General-Purpose Event 0 Register Block

Thisregister block consists of two registers: The GPEO_STS and the GPEO_EN registers. Each register's
length is defined to be half the length of the GPEO register block, and is described in the ACPI FADT’s
GPEO_BLK and GPEO BLK_LEN operators. OSPM owns the general -purpose event resources and these
bits are only manipulated by OSPM; AML code cannot access the general-purpose event registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various
events.

The platform designer would then wire the GPEs to the various value-added event hardware and the AML
code would describe to OSPM how to utilize these events. As such, there will be the case where a platform
has GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the
platform and have no associated AML code. In such, cases these event pins are to be tied inactive such that
the corresponding SCI status bit in the GPE register is not set by a floating input pin.

* ACPI operating systems assume the use of the Smart Battery System |mplementers Forum defined
standard for batteries, called the “Smart Battery Specification” (SBS). ACPI provides a set of control
methods for use by OEMs that use a proprietary “control method” battery interface.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

100 Advanced Configuration and Power Interface Specification

4.7.4.1.1.1 General-Purpose Event 0 Status Register

Regi ster Location: <GPEO_STS> System |/ O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK_LEN 2

The general-purpose event 0 status register contains the general-purpose event status bitsin bank zero of
the general -purpose registers. Each available status bit in this register corresponds to the bit with the same
bit position inthe GPEO_EN register. Each available status bit in this register is set when the event is
active, and can only be cleared by software writing a“1” to its respective bit position. For the general -
purpose event registers, unimplemented bits are ignored by OSPM.

Each status bit can optionally wake the system if asserted when the system isin a sleeping state with its
respective enable bit set. OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.1.2 General-Purpose Event 0 Enable Register

Regi ster Location: <GPEO_EN> System |/O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK _LEN 2

The general-purpose event 0 enable register contains the general-purpose event enable bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPEQ_STS register. The
enable bits work similarly to how the enable bitsin the fixed-event registers are defined: When the enable
bit is set, then a set status bit in the corresponding status bit will generate an SCI bit. OSPM accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block

Thisregister block consists of two registers: The GPE1_STSand the GPEL_EN registers. Each register's
length is defined to be half the length of the GPEL register block, and is described in the ACPI FADT's
GPE1 BLK and GPE1 BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register

Regi ster Location: <GPE1_STS> System |/O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK _LEN 2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available
status hit in this register corresponds to the bit with the same bit position in the GPEL_EN register. Each
available status bit in this register is set when the event is active, and can only be cleared by software
writing a“1” to its respective bit position. For the general-purpose event registers, unimplemented bits are
ignored by the operating system.

Each status bit can optionally wake the system if asserted when the system isin a sleeping state with its
respective enable bit set.

OSPM accesses GPE registers through byte accesses (regardless of their length).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 101

4.7.4.1.2.2 General-Purpose Event 1 Enable Register

Regi ster Location: <GPE1_EN> System |/ O or System Menory Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK_LEN 2

The general-purpose event 1 enable register contains the general-purpose event enable. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPE1_STSregister. The
enable bits work similarly to how the enable bitsin the fixed-event registers are defined: When the enable
bit is set, a set status bit in the corresponding status bit will generate an SCI hit.

OSPM accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices

This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by
the OS as policy input for sleeping the system, or for waking the system from a sleeping state. If used, then
the OEM needs to define the lid switch as adevice with an _HID object value of “PNPOCOD”, which
identifies this device as the lid switch to OSPM. The Lid device needs to contain a control method that
returnsits status. The Lid event handler AML code reconfigures the lid hardware (if it needs to) to generate
an event in the other direction, clear the status, and then notify OSPM of the event.

Example hardware and ASL code is shown below for such a design.

% \ 8 ms =
O O hd Debounce
Momentary Normally LID_STS
Open push button
LID_POL

Figure4-14 Example Generic Address Space Lid Switch Logic

Thislogic will set the Lid status bit when the button is pressed or released (depending onthe LID_POL
bit).

The ASL code below defines the following:

e Anoperational region where the lid polarity resides in address space System address space in registers
0x201.

o A field operator to allow AML code to access this bit: Polarity control bit (LID_POL) is called LPOL
and is accessed at 0x201.0.

e A devicenamed\ SB.LID with the following:
e A Plug and Play identifier “PNPOCOD” that associates OSPM with this object.
o Definesan object that specifies a change in the lid’s status bit can wake the system from the $4

deep state and from all higher sleep states (S1, S2, or S3).

e Thelid switch event handler that does the following:
o Definesthelid status bit (LID_STS) as a child of the general-purpose event O register bit 1.
o Definesthe event handler for thelid (only event handler on this status bit) that does the following:
Flips the polarity of the LPOL bit (to cause the event to be generated on the opposite condition).
Generates a notify to the OS that does the following:
Passesthe\ SB.LID object.
Indicates a device specific event (notify value 0x80).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

102 Advanced Configuration and Power Interface Specification

/1 Define a Lid switch
Oper ati onRegi on(\ PHO, System O, 0x201, O0x1)
Fi el d(\ PHO ByteAcc, NoLock, Preserve) {
LPOL, 1 // Lid polarity control bit
}

Devi ce(\ _SB. LI D) {
Name(_HI D, El SAI D(“PNPOCOD"))
Met hod(_LI D) { Ret ur n(LPQL) }
Nane(_PRW Package(2){
1 /1 bit 1 of GPE to enable Lid wakeup

0x04} /1 can wakeup from S4 state
)
}
Scope(\ _GPE) { // Root |evel event handlers
Met hod(_LO01){ /1 uses bit 1 of GPO_STS register

Not (LPOL, LPQL) // Flipthelid polarity bit
Notify(LID, Ox80) // Notify OS of event

}

4.7.4.2.2 Embedded Controller

ACPI provides a standard interface that enables AML code to define and access generic logic in
“embedded controller space.” This supports current computer models where much of the value added
hardware is contained within the embedded controller while allowing the AML code to access this
hardware in an abstracted fashion.

The embedded controller is defined as a device and must contain a set number of control methods:

e HID with avalue of PNPOCO9 to associate this device with the ACPI's embedded controller’ s driver.
e CRSto return the resources being consumed by the embedded controller.

e GPE that returns the general -purpose event bit that this embedded controller iswired to.

Additionally the embedded controller can support up to 255 generic events per embedded controller,
referred to as query events. These query event handles are defined within the embedded controller’s device
as control methods. An example of defining an embedded controller device is shown below:

Devi ce(EQD) {
/1 PnP ID
Narme(_HI D, El SAI D(“ PNP0C09"))
/1 Returns the “Current Resources” of EC
Nare(_CRS,
Resour ceTenpl at e() {
| (Decodel6, 0x62, 0x62, 0, 1)
| O(Decodel6, 0x66, 0x66, 0, 1)

})
/1 Indicate that the EC SCl is bit 0 of the GP_STS register
Name(_GPE, 0) /| enbedded controller is wired to bit 0 of GPE

Oper ati onRegi on(\ ECO, EnmbeddedControl, 0, OxFF)
Fi el d(ECO, ByteAcc, Lock, Preserve) {

/1 Field definitions

}

/1 Query nethods

Met hod(_Q0){. ..}

Met hod(_QFF) {. ..}

}

For more information on the embedded controller, see section 12, “ACPI Embedded Controller Interface
Specification.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Hardware Specification 103

4.7.4.2.3 Fan

ACPI has adevice driver to control fans (active cooling devices) in platforms. A fan is defined as a device
with the Plug and Play ID of “PNPOCOB.” It should then contain alist power resources used to control the
fan.

For more information, see section 9, “ACPI-Defined Devices and Device Specific Objects.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

104 Advanced Configuration and Power Interface Specification

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 105

5 ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in section 4, “ ACPI Hardware Specification.” ACPI also
provides an abstract interface for controlling the power management and configuration of an ACPI system.
Finally, ACPI defines an interface between an ACPI-compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tables list devices on the system
board or devices that cannot be detected or power managed using some other hardware standard, plus their
capabilities as described in section 3, “Overview.” They aso list system capabilities such as the sleeping
power states supported, a description of the power planes and clock sources available in the system,
batteries, system indicator lights, and so on. This enables OSPM to control system devices without needing
to know how the system controls are implemented.

Topics covered in this section are:
e The ACPI system description table architecture is defined, and the role of OEM-provided
definition blocks in that architecture is discussed.
e The concept of the ACPI Namespace is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structureis located in the system’s memory address space
and is setup by the platform firmware. This structure contains the address of the Extended System
Description Table (XSDT), which references other description tables that provide datato OSPM, supplying
it with knowledge of the base system’ simplementation and configuration (see Figure 5-1).

Located in system's memory address space

A

f 1
Root System Extended System
Description Pointer Description Table
RSD PTR
Pointer
Pointer Entry
Entry contents contents
Entry

Figure5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tablesisto define for OSPM various industry-standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet till
provide OSPM with the knowledge it needs to control hardware directly.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

106 Advanced Configuration and Power Interface Specification

The Extended System Description Table (XSDT) points to other tablesin memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tablesis shown in Figure 5-2.

Fixed ACPI Differentiated System Firmware ACPI
Description Table Description Table Control Structure

FACS

Wake Vector
Shared Lock

Static info

FIRM Differ_er_1t_i ated
DSDT | Definition
Block

BLKs

Software
Hardware —
GPx_BLK
OEM-Specific
—.l PM2x_BLK
N PM1x_BLK *
Located in 1
port space
]
])
Y
é Device 1/0O
Device Memory
PCI configuration

Embedded Controller space

Figure5-2 Description Table Structures

e OSPM findsthe RSDP structure as described in section 5.2.5.1 (“Finding the RSDP on |A-PC
Systems”) or section 5.2.5.2 (“Finding the RSDP on UEFI Enabled Systems”).

When OSPM locates the structure, it looks at the physical address for the Root System Description Table or
the Extended System Description Table. The Root System Description Table starts with the signature
“RSDT”, while the Extended System Description Table starts with the signature “XSDT”. These tables
contain one or more physical pointers to other system description tables that provide various information
about the system. As shown in Figure 5-1, there is always a physical addressin the Root System
Description Table for the Fixed ACPI Description table (FADT).

When OSPM follows a physical pointer to another table, it examines each table for a known signature.
Based on the signature, OSPM can then interpret the implementation-specific data within the description
table.

The purpose of the FADT isto define various static system information related to configuration and power
management. The Fixed ACPI Description Table starts with the “FACP” signature. The FADT describes
the implementation and configuration details of the ACPI hardware registers on the platform.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 107

For a specification of the ACPI Hardware Register Blocks (PM1a EVT_BLK, PM1b EVT BLK,

PMla CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK, PM_TMR_BLK, GPO BLK, GP1_BLK, and one
or more P_BLKS), see section 4.7, “ACPI Register Model.” The PMl1a EVT BLK, PM1b EVT BLK,

PMla CNT_BLK, PM1b CNT_BLK, PM2 CNT_BLK, and PM_TMR_BLK blocks are for controlling
low-level ACPI system functions.

The GPEQ_BLK and GPE1_BLK blocks provide the foundation for an interrupt-processing model for
Control Methods. The P_BLK blocks are for controlling processor features.

Besides ACPI Hardware Register implementation information, the FADT also contains a physical pointer
to a data structure known as the Differentiated System Description Table (DSDT), which is encoded in
Definition Block format (See section 5.2.11, “Definition Blocks").

A Definition Block contains information about the platform’s hardware implementation details in the form
of data objects arranged in a hierarchical (tree-structured) entity known as the “ ACPI namespace”, which
represents the platform’s hardware configuration. All definition blocks loaded by OSPM combine to form
one namespace that represents the platform. Data objects are encoded in aformat known as ACPI Machine
Language or AML for short. Data objects encoded in AML are “evaluated” by an OSPM entity known as
the AML interpreter. Their values may be static or dynamic. The AML interpreter’ s dynamic data object
evaluation capability includes support for programmatic eval uation, including accessing address spaces (for
example, 1/0 or memory accesses), calculation, and logical evaluation, to determine the result. Dynamic
namespace objects are known as “ control methods’. OSPM “loads’ or “unloads’ an entire definition block
asalogical unit —adding to or removing the associated objects from the namespace. The DSDT is aways
loaded by OSPM at boot time and cannot be unloaded. It contains a Definition Block named the
Differentiated Definition Block that contains implementation and configuration information OSPM can use
to perform power management, thermal management, or Plug and Play functionality that goes beyond the
information described by the ACPI hardware registers.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block isto
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the
ACPI-compatible OS while confining the variations to reasonable boundaries. Definition blocks enable
simple platform implementations to be expressed by using a few well-defined object names. In theory, it
might be possible to define a PCl configuration space-like access method within a Definition Block, by
building it from 1/O space, but that is not the goal of the Definition Block specification. Such a spaceis
usually defined asa“built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to OSPM. The operators present are intended to allow many useful hardware designs
to be ACPI-expressed, not to allow all hardware designs to be expressed.

5.1.1 Address Space Translation

Some platforms may contain bridges that perform tranglations as 1/0 and/or Memory cycles pass through
the bridges. This trandation can take the form of the addition or subtraction of an offset. Or it can take the
form of a conversion from 1/0O cyclesinto Memory cycles and back again. When trand ation takes place, the
addresses placed on the processor bus by the processor during aread or write cycle are not the same
addresses that are placed on the 1/0O bus by the /O bus bridge. The address the processor places on the
processor bus will be known here as the processor-relative address. And the address that the bridge places
on the 1/O bus will be known as the bus-relative address. Unless otherwise noted, all addresses used within
this section are processor-rel ative addresses.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

108 Advanced Configuration and Power Interface Specification

For example, consider a platform with two root PCI buses. The platform designer has several choices. One
solution would be to split the 16-hit 1/0O space into two parts, assigning one part to the first root PCI bus
and one part to the second root PCI bus. Another solution would be to make both root PCI buses decode the
entire 16-bit 1/0 space, mapping the second root PCI bus's I/O space into memory space. In this second
scenario, when the processor needsto read from an 1/O register of a device underneath the second root PCI
bus, it would need to perform a memory read within the range that the root PCI bus bridge is using to map
the 1/O space.

Note: Industry standard PCs do not provide address space trand ations because of historical compatibility
issues.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 109

5.2 ACPI System Description Tables

This section specifies the structure of the system description tables:
Root System Description Pointer (RSDP)

System Description Table Header

Root System Description Table (RSDT)

Fixed ACPI Description Table (FADT)

Firmware ACPI Control Structure (FACS)
Differentiated System Description Table (DSDT)
Secondary System Description Table (SSDT)
Multiple APIC Description Table (MADT)

Smart Battery Table (SBST)

Extended System Description Table (XSDT)
Embedded Controller Boot Resources Table (ECDT)
System Locality Distance Information Table (SLIT)
System Resource Affinity Table (SRAT)

All numeric values in ACPI-defined tables, blocks, and structures are always encoded in little endian
format. Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all dataitems marked as reserved in this specification have strict meanings. This
section lists software requirements for reserved fields. Notice that the list contains terms such as ACPI
tablesand AML code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components

o OEM implementations of software and AML code return the bit value of O for all reserved bitsin
ACPI tables or in other software values, such as resource descriptors.

e For al reserved bitsin ACPI tables and registers, OSPM implementations must:

e Ignoreall reserved bits that are read.

e Preservereserved bit values of read/write data items (for example, OSPM writes back reserved bit
valuesit reads).

e Write zerosto reserved bitsin write-only dataitems.

5.2.1.2 Reserved Values and Software Components

o OEM implementations of software and AML code return only defined values and do not return
reserved values.

OSPM implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components

e Software ignores all reserved bits read from hardware enable or status registers.

e Software writes zero to all reserved bitsin hardware enable registers.

e Software ignores all reserved bits read from hardware control and status registers.

e Software preserves the value of all reserved bits in hardware control registers by writing back read
values.

5.2.1.4 Ignored Hardware Bits and Software Components
e Software handlesignored bitsin ACPI hardware registers the same way it handles reserved bitsin
these same types of registers.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

110 Advanced Configuration and Power Interface Specification

5.2.2 Compatibility

All versions of the ACPI tables must maintain backward compatibility. To accomplish this, modifications
of the tables consist of redefinition of previoudly reserved fields and val ues plus appending data to the 1.0
tables. Modifications of the ACPI tables require that the version numbers of the modified tables be
incremented. The length field in the tables includes all additions and the checksum is maintained for the
entire length of the table.

5.2.3 Address Format

Addresses used in the ACPI 1.0 system description tables were expressed as either system memory or 1/O
space. Thiswastargeted at the 1A-32 environment. Newer architectures require addressing mechanisms
beyond that defined in ACPI 1.0. To support these architectures ACPI must support 64-bit addressing and it
must allow the placement of control registers in address spaces other than System 1/0.

5.2.3.1 Generic Address Structure

The Generic Address Structure (GAS) provides the platform with a robust means to describe register
locations. This structure, described below (Table 5-1), is used to express register addresses within tables
defined by ACPI .

Table5-1 Generic Address Structure (GAS)

Byte Byte
Field Length | Offset Description

Address Space | 1 0 The address space where the data structure or register exists.
ID Defined values are:

0 System Memory

1 System 1/0O

2 PCI Configuration Space

3 Embedded Controller

4 SMBus

5 to OX7E Reserved

Ox7F Functional Fixed Hardware
0x80to OXBF Reserved

0xCOto OxFF OEM Defined

Register Bit 1 1 The sizein bits of the given register. When addressing a data
Width structure, this field must be zero.

Register Bit 1 2 The bit offset of the given register at the given address. When
Offset addressing a data structure, this field must be zero.

Access Size 1 3 Specifies access size.

Undefined (legacy reasons)
Byte access

Word access

Dword access

4 QWord access

w N B O

Address 8 4 The 64-bit address of the data structure or register in the given
address space (relative to the processor). (See below for specific
formats.)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 111

Table5-2 Address Space For mat

Address Space For mat

0-System Memory The 64-bit physical memory address (relative to the processor) of the register. 32-
bit platforms must have the high DWORD set to 0.

1-System |/O The 64-bit 1/0 address (relative to the processor) of the register. 32-bit platforms
must have the high DWORD set to 0.

2-PCI Configuration | PCI Configuration space addresses must be confined to devices on PCl Segment
Space Group 0, bus 0. This restriction exists to accommodate access to fixed hardware
prior to PCI bus enumeration. The format of addresses are defined as follows:

WORD L ocation Description

Highest WORD Reserved (must be 0)

PCI Device number on bus 0

PCI Function number

Lowest WORD Offset in the configuration space header

For example: Offset 23h of Function 2 on device 7 on bus 0 segment 0 would be
represented as: 0x0000000700020023.

Ox7F—Functional Use of GAS fields other than Address Space_ID is specified by the CPU

Fixed Hardware manufacturer. The use of functional fixed hardware carries with it areliance on
OS specific software that must be considered. OEM s should consult OS vendors
to ensure that specific functional fixed hardware interfaces are supported by
specific operating systems.

5.2.4 Universal Uniform Identifiers (UUID)

UUIDs (Universally Unique I Dentifiers), also known as GUIDs (Globally Unique I Dentifiers) are 128 bit
long values that extremely likely to be different from all other UUIDs generated until 3400 A.D. UUIDs are
used to distinguish between callers of ASL methods, suchas _DSM and _OSC.

The format of both the binary and string representations of UUIDs along with an algorithm to generate
them is specified in ISO/IEC 11578:1996 and can be found as part of the Distributed Computing
Environment 1.1: Remote Procedure Call specification, which can be downloaded from here;
http://www.opengroup.org/publications/catal og/c706.htm.

5.2.5 Root System Description Pointer (RSDP)

During OS initialization, OSPM must obtain the Root System Description Pointer (RSDP) structure from
the platform. When OSPM locates the Root System Description Pointer (RSDP) structure, it then locates
the Root System Description Table (RSDT) or the Extended Root System Description Table (XSDT) using
the physical system address supplied in the RSDP.

5.2.5.1 Finding the RSDP on IA-PC Systems

OSPM finds the Root System Description Pointer (RSDP) structure by searching physical memory ranges

on 16-byte boundaries for avalid Root System Description Pointer structure signature and checksum match

asfollows:

e Thefirst 1 KB of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can
be found in the two-byte location 40:0Eh on the BIOS data area.

e The BIOS read-only memory space between OE0000h and OFFFFFh.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

112 Advanced Configuration and Power Interface Specification

5.2.5.2 Finding the RSDP on UEFI Enabled Systems

In Unified Extensible Firmware Interface (UEFI) enabled systems, a pointer to the RSDP structure exists
within the EFI System Table. The OS loader is provided a pointer to the EFl System Table at invocation.
The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table and convey the
pointer to OSPM, using an OS dependent data structure, as part of the hand off of control from the OS
loader to the OS.

The OS loader locates the pointer to the RSDP structure by examining the EFI Configuration Table within
the EFl System Table. EFI Configuration Table entries consist of Globally Unique Identifier (GUID)/table
pointer pairs. The UEFI specification defines two GUIDs for ACPI; one for ACPI 1.0 and the other for
ACPI 2.0 or later specification revisions.

The EFI GUID for apointer to the ACPI 1.0 specification RSDP structure is: EBOD2D30-2D88-11D3-
9A16-0090273FC14D.

The EFI GUID for a pointer to the ACPI 2.0 or later specification RSDP structure is: 8868E871-E4F1-
11D3-BC22-0080C73C8881.

The OS loader for an ACPI-compatible OS will search for an RSDP structure pointer using the current
revision GUID first and if it finds one, will use the corresponding RSDP structure pointer. If the GUID is
not found then the OS loader will search for the RSDP structure pointer using the ACPI 1.0 version GUID.

The OS loader must retrieve the pointer to the RSDP structure from the EFI System Table befor e assuming
platform control viathe EFI ExitBootServices interface. See the UEFI Specification for more information.
5.2.5.3 RSDP Structure

The revision number contained within the structure indicates the size of the table structure.

Table5-3 Root System Description Pointer Structure

Byte Byte

Field Length [Offset | Description

Signature 8 0 “RSD PTR” (Notice that this signature must contain atrailing
blank character.)

Checksum 1 8 Thisisthe checksum of the fields defined in the ACPI 1.0
specification. Thisincludes only the first 20 bytes of thistable,
bytes 0 to 19, including the checksum field. These bytes must sum
to zero.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Revision 1 15 Therevision of this structure. Larger revision numbers are
backward compatible to lower revision numbers. The ACPI
version 1.0 revision number of thistableis zero. The current value
for thisfieldis 2.

RsdtAddress 4 16 32 bit physical address of the RSDT.

Length 4 20 The length of the table, in bytes, including the header, starting
from offset 0. Thisfield is used to record the size of the entire
table.

XsdtAddress 8 24 64 bit physical address of the XSDT.

Extended 1 32 Thisis achecksum of the entire table, including both checksum

Checksum fields.

Reserved 3 33 Reserved field

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 113

5.2.6 System Description Table Header

All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
arelisted in Table 5-5.

Table5-4 DESCRIPTION_HEADER Fields

Byte Byte
Field Length | Offset | Description

Signature 4 0 The ASCII string representation of the table identifier. Notice that
if OSPM finds asignaturein atable that is not listed in Table 5-5,
OSPM ignores the entire table (it is not loaded into ACPI
namespace); OSPM ignores the table even though the valuesin
the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. Thisfield is used to record the size of the entire
table.

Revision 1 8 Therevision of the structure corresponding to the signature field
for thistable. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero to
be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM TableID 8 16 An OEM-supplied string that the OEM uses to identify the
particular datatable. Thisfield is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
TableID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are assumed
to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, thisisthe ID for the ASL Compiler.

Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.

For OEMSs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fieldsin any table. The intent of these fieldsisto allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when atool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM TableID.

Tables 5-5 and 5-6 contain the system description table signatures defined by this specification. These
system description tables may be defined by ACPI and documented within this specification (Table 5-5) or
they may be simply reserved by ACPI and defined by other industry specifications (Table 5-6). This alows
OS and platform specific tables to be defined and pointed to by the RSDT/XSDT as needed. For tables
defined by other industry specifications, the ACPI specification acts as gatekeeper to avoid collisionsin
table signatures.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

114 Advanced Configuration and Power Interface Specification

Table signatures will be reserved by the ACPI promoters and posted independently of this specification in
ACPI errata and clarification documents on the ACPI web site. Requests to reserve a 4-byte alphanumeric
table signature should be sent to the email address info@acpi.info and should include the purpose of the
table and reference URL to a document that describes the table format. Tables defined outside of the ACPI
specification may define data value encodingsin either little endian or big endian format. For the purpose
of clarity, external table definition documents should include the endian-ness of their data value encodings.

Since reference URL s can change over time and may not always be up-to-date in this specification, a
separate document containing the latest known reference URLs can be found at:
http://www.acpi.info/ DOWNL OAD Sireferenceurls.pdf. If this document does not exist at this URL, then

there are currently no updates available.

Table5-5 DESCRIPTION_HEADER Signaturesfor tables defined by ACPI

Signature | Description Reference

“APIC” Multiple APIC Description Table Section 5.2.12, “Multiple APIC Description Table”

“BERT” Boot Error Record Table Section 17.3.1, “Boot Error Source”

“CPEP” Corrected Platform Error Polling Section 5.2.18, “ Corrected Platform Error Polling Table”
Table

“DSDT” Differentiated System Description Section 5.2.11.1, “Differentiated System Description
Table Table”

“ECDT” Embedded Controller Boot Section 5.2.15, “Embedded Controller Boot Resources
Resources Table Table”

“EINJ’ Error Injection Table Section 17.5.1, “Error Injection Table”

“ERST” Error Record Serialization Table Section 17.4, “Error Serialization”

"FACP’ Fixed ACPI Description Table Section 5.2.9, “Fixed ACPI Description Table’
(FADT)

“FACS’ Firmware ACPI Control Structure Section 5.2.10, “Firmware ACPI Control Structure”

“HEST” Hardware Error Source Table Section 17.3.2, “ACPI Error Source”

“MSCT” Maximum System Characteristics Section 5.2.19, “Maximum System Characteristics Table’
Table

“OEMX” OEM Specific Information Tables OEM Specific tables. All table signatures starting with

“OEM” arereserved for OEM use.

“PSDT” Persistent System Description Table | Section 5.2.11.3, “Persistent System Description Table”

“RSDT” Root System Description Table Section 5.2.7, “Root System Description Table”

“SBST” Smart Battery Specification Table Section 5.2 14, “Smart Battery Table’

“SLIT” System Locality Distance Section 5.2.17, “ System Locality Distance Information
Information Table Table”

“SRAT” System Resource Affinity Table Section 5.2.16, “ System Resource Affinity Table”

“SSDT” Secondary System Description Section 5.2.11.2, “ Secondary System Description Table’
Table

“XSDT” Extended System Description Table | Section 5.2.8, “Extended System Description Table’

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

http://www.acpi.info/DOWNLOADS/referenceurls.pdf

ACPI Software Programming Model 115

Table5-6 DESCRIPTION_HEADER Signaturesfor tablesreserved by ACPI

Signature

Description and Exter nal Reference

“BOOT”

Simple Boot Flag Table
See: Microsoft Simple Boot Flag Specification
http://www.mi crosoft.com/whdc/resources/respec/specs/'simp_boot.mspx

“DBGP”

Debug Port Table
Microsoft Debug Port Specification
http://www.microsoft.com/HWDEV/PLATFORM/pcdesign/L R/debugspec.asp

“DMAR”

DMA Remapping Table
http://downl oad.intel.com/technol ogy/computing/vptech/Intel (r) VT for Direct 10.pdf

“ETDT”

Event Timer Description Table (Obsolete)
|A-PC Multimedia Timers Specification. This signature has been superseded by “HPET” and is
now obsolete.

“HPET”

| A-PC High Precision Event Timer Table
| A-PC High Precision Event Timer Specification
http://www.intel.com/hardwaredesign/hpetspec 1.pdf

“ I Bl_—r”

iSCS| Boot Firmware Table
http://www.microsoft.com/whdc/system/pl atf orm/firmware/i bft. mspx

“ IV RS”

[/O Virtualization Reporting Structure
http://www.amd.com/us-en/assets/content_type/white papers and tech docs/34434.pdf

“MCFG”

PCI Express memory mapped configuration space base address Description Table
PCI Firmware Specification, Revision 3.0

http://pcisig.com

“MCHI”

Management Controller Host Interface Table
DSP0256 Management Component Transport Protocol (MCTP) Host Interface Specification
http://www.dmtf.org/standards/published documents/DSP0256 _1.0.0a.pdf

“SPCR”

Serial Port Console Redirection Table
Microsoft Serial Port Console Redirection Table
http://www.microsoft.com/HWDEV/PLATFORM/server/headl ess/SPCR.asp

“SPMI”

Server Platform Management Interface Table
ftp://download.intel.com/design/servers/ipmi/IPMIv2_Orevl 0.pdf

“TCPA”

Trusted Computing Platform Alliance Capabilities Table
TCPA PC Specific Implementation Specification
https.//www.trustedcomputinggroup.org/home

“UEFI”

UEFI ACPI DataTable
UEFI Specification
http://www.uefi.org

“WAET”

Windows ACPI Enlightenment Table
http://www.microsoft.com/whdc/system/pl atform/virtual/WAET.mspx

“WDAT"”

Watch Dog Action Table
Requirements for Hardware Watchdog Timers Supported by Windows — Design Specification
http://www.mi crosoft.com/whdc/system/sysi nternal 'hw-wdt.mspx

“WDRT”

Watchdog Resource Table
Watchdog Timer Hardware Requirements for Windows Server 2003
http://www.mi crosoft.com/whdc/system/CEC/watchdog.mspx

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

http://www.microsoft.com/whdc/resources/respec/specs/simp_boot.mspx
http://www.microsoft.com/HWDEV/PLATFORM/pcdesign/LR/debugspec.asp
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://www.intel.com/hardwaredesign/hpetspec_1.pdf
http://www.microsoft.com/whdc/system/platform/firmware/ibft.mspx
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://pcisig.com/
http://www.dmtf.org/standards/published_documents/DSP0256_1.0.0a.pdf
http://www.microsoft.com/HWDEV/PLATFORM/server/headless/SPCR.asp
ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf
https://www.trustedcomputinggroup.org/home
http://www.uefi.org/
http://www.microsoft.com/whdc/system/platform/virtual/WAET.mspx
http://www.microsoft.com/whdc/system/sysinternals/hw-wdt.mspx
http://www.microsoft.com/whdc/system/CEC/watchdog.mspx

116 Advanced Configuration and Power Interface Specification

5.2.7 Root System Description Table (RSDT)

OSPM locates that Root System Description Table by following the pointer in the RSDP structure. The
RSDT, shownin Table 5-7, starts with the signature ‘RSDT’ followed by an array of physical pointersto
other system description tables that provide various information on other standards defined on the current
system. OSPM examines each table for a known signature. Based on the signature, OSPM can then
interpret the implementation-specific data within the table.

Platforms provide the RSDT to enable compatibility with ACPI 1.0 operating systems. The XSDT,
described in the next section, supersedes RSDT functionality.

Table5-7 Root System Description Table Fields (RSDT)
Byte Byte
Field Length | Offset | Description
Header
Signature ‘RSDT’ Signature for the Root System Description Table.
Length 4 Length, in bytes, of the entire RSDT. The length implies the
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the RSDT, the table ID is the manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 24 OEM revision of RSDT table for supplied OEM Table ID.
Creator ID 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.
Entry 4*n 36 An array of 32-bit physical addresses that point to other

DESCRIPTION_HEADERSs. OSPM assumes at least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 117

5.2.8 Extended System Description Table (XSDT)

The XSDT providesidentical functionality to the RSDT but accommodates physical addresses of
DESCRIPTION HEADERSs that are larger than 32-bits. Notice that both the XSDT and the RSDT can be
pointed to by the RSDP structure. An ACPI-compatible OS must use the XSDT if present.

Table5-8 Extended System Description Table Fields (XSDT)

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘XSDT’. Signature for the Extended System Description
Table.
Length 4 4 Length, in bytes, of the entire table. The length impliesthe
number of Entry fields (n) at the end of the table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the XSDT, the table ID isthe manufacture model ID. This
field must match the OEM Table ID in the FADT.
OEM Revision 4 24 OEM revision of XSDT table for supplied OEM TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.
Entry 8*n 36 An array of 64-bit physical addresses that point to other
DESCRIPTION_HEADERs. OSPM assumes at |east the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

118 Advanced Configuration and Power Interface Specification

5.2.9 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:

PMla EVT_BLK, PM1b EVT_BLK, PMla CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,
PM_TMR_BLK, GPEO_BLK, and GPE1_BLK.

The FADT also has apointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fieldsin the FADT that provide hardware addresses provide processor-relative physical addresses.
Table5-9 Fixed ACPI Description Table (FADT) For mat

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘FACP'. Signature for the Fixed ACPI Description Table.
Length 4 4 Length, in bytes, of the entire FADT.
Revision 1 8 4
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the FADT, thetable ID isthe manufacture model ID. Thisfield
must match the OEM Table ID inthe RSDT.
OEM Revision 4 24 OEM revision of FADT for supplied OEM TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, thisisthe ID for the ASL Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.

FIRMWARE_CTRL 4 36 Physical memory address of the FACS, where OSPM and
Firmware exchange control information. See section 5.2.6, “Root
System Description Table,” for adescription of the FACS. If the
X_FIRMWARE_CTRL field contains a non zero value then this
field must be zero. A zero value indicates that no FACSis
specified by thisfield.

DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.

Reserved 1 44 ACPI 1.0 defined this offset as afield named INT_MODEL, which
was eliminated in ACPI 2.0. Platforms should set this field to zero
but field values of one are also allowed to maintain compatibility
with ACPI 1.0.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 119

Field

Byte
Length

Byte
Offset

Description

Preferred_PM_Profile

45

Thisfield is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to set
default power management policy parameters during OS
installation.

Field Values:

Unspecified

Desktop

Mobile

Workstation

Enterprise Server

SOHO Server

Appliance PC

Performance Server

Reserved

~No o~ WNEO

\Y%
~

SCI_INT

46

System vector the SCI interrupt is wired to in 8259 mode. On
systems that do not contain the 8259, this field contains the Global
System interrupt number of the SCI interrupt. OSPM is required to
treat the ACPI SCI interrupt as a sharable, level, active low
interrupt.

SMI_CMD

48

System port address of the SM1 Command Port. During ACPI OS
initialization, OSPM can determine that the ACPI hardware
registers are owned by SMI (by way of the SCI_EN bit), in which
case the ACPI OS issuesthe ACPI_ENABLE command to the
SMI_CMD port. The SCI_EN hit effectively tracks the ownership
of the ACPI hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor. Thisfield
isreserved and must be zero on system that does not support
System Management mode.

ACPI_ENABLE

52

The value to writeto SMI_CMD to disable SMI ownership of the
ACPI hardware registers. The last action SMI doesto relinquish
ownership isto set the SCI_EN bit. During the OS initialization
process, OSPM will synchronously wait for the transfer of SMI
ownership to complete, so the ACPI system releases SMI
ownership as quickly as possible. Thisfield isreserved and must
be zero on systems that do not support Legacy Mode.

ACPI_DISABLE

53

The value to writeto SMI_CMD to re-enable SMI ownership of
the ACPI hardware registers. This can only be done when
ownership was originally acquired from SMI by OSPM using
ACPI_ENABLE. An OS can hand ownership back to SMI by
relinquishing use to the ACPI hardware registers, masking off all
SCI interrupts, clearing the SCI_EN bit and then writing
ACPI_DISABLE tothe SMI_CMD port from the boot processor.
Thisfield isreserved and must be zero on systems that do not
support Legacy Mode.

4BIOS_REQ

54

The value to writeto SMI_CMD to enter the S4BIOS state. The
SABIOS state provides an alternate way to enter the 4 state where
the firmware saves and restores the memory context. A value of
zero in ABIOS_F indicates SABIOS_REQ is not supported. (See
Table5-12.)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

120 Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

PSTATE_CNT

1

55

If non-zero, thisfield contains the value OSPM writes to the
SMI_CMD register to assume processor performance state control
responsibility.

PM1a EVT BLK

56

System port address of the PM 1a Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware description
layout of thisregister block. Thisisarequired field. Thisfield is
superseded by the X_PM1a EVT_BLK field.

PM1b_EVT_BLK

60

System port address of the PM 1b Event Register Block. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware description
layout of thisregister block. Thisfield isoptional; if this register
block is not supported, thisfield contains zero. Thisfield is
superseded by the X_PM1b EVT BLK field.

PM1a CNT_BLK

64

System port address of the PM 1a Control Register Block. See
section 4.7.3.2, “PM1 Control Grouping,” for a hardware
description layout of thisregister block. Thisisarequired field.
Thisfield is superseded by the X_PM1a CNT_BLK field.

PM1b_CNT_BLK

68

System port address of the PM 1b Control Register Block. See
section 4.7.3.2, “PM 1 Control Grouping,” for a hardware
description layout of thisregister block. Thisfield isoptional; if
thisregister block is not supported, this field contains zero. This
field is superseded by the X_PM1b CNT_BLK field.

PM2_CNT_BLK

72

System port address of the PM2 Control Register Block. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for ahardware
description layout of thisregister block. Thisfield is optional; if
this register block is not supported, thisfield contains zero. This
field is superseded by the X_PM2_CNT_BLK field.

PM_TMR_BLK

76

System port address of the Power Management Timer Control
Register Block. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for ahardware description layout of this register
block. Thisisarequired field. Thisfield is superseded by the
X_PM_TMR_BLK field.

GPEO_BLK

80

System port address of General-Purpose Event 0 Register Block.
See section 4.7.4.1, “ General-Purpose Event Register Blocks,” for
a hardware description of this register block. Thisis an optional
field; if thisregister block is not supported, thisfield contains zero.
Thisfield is superseded by the X_GPEO BLK field.

GPE1_BLK

84

System port address of General-Purpose Event 1 Register Block.
See section 4.7.4.1, “ General-Purpose Event Register Blocks,” for
a hardware description of this register block. Thisis an optional
field; if thisregister block is not supported, this field contains zero.
Thisfield is superseded by the X_GPE1 BLK field.

PM1_EVT_LEN

88

Number of bytes decoded by PM1a EVT_BLK and, if supported,
PM1b_EVT_BLK. Thisvalueis> 4.

PM1_CNT_LEN

89

Number of bytes decoded by PM1a CNT_BLK and, if supported,
PM1b_CNT_BLK. Thisvalueis> 2.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 121

Byte Byte

Field Length | Offset | Description

PM2 CNT_LEN 1 20 Number of bytes decoded by PM2_CNT_BLK. Support for the
PM2 register block is optional. If supported, thisvalueis> 1. If not
supported, thisfield contains zero.

PM_TMR_LEN 1 91 Number of bytes decoded by PM_TMR_BLK. Thisfield’ svalue
must be 4.

GPEO BLK_LEN 1 92 Number of bytes decoded by GPEO_BLK. The valueisanon-
negative multiple of 2.

GPE1 BLK_LEN 1 93 Number of bytes decoded by GPE1 BLK. The valueisanon-
negative multiple of 2.

GPE1 BASE 1 94 Offset within the ACPI general-purpose event model where GPEL
based events start.

CST_CNT 1 95 If non-zero, thisfield contains the value OSPM writes to the
SMI_CMD register to indicate OS support for the CST object and
C States Changed notification.

P LVL2 LAT 2 96 The worst-case hardware latency, in microseconds, to enter and
exit aC2 state. A value > 100 indicates the system does not
support a C2 state.

P LVL3 LAT 2 98 The worst-case hardware latency, in microseconds, to enter and
exit aC3 state. A value > 1000 indicates the system does not
support a C3 state.

FLUSH_SIZE 2 100 If WBINV D=0, the value of this field is the number of flush strides

that need to be read (using cacheable addresses) to completely
flush dirty lines from any processor’s memory caches. Notice that
thevauein FLUSH_STRIDE istypically the smallest cache line
width on any of the processor’ s caches (for more information, see
the FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’s caches, then
FLUSH_SIZE and WBINVD are set to zero. Natice that this
method of flushing the processor caches has limitations, and
WBINV D=1 is the preferred way to flush the processors caches.
Thisvalueistypically at least 2 times the cache size. The
maximum allowed value for FLUSH_SIZE multiplied by
FLUSH_STRIDE is 2 MB for atypical maximum supported cache
size of 1 MB. Larger cache sizes are supported using WBINVD=1.

Thisvalueisignored if WBINVD=1.

Thisfield is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

122 Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

FLUSH_STRIDE

2

102

If WBINV D=0, the value of thisfield is the cache line width, in
bytes, of the processor’s memory caches. Thisvalueistypically
the smallest cache line width on any of the processor’s caches. For
more information, see the description of the FLUSH_SIZE field.

Thisvalueisignored if WBINVD=1.
Thisfield is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are

required to support the WBINVD function and indicate this to
OSPM by setting the WBINVD field = 1.

DUTY_OFFSET

104

The zero-based index of where the processor’s duty cycle setting is
within the processor's P_CNT register.

DUTY_WIDTH

105

The bit width of the processor’s duty cycle setting value in the
P_CNT register. Each processor’s duty cycle setting allows the
software to select anominal processor frequency below its absolute
frequency as defined by:
THTL_EN=1
BF * DC/(ZDUTY—WIDTH)

Where:
BF-Base frequency
DC-Duty cycle setting
When THTL_EN is 0, the processor runs at its absolute BF. A
DUTY_WIDTH value of 0 indicates that processor duty cycle is

not supported and the processor continuously runs at its base
frequency.

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month alarm value. If
thisfield contains a zero, then the RTC day of the month alarm
featureis not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the day of the month alarm. See section 4.7.2.4, “Real
Time Clock Alarm,” for a description of how the hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm value. If
thisfield contains a zero, then the RTC month of the year alarm
featureis not supported. If this field has a non-zero value, then this
field contains an index into RTC RAM space that OSPM can use
to program the month of the year alarm. If this feature is supported,
thenthe DAY _ALRM feature must be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of data value (hundred
and thousand year decimals). If this field contains a zero, then the
RTC centenary feature is not supported. If thisfield has a non-zero
value, then thisfield contains an index into RTC RAM space that
OSPM can use to program the centenary field.

IAPC_BOOT_ARCH

109

IA-PC Boot Architecture Flags. See Table 5-11 for a description of
thisfield.

Reserved

111

Must be 0.

Flags

112

Fixed feature flags. See Table 5-10 for a description of this field.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 123

Field

Byte
Length

Byte
Offset

Description

RESET_REG

12

116

The address of the reset register represented in Generic Address
Structure format (See section 4.7.3.6, “Reset Register,” for a
description of the reset mechanism.)

Note: Only System /O space, System Memory space and PCI
Configuration space (bus #0) are valid for values for

Address Space ID. Also, Register_Bit Width must be 8 and
Register Bit Offset must be 0.

RESET_VALUE

128

Indicates the value to write to the RESET_REG port to reset the
system. (See section 4.7.3.6, “Reset Register,” for a description of
the reset mechanism.)

Reserved

129

Must be 0.

X_FIRMWARE_CTRL

132

64bit physical address of the FACS. Thisfield isused when the
physical address of the FACS is above 4GB. If the
FIRMWARE_CTRL field contains a non zero value then thisfield
must be zero. A zero value indicates that no FACS is specified by
thisfield.

X_DSDT

140

64bit physical address of the DSDT.

X_PM1a EVT_BLK

12

148

Extended address of the PM1a Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. Thisisarequired field.

X_PM1b EVT BLK

12

160

Extended address of the PM1b Event Register Block, represented
in Generic Address Structure format. See section 4.7.3.1, “PM1
Event Grouping,” for a hardware description layout of this register
block. Thisfield is optional; if thisregister block is not supported,
thisfield contains zero.

X_PM1a CNT_BLK

12

172

Extended address of the PM 1a Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. Thisisarequired field.

X_PM1b_CNT_BLK

12

184

Extended address of the PM1b Control Register Block, represented
in Generic Address Structure format. See section 4.7.3.2, “PM1
Control Grouping,” for a hardware description layout of this
register block. Thisfield is optional; if this register block is not
supported, thisfield contains zero.

X_PM2_CNT_BLK

12

196

Extended address of the Power Management 2 Control Register
Block, represented in Generic Address Structure format. See
section 4.7.3.4, “PM2 Control (PM2_CNT),” for a hardware
description layout of thisregister block. Thisfield is optional; if
this register block is not supported, this field contains zero.

X_PM_TMR_BLK

12

208

Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure format.
See section 4.7.3.3, “Power Management Timer (PM_TMR),” for a
hardware description layout of thisregister block. Thisisa
required field.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

124 Advanced Configuration and Power Interface Specification

Field

Byte
Length

Byte
Offset

Description

X_GPEO_BLK

12

220

Extended address of the General-Purpose Event O Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. Thisisan optional field; if this register block is not
supported, thisfield contains zero.

X_GPE1_BLK

12

232

Extended address of the General-Purpose Event 1 Register Block,
represented in Generic Address Structure format. See section 5.2.8,
“Fixed ACPI Description Table,” for a hardware description of this
register block. Thisisan optional field; if this register block is not
supported, thisfield contains zero.

Table5-10 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag

Bit
Length

Bit
Offset

Description

WBINVD

1

0

Processor properly implements afunctional equivalent to the
WBINVD IA-32 instruction.

If set, signifies that the WBINV D instruction correctly flushes the
processor caches, maintains memory coherency, and upon
completion of the instruction, all caches for the current processor
contain no cached data other than what OSPM references and
allowsto be cached. If thisflag is not set, the ACPI OSis
responsible for disabling all ACPI features that need this function.
Thisfield is maintained for ACPI 1.0 processor compatibility on
existing systems. Processors in new ACPI-compatible systems are
reguired to support this function and indicate thisto OSPM by
setting this field.

WBINVD_FLUSH

If set, indicates that the hardware flushes al caches on the
WBINVD instruction and maintains memory coherency, but does
not guarantee the caches are invalidated. This provides the
complete semantics of the WBINVD instruction, and provides
enough to support the system sleeping states. If neither of the
WBINVD flagsis set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are also not supported, the machine cannot support
sleeping states S1, S2, or S3.

PROC_C1

A oneindicates that the C1 power state is supported on all
processors.

P LVL2 UP

A zero indicates that the C2 power state is configured to only work
on auniprocessor (UP) system. A one indicates that the C2 power
state is configured to work on a UP or multiprocessor (MP)
system.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 125

FACP - Flag

Bit
Length

Bit
Offset

Description

PWR_BUTTON

A zero indicates the power button is handled as a fixed feature
programming model; a one indicates the power button is handled
as a control method device. If the system does not have a power
button, this value would be “1” and no sleep button device would
be present.

Independent of the value of thisfield, the presence of a power
button device in the namespace indicates to OSPM that the power
button is handled as a control method device.

SLP_BUTTON

A zero indicates the sleep button is handled as a fixed feature
programming model; a one indicates the sleep button is handled as
a control method device.

If the system does not have a sleep button, this value would be “1”
and no sleep button device would be present.

Independent of the value of thisfield, the presence of asleep
button device in the namespace indicates to OSPM that the sleep
button is handled as a control method device.

FIX_RTC

A zero indicates the RTC wake status is supported in fixed register
space; aone indicates the RTC wake status is not supported in
fixed register space.

RTC 4

Indicates whether the RTC alarm function can wake the system
from the $4 state. The RTC must be able to wake the system from
an S1, S2, or S3 deep state. The RTC alarm can optionally support
waking the system from the $4 state, asindicated by this value.

TMR_VAL_EXT

A zero indicates TMR_VAL isimplemented as a 24-bit value. A
oneindicates TMR_VAL isimplemented as a 32-bit value. The
TMR_STShit is set when the most significant bit of the
TMR_VAL toggles.

DCK_CAP

A zero indicates that the system cannot support docking. A one
indicates that the system can support docking. Notice that thisflag
does not indicate whether or not a docking station is currently
present; it only indicates that the system is capable of docking.

RESET_REG_SUP

10

If set, indicates the system supports system reset viathe FADT
RESET_REG asdescribed in section 4.7. 3.6, “Reset Register.”

SEALED_CASE

11

System Type Attribute. If set indicates that the system has no
internal expansion capabilities and the caseis sealed.

HEADLESS

12

System Type Attribute. If set indicates the system cannot detect the
monitor or keyboard / mouse devices.

CPU_SW_SLP

13

If set, indicates to OSPM that a processor native instruction must
be executed after writing the SLP_TY Px register.

PCI_EXP_WAK

14

If set, indicates the platform supports the PCIEXP_WAKE_STS
bit in the PM 1 Status register and the PCIEXP_WAKE_EN bit in
the PM 1 Enable register. This bit must be set on platforms
containing chipsets that implement PCI Express.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

126 Advanced Configuration and Power Interface Specification

FACP - Flag

Bit
Length

Bit
Offset

Description

USE_PLATFORM_CL
OCK

15

A value of one indicates that OSPM should use a platform
provided timer to drive any monotonically non-decreasing
counters, such as OSPM performance counter services. Which
particular platform timer will be used is OSPM specific, however,
it is recommended that the timer used is based on the following
algorithm: If the HPET is exposed to OSPM, OSPM should use the
HPET. Otherwise, OSPM will use the ACPI power management
timer. A value of oneindicates that the platform is known to have a
correctly implemented ACPI power management timer.

A platform may choose to set this flag if ainternal processor clock
(or clocks in a multi-processor configuration) cannot provide
consistent monotonically non-decreasing counters.

Note: If avalue of zero is present, OSPM may arbitrarily choose to
use an internal processor clock or a platform timer clock for these
operations. That is, azero does not imply that OSPM will
necessarily use the internal processor clock to generate a
monotonically non-decreasing counter to the system.

S4 RTC_STS VALID

16

A oneindicates that the contents of the RTC_STSflag isvalid
when waking the system from $4.

See Table 4-11 — PM 1 Status Registers Fixed Hardware Feature
Status Bits for more information. Some existing systems do not
reliably set thisinput today, and this bit allows OSPM to
differentiate correctly functioning platforms from platforms with
this errata.

REMOTE_POWER_O
N_CAPABLE

17

A oneindicates that the platform is compatible with remote power-
on.

That is, the platform supports OSPM leaving GPE wake events
armed prior to an S5 transition. Some existing platforms do not
reliably transition to S5 with wake events enabled (for example,
the platform may immediately generate a spurious wake event after
completing the S5 transition). This flag allows OSPM to
differentiate correctly functioning platforms from platforms with
thistype of errata.

FORCE._
APIC_CLUSTER_MO
DEL

18

A oneindicates that al local APICs must be configured for the
cluster destination model when delivering interruptsin logical
mode.

If this bit is set, then logical mode interrupt delivery operation may
be undefined until OSPM has moved all local APICsto the cluster
model.

Note that the cluster destination model doesn’t apply to Itanium™
Processor Family (IPF) local SAPICs. Thisbit isintended for
XAPIC based machines that require the cluster destination model
even when 8 or fewer local APICs are present in the machine.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 127

Bit Bit
FACP - Flag Length | Offset | Description
FORCE_APIC PHYSI |1 19 A oneindicates that al local xAPICs must be configured for
CAL_DESTINATION physical destination mode. If thisbit is set, interrupt delivery
_MODE operation in logical destination mode is undefined. On machines
that contain fewer than 8 local xAPICs or that do not use the
XAPIC architecture, this bit isignored.
Reserved 12 20

5.2.9.1 Preferred PM Profile System Types

The following descriptions of preferred power management profile system types are to be used as a guide
for setting the Preferred_PM_Profilefield in the FADT. OSPM can use thisfield to set default power
management policy parameters during OS installation.

Desktop. A single user, full featured, stationary computing device that resides on or near an individual’s
work area. Most often contains one processor. Must be connected to AC power to function. This deviceis
used to perform work that is considered mainstream corporate or home computing (for example, word
processing, Internet browsing, spreadsheets, and so on).

Mabile. A single-user, full-featured, portable computing device that is capable of running on batteries or
other power storage devicesto performits normal functions. Most often contains one processor. This
device performs the same task set as a desktop. However it may have limitations duesto its size, thermal
requirements, and/or power source life.

Workstation. A single-user, full-featured, stationary computing device that resides on or near an
individual’ s work area. Often contains more than one processor. Must be connected to AC power to
function. This device is used to perform large quantities of computations in support of such work as
CAD/CAM and other graphics-intensive applications.

Enterprise Server. A multi-user, stationary computing device that frequently residesin a separate, often
specially designed, room. Will almost always contain more than one processor. Must be connected to AC
power to function. This device is used to support large-scale networking, database, communications, or
financial operations within a corporation or government.

SOHO Server. A multi-user, stationary computing device that frequently resides in a separate area or room
in asmall or home office. May contain more than one processor. Must be connected to AC power to
function. Thisdevice is generally used to support all of the networking, database, communications, and
financial operations of asmall office or home office.

Appliance PC. A device specifically designed to operate in alow-noise, high-availability environment
such as a consumer’ s living rooms or family room. Most often contains one processor. This category also
includes home Internet gateways, Web pads, set top boxes and other devices that support ACPI. Must be
connected to AC power to function. Normally they are sealed case style and may only perform a subset of
the tasks normally associated with today’ s personal computers.

Performance Server. A multi-user stationary computing device that frequently residesin a separate, often
specially designed room. Will often contain more than one processor. Must be connected to AC power to
function. This device is used in an environment where power savings features are willing to be sacrificed
for better performance and quicker responsiveness.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

128 Advanced Configuration and Power Interface Specification

5.2.9.2 System Type Attributes

This set of flags is used by the OS to assist in determining assumptions about power and device
management. These flags are read at boot time and are used to make decisions about power management
and device settings. For example, a system that has the SEALED_CASE bit set may take a very aggressive
low noise policy toward thermal management. In another example an OS might not load video, keyboard or
mouse drivers on a HEADLESS system.

5.2.9.3 IA-PC Boot Architecture Flags

This set of flagsis used by an OS to guide the assumptions it can make in initializing hardware on |A-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In

| A-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devicesif none are
present. For example, if there are no | SA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,
“Configuration.” These flags pertain only to I A-PC platforms. On other system architectures, the entire
field should be set to 0.

Table5-11 Fixed ACPI Description Table Boot Architecture Flags

Bit Bit
BOOT_ARCH length | offset | Description

LEGACY _DEVICES | 1 0 If set, indicates that the motherboard supports user-visible
devices on the LPC or | SA bus. User-visible devices are
devices that have end-user accessible connectors (for example,
LPT port), or devices for which the OS must load a device
driver so that an end-user application can use adevice. If clear,
the OS may assume there are no such devices and that all
devicesin the system can be detected exclusively viaindustry
standard device enumeration mechanisms (including the ACPI
namespace).

8042 1 1 If set, indicates that the motherboard contains support for a port
60 and 64 based keyboard controller, usually implemented as an
8042 or equivalent micro-controller.

VGA Not Present 1 2 If set, indicatesto OSPM that it must not blindly probe the

V GA hardware (that responds to MM IO addresses AO00Oh-
BFFFFh and 1O ports 3B0Oh-3BBh and 3C0h-3DFh) that may
cause machine check on this system. If clear, indicatesto
OSPM that it is safe to probe the VGA hardware.

MSI Not Supported 1 3 If set, indicatesto OSPM that it must not enable Message
Signaled Interrupts (M SI) on this platform.

PCle ASPM Controls | 1 4 If set, indicates to OSPM that it must not enable OSPM ASPM
control on this platform.

Reserved 11 5 Must be 0.

5.2.10 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) isa structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.9, “Fixed ACPI Description Table (FADT).”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 129

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s memory address space.
The memory where the FACS structure resides must not be reported as system AddressRangeMemory in
the system address map. For example, the E820 address map reporting interface would report the region as
AddressRangeReserved. For more information about system address map reporting interfaces, see

section 14, “System Address Map Interfaces.”

Table5-12 Firmware ACPI Control Structure (FACYS)

Byte Byte
Field Length | Offset | Description

Signature 4 0 ‘FACS

Length 4 4 Length, in bytes, of the entire Firmware ACPI Control
Structure. Thisvalueis 64 bytes or larger.

Hardware Signature | 4 8 The value of the system’s “hardware signature” at last boot.
Thisvalueis calculated by the BIOS on a best effort basis to
indicate the base hardware configuration of the system such
that different base hardware configurations can have different
hardware signature values. OSPM uses thisinformationin
waking from an $4 state, by comparing the current hardware
signature to the signature values saved in the non-volatile leep
image. If the values are not the same, OSPM assumes that the
saved non-volatile image is from a different hardware
configuration and cannot be restored.

Firmware Waking 4 12 Thisfield is superseded by the X_Firmware Waking_Vector
Vector field.

The 32-bit address field where OSPM puts its waking vector.
Before transitioning the system into a global seeping state,
OSPM fillsin this field with the physical memory address of an
OS-specific wake function. During POST, the platform
firmware first checksif the value of the

X_Firmware Waking_Vector field is non-zero and if so
transfers control to OSPM as outlined in the
X_Firmware Waking_vector field description below. If the
X_Firmware Waking_Vector field is zero then the platform
firmware checks the value of thisfield and if it is non-zero,
transfers control to the specified address.

On PCs, the wake function addressisin memory below 1 MB
and the control is transferred while in real mode. OSPM’ s wake
function restores the processors' context.

For IA-PC platforms, the following example shows the
relationship between the physical addressin the Firmware
Waking Vector and the real mode address the BIOS jumps to.
If, for example, the physical addressis 0x12345, then the BIOS
must jump to real mode address 0x1234:0x0005. In general this
relationship is

Real-mode address =

Physical address>>4 : Physical address and 0x000F

Notice that on | A-PC platforms, A20 must be enabled when the
BI1OS jumps to the real mode address derived from the physical
address stored in the Firmware Waking Vector.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

130 Advanced Configuration and Power Interface Specification

Table5-12 Firmware ACPI Control Structure (FACS) (continued)

Field

Byte
Length

Byte
Offset

Description

Global Lock

4

16

Thisfield contains the Global Lock used to synchronize access
to shared hardware resources between the OSPM environment
and an external controller environment (for example, the SMI
environment). Thislock is owned exclusively by either OSPM
or the firmware at any one time. When ownership of the lock
is attempted, it might be busy, in which case the requesting
environment exits and waits for the signal that the lock has
been released. For example, the Global Lock can be used to
protect an embedded controller interface such that only OSPM
or the firmware will access the embedded controller interface
at any onetime. See section 5.2.10.1, “Global Lock,” for more
information on acquiring and releasing the Global Lock.

Flags

20

Firmware control structure flags. See Table 5-13 for a
description of thisfield.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 131

Field

Byte
Length

Byte
Offset

Description

X Firmware Waking
Vector

24

64-bit physical address of OSPM’s Waking Vector.
Before transitioning the system into a global deeping state,
OSPM fillsin thisfield and the OSPM Flags field to describe
the waking vector. OSPM populates this field with the
physical memory address of an OS-specific wake function.
During POST, the platform firmware checksif the value of
thisfield is non-zero and if so transfers control to OSPM by
jumping to this address after creating the appropriate
execution environment, which must be configured as follows:
For 64-bit Itanium™ Processor Family (IPF) -based platforms:
. Interrupts must be disabled

o] The processor must have psr.i set to 0. See
the Intel® Itanium™ Architecture Software
Developer’s Manual for more information.
. Memory address trandlation must be disabled

o] The processor must have psr.it, psr.dt, and
psr.rt set to 0. See the Intel® Itanium™
Architecture Software Developer’s Manual
for more information.

For IA 32 and x64 platforms, platform firmware isrequired to
support a 32 bit execution environment. Platform firmware
can additionally support a 64 bit execution environment. |
platform firmware supports a 64 bit execution environment,
firmware inspects the OSPM Flags during POST. If the
64BIT_WAKE_F flag is set, the platform firmware creates a
64 bit execution environment. Otherwise, the platform
firmware creates a 32 bit execution environment.

For 64 bit execution environment:

e Interrupts must be disabled
0 EFLAGSIFsetto0
e Long mode enabled
e Paging modeis enabled and physical memory for
waking vector isidentity mapped (virtual address
equals physical address)
0 Waking vector must be contained within one
physical page
e Selectors are set to be flat and are otherwise not used
For 32 bit execution environment:
e Interrupts must be disabled
0 EFLAGSIFsettoO

e Memory address trandation / paging must be
disabled

e 4GB flat address space for al segment registers

Version

32

2-Version of thistable

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

132 Advanced Configuration and Power Interface Specification

Byte Byte

Field Length | Offset | Description

Reserved 3 33 Thisvalueis zero.

OSPM Flags 4 36 OSPM enabled firmware control structure flags. Platform
firmware must initialize thisfield to zero. See Table 5-14 for
adescription of the OSPM control structure feature flags.

Reserved 24 40 Thisvalueis zero.

Table5-13 Firmware Control Structure Feature Flags

Bit Bit
FACS-Flag Length [Offset | Description
HABIOS F 1 0 Indicates whether the platform supports 4BIOS REQ. If
HABIOS_REQ is not supported, OSPM must be able to save
and restore the memory state in order to use the $4 state.
64BIT WAKE SUP |1 1 Indicates that the platform firmware supports a 64 bit
PORTED_F execution environment for the waking vector. When set and
the OSPM additionally set 64BIT_WAKE_F, the platform
firmware will create a 64 bit execution environment before
transferring control to the X_Firmware Waking Vector.
Reserved 30 2 Thevalueis zero.

Table5-14 OSPM Enabled Firmware Control Structure Feature Flags

Bit Bit
FACS-Flag Length | Offset | Description

64BIT_WAKE_F 1 0 OSPM sets this hit to indicate to platform firmware that the
X_Firmware Waking_Vector requires a 64 hit execution
environment.

Thisflag can only be set if platform firmware sets
64BIT_WAKE_SUPPORTED_F in the FACS flagsfield.

This bit field has no affect on Itanium™ Processor Family
(IPF) -based platforms, which require a 64 bit execution
environment.

Reserved 31 1 Thevalueis zero.

5.2.10.1 Global Lock

The purpose of the ACPI Global Lock isto provide mutual exclusion between the host OS and the ROM
BIOS. The Global Lock isa32-hit (DWORD) value in read/write memory located within the FACS and is
accessed and updated by both the OS environment and the SMI environment in a defined manner to
provide an exclusive lock. Note: thisis not a pointer to the Global Lock, it isthe actual memory location of
the lock. The FACS and Global Lock may be located anywhere in physical memory.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 133

By convention, thislock is used to ensure that while one environment is accessing some hardware, the
other environment is not. By this convention, when ownership of the lock fails because the other
environment ownsit, the requesting environment sets a “pending” state within the lock, exits its attempt to
acquire the lock, and waits for the owning environment to signal that the lock has been released before
attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after the
lock isreleased, asignal is sent via an interrupt mechanism to the other environment to inform it that the
lock has been released. During interrupt handling for the “lock released” event within the corresponding
environment, if the lock ownership were still desired an attempt to acquire the lock would be made. If
ownership is not acquired, then the environment must again set “pending” and wait for another “lock
release” signal.

The table below shows the encoding of the Global Lock DWORD in memory.
Table5-15 Global Lock Structurewithin the FACS

Field Bit Length [Bit Offset | Description

Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.

Owned 1 1 Non-zero indicates that the Global Lock is Owned.

Reserved 30 2 Reserved for future use.

The following code sequence is used by both OSPM and the firmware to acquire ownership of the Global
Lock. If non-zero isreturned by the function, the caller has been granted ownership of the Global Lock and
can proceed. If zero isreturned by the function, the caller has not been granted ownership of the Global
Lock, the “pending” bit has been set, and the caller must wait until it is signaled by an interrupt event that
the lock is available before attempting to acquire access again.

Note: In the examples that follow, the “GlobalLock” variable is a pointer that has been previoudy
initialized to point to the 32-bit Global Lock location within the FACS.

Acqui r ed obal Lock:

nmv ecx, G obal Lock ; ecx = Address of dobal Lock in FACS
acqlo: nmv eax, [ecx] ; Get current value of G obal Lock

nmv edx, eax

and edx, not 1 ; Clear pending bit

bt s edx, 1 ; Check and set owner bit

adc edx, O ; |f owned, set pending bit

Il ock cmpxchg dword ptr[ecx], edx
jnz short acql0

; Attenpt to set new val ue
; If not set, try again

cnp dl, 3
sbb eax, eax

; Was it acquired or narked pendi ng?
; acquired = -1, pending = 0

ret

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

134 Advanced Configuration and Power Interface Specification

The follow ng code sequence is used by OSPM and the firmware to rel ease ownership of the
d obal Lock. |If non-zero is returned, the caller nust raise the appropriate event to the
other environment to signal that the dobal Lock is now free. Depending on the
environment, this signaling is done by setting the either the GBL_RLS or BIOS_RLS within
their respective hardware regi ster spaces. This signal only occurs when the other
environment attenpted to acquire ownership while the |ock was owned.

Rel eased obal Lock:

nov ecx, G obal Lock ; ecx = Address of dobal Lock in FACS
rel 10: nov eax, [ecx] ; Get current value of dobal Lock

nmv edx, eax

and edx, not 03h ; Cear owner and pending field

I ock cnmpxchg dword ptr[ecx], edx ; Attenpt to set it
jnz short rel 10 ; If not set, try again

and eax, 1 ; Was pending set?

If one is returned (we were pending) the caller nust signal that the
; lock has been rel eased using either GBL_RLS or BIOS_RLS as appropriate

ret

Although using the Global Lock allows various hardware resources to be shared, it isimportant to notice
that its usage when there is ownership contention could entail a significant amount of system overhead as
well as waits of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason,
implementations should try to design the hardware to keep the required usage of the Global Lock to a
minimum.

The Global Lock isrequired whenever alogical register in the hardware is shared. For example, if bit Ois
used by ACPI (OSPM) and bit 1 of the same register is used by SMI, then access to that register needs to be
protected under the Global Lock, ensuring that the register’ s contents do not change from underneath one
environment while the other is making changesto it. Similarly if the entire register is shared, as the case
might be for the embedded controller interface, access to the register needs to be protected under the Global
Lock.

5.2.11 Definition Blocks

A Definition Block consists of datain AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM “loads’ or “unloads’ an entire definition block asalogical unit. OSPM will load a definition block
either as aresult of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitionsin the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confinesit to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permitsimplementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for 1/0O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from 1/0 space, but that is not the goal of the definition block. Such a space is usually defined as
a“built in” operator.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 135

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type was expanded to 64 bitsin ACPI 2.0,
see section 18.2.5, “ASL Data Types’. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field viathe ASL Definition Block’s ComplianceRevision field. See section
18.5.26, “DefinitionBlock (Declare Definition Block)”, for more information. It is the responsibility of the
ASL writer to ensure the Definition Block’s compatibility with the corresponding integer width when
setting the ComplianceRevision field.

5.2.11.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by datain Definition Block format. This
Definition Block islike all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.11, “Definition Blocks,” for a description of Definition Blocks. During initialization, OSPM
finds the pointer to the DSDT in the Fixed ACPI Description Table (using the FADT'sDSDT or X_DSDT
fields) and then loads the DSDT to create the ACPI Namespace.

Table5-16 Differentiated System Description Table Fields (DSDT)

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘DSDT’ Signature for the Differentiated System Description
Table.
Length 4 4 Length, in bytes, of the entire DSDT (including the header).
Revision 1 8 2. Thisfield also setsthe global integer width for the AML
interpreter. VValues less than two will cause the interpreter to use
32-bit integers and math. Values of two and greater will cause
the interpreter to use full 64-bit integers and math.
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table D 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM TableID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision | 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

136 Advanced Configuration and Power Interface Specification

5.2.11.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by datain Definition Block format. There can be multiple
SSDTs present. After OSPM loads the DSDT to create the ACPlI Namespace, each secondary system
description table listed in the RSDT/XSDT with aunique OEM Table ID isloaded. Note: Additional tables
can only add data; they cannot overwrite data from previous tables.

This allows the OEM to provide the base support in one table and add smaller system optionsin other
tables. For example, the OEM might put dynamic object definitions into a secondary table such that the
firmware can construct the dynamic information at boot without needing to edit the static DSDT. A SSDT
can only rely onthe DSDT being loaded prior to it.

Table5-17 Secondary System Description Table Fields (SSDT)

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘SSDT’ Signature for the Secondary System Description Table.
Length 4 4 Length, in bytes, of the entire SSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 The manufacture model 1D.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM TableID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision | 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see section 5.4 , “ Definition Block
Encoding”)

5.2.11.3 Persistent System Description Table (PSDT)

The table signature, “PSDT” refers to the Persistent System Description Table (PSDT) defined in the ACPI
1.0 specification. The PSDT was judged to provide no specific benefit and as such has been deleted from
follow-on versions of the ACPI specification. OSPM will evaluate atable with the “PSDT” signaturein
like manner to the evaluation of an SSDT as described in section 5.2.11.2, “Secondary System Description
Table.”

5.2.12 Multiple APIC Description Table (MADT)

The ACPI interrupt model describes all interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT—compatible dual 8259 interrupt controller
and, for Intel processor-based systems, the Intel Advanced Programmable Interrupt Controller (APIC) and
Intel Streamlined Advanced Programmable Interrupt Controller (SAPIC). The choice of the interrupt
model(s) to support is up to the platform designer. The interrupt model cannot be dynamically changed by
the system firmware; OSPM will choose which model to use and install support for that model at the time
of installation. If a platform supports both models, an OS will install support for one model or the other; it
will not mix models. Multi-boot capability is a feature in many modern operating systems. This means that
a system may have multiple operating systems or multiple instances of an OSinstalled at any one time.
Platform designers must allow for this.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 137

This section describes the format of the Multiple APIC Description Table (MADT), which provides OSPM
with information necessary for operation on systems with APIC or SAPIC implementations.

ACPI represents al interrupts as “flat” values known as global system interrupts. Therefore to support
APICs or SAPICs on an ACPI-enabled system, each used APIC or SAPIC interrupt input must be mapped
to the global system interrupt value used by ACPI. See Section 5.2.13. Global System Interrupts,” for a
description of Globa System Interrupts.

Additional support isrequired to handle various multi-processor functions that APIC or SAPIC
implementations might support (for example, identifying each processor’slocal APIC ID).

All addressesin the MADT are processor-relative physical addresses.
Table5-18 Multiple APIC Description Table (MADT) Format

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘APIC’ Signature for the Multiple APIC Description Table.
Length 4 4 Length, in bytes, of the entire MADT.
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID | 8 16 For the MADT, the table ID is the manufacturer model ID.
OEM Revision | 4 24 OEM revision of MADT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, thisisthe ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.
Local APIC 4 36 The 32-bit physical address at which each processor can access
Address itslocal APIC.
Flags 4 40 Multiple APIC flags. See Table 5-19 for a description of this
field.
APIC Structure[n] | — 44 A list of APIC structures for thisimplementation. This list will
contain all of thel/O APIC, I/O SAPIC, Loca APIC, Locd
SAPIC, Interrupt Source Override, Non-maskable I nterrupt
Source, Local APIC NMI Source, Local APIC Address Override,
Platform Interrupt Sources, Local x2APIC, and Loca x2APIC
NMI structures needed to support this platform. These structures
are described in the following sections.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

138 Advanced Configuration and Power Interface Specification

Table5-19 Multiple APIC Flags

Multiple APIC Bit Bit

Flags Length | Offset | Description

PCAT_COMPAT |1 0 A oneindicates that the system also has a PC-AT-compatible
dual-8259 setup. The 8259 vectors must be disabled (that is,
masked) when enabling the ACPI APIC operation.

Reserved 31 1 Thisvalueis zero.

Immediately after the Flags value in the MADT isalist of APIC structures that declare the APIC features
of the machine. The first byte of each structure declares the type of that structure and the second byte
declares the length of that structure.

Table5-20 APIC Structure Types

Value Description

Processor Local APIC

I/OAPIC

Interrupt Source Override
Non-maskable Interrupt Source (NMI)
Local APIC NMI

Local APIC Address Override

1/0 SAPIC

Local SAPIC

Platform Interrupt Sources

Ol N[fojo|b]W]|IDN]FL]|O

Processor Local x2APIC

OxA Loca x2APIC NMI
OxB-0x7F | Reserved. OSPM skips structures of the reserved type.
0x80-OxFF | Reserved for OEM use

5.2.12.1 MADT Processor Local APIC / SAPIC Structure Entry Order

OSPM implementations may limit the number of supported processors on multi-processor platforms.
OSPM executes on the boot processor to initialize the platform including other processors. To ensure that
the boot processor is supported post initialization, two guidelines should be followed. The first is that
OSPM should initialize processors in the order that they appear in the MADT. The second isthat platform
firmware should list the boot processor as the first processor entry in the MADT.

The advent of multi-threaded processors yielded multiple logical processors executing on common
processor hardware. ACPI defineslogical processorsin an identical manner as physical processors. To
ensure that non multi-threading aware OSPM implementations realize optimal performance on platforms
containing multi-threaded processors, two guidelines should be followed. The first is the same as above,,
that is, OSPM should initialize processorsin the order that they appear in the MADT. The second is that
platform firmware should list the first logical processor of each of the individual multi-threaded processors
inthe MADT before listing any of the second logical processors. This approach should be used for all
successive logical processors.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 139

Failure of OSPM implementations and platform firmware to abide by these guidelines can result in both
unpredictable and non optimal platform operation.

5.2.12.2 Processor Local APIC Structure

When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in thistable
to be updated if the processor information changes during the lifespan of an OS boot. While in the deeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table5-21 Processor Local APIC Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 0 Processor Local APIC structure
Length 1 1 8
ACPI Processor 1 2 The Processorld for which this processor is listed in the ACPI
ID Processor declaration operator. For a definition of the Processor
operator, see section 18.5.93, “Processor (Declare Processor).”
APICID 1 3 The processor’slocal APIC ID.
Flags 4 4 Local APIC flags. See Table 5-22 for adescription of thisfield.
Table5-22 Local APIC Flags
Bit Bit
LocalAPIC Flags | Length | Offset | Description
Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.
Reserved 31 1 Must be zero.

5.2.12.3 |/O APIC Structure

In an APIC implementation, there are one or more I/O APICs. Each I/0O APIC has a series of interrupt
inputs, referred to as INTIn, where the value of nisfrom 0 to the number of the last interrupt input on the
[/O APIC. The I/O APIC structure declares which global system interrupts are uniquely associated with the
I/O APIC interrupt inputs. Thereisone 1/O APIC structure for each 1/0 APIC in the system. For more
information on global system interrupts see Section 5.2.13, “Global System Interrupts.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

140 Advanced Configuration and Power Interface Specification

Table5-23 /0O APIC Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 1 I/0 APIC structure
Length 1 1 12
I/OAPICID 1 2 Thel/O APIC'sID.
Reserved 1 3 0
I/OAPIC 4 4 The 32-bit physical address to accessthis1/0O APIC. Each I/O
Address APIC resides at a unique address.
Globa System 4 8 The global system interrupt number where this1/0 APIC's
Interrupt Base interrupt inputs start. The number of interrupt inputsis
determined by the I/O APIC’'s Max Redir Entry register.

5.2.12.4 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map global system interrupts 0-15 to
the 8259 IRQs 0-15, except where Interrupt Source Overrides are provided (see section 5.2.12.5, “Interrupt
Source Override Structure” below). This means that 1/0 APIC interrupt inputs 0-15 must be mapped to
global system interrupts 0-15 and have identical sources as the 8259 IRQs 0-15 unless overrides are used.
This allows a platform to support OSPM implementations that use the APIC model as well as OSPM
implementations that use the 8259 model (OSPM will only use one model; it will not mix models).

When OSPM supports the 8259 model, it will assume that al interrupt descriptors reporting global system
interrupts 0-15 correspond to 8259 IRQs. In the 8259 model all global system interrupts greater than 15 are
ignored. If OSPM implements APIC support, it will enable the APIC as described by the APIC
specification and will use all reported global system interrupts that fall within the limits of the interrupt
inputs defined by the 1/O APIC structures. For more information on hardware resource configuration see
section 6, “ Configuration.”

5.2.12.5 Interrupt Source Override Structure

Interrupt Source Overrides are necessary to describe variances between the | A-PC standard dual 8259
interrupt definition and the platform’ s implementation.

It is assumed that the ISA interrupts will be identity-mapped into the first 1/0 APIC sources. Most existing
APIC designs, however, will contain at least one exception to this assumption. The Interrupt Source
Override Structure is provided in order to describe these exceptions. It is nhot necessary to provide an
Interrupt Source Override for every I SA interrupt. Only those that are not identity-mapped onto the APIC
interrupt inputs need be described.

Note: This specification only supports overriding | SA interrupt sources.

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to ISA IRQ 0,
but in APIC mode, it is connected to 1/0O APIC interrupt input 2, then you would need an Interrupt Source
Override where the source entry is ‘0’ and the Global System Interruptis‘2.’

Table5-24 Interrupt Source Override Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 2 Interrupt Source Override
Length 1 1 10

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 141

Byte Byte
Field Length [Offset | Description
Bus 1 2 0 Constant, meaning | SA
Source 1 3 Bus-relative interrupt source (IRQ)
Globa System 4 4 The Global System Interrupt that this bus-relative interrupt source
Interrupt will signal.
Flags 2 8 MPS INTI flags. See Table 5-25 for a description of thisfield.

The MPSINTI flagslisted in Table 5-25 are identical to the flags used in Table 4-10 of the MPS version
1.4 specifications. The Polarity flags are the PO hits and the Trigger Mode flags are the EL hits.

Table5-25 MPSINTI Flags

Local APIC - Bit Bit
Flags Length | Offset | Description
Polarity 2 0 Polarity of the APIC 1/O input signals:
00 Conforms to the specifications of the bus
(For example, EISA is active-low for level-triggered interrupts)
01 Active high
10 Reserved
11 Active low
Trigger Mode 2 2 Trigger mode of the APIC I/O Input signals:
00 Conforms to specifications of the bus
(For example, I SA is edge-triggered)
01 Edge-triggered
10 Reserved
11 Level-triggered
Reserved 12 4 Must be zero.

Interrupt Source Overrides are also hecessary when an identity mapped interrupt input has a non-standard

polarity.

Note: You must have an interrupt source override entry for the IRQ mapped to the SCI interrupt if thisIRQ
is not identity mapped. This entry will override the valuein SCI_INT in FADT. For example, if SCI is
connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC mode, you should have 9 in
SCI_INT inthe FADT and an interrupt source override entry mapping IRQ 9to INTIN11.

5.2.12.6 Non-Maskable Interrupt Source Structure

This structure alows a platform designer to specify which I/O (S)APIC interrupt inputs should be enabled
as non-maskable. Any source that is non-maskable will not be available for use by devices.

Table5-26 Non-maskable Sour ce Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 3 NMI
Length 1 1 8

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

142 Advanced Configuration and Power Interface Specification

Byte Byte
Field Length | Offset | Description
Flags 2 2 Same as MPS INTI flags
Globa System 4 4 The Global System Interrupt that this NMI will signal.
Interrupt

5.2.12.7 Local APIC NMI Structure

This structure describes the Local APIC interrupt input (LINTn) that NMI is connected to for each of the
processors in the system where such a connection exists. Thisinformation is needed by OSPM to enable
the appropriate local APIC entry.

Each Local APIC NMI connection requires a separate Local APIC NMI structure. For example, if the
platform has 4 processors with ID 0-3 and NMI is connected LINT1 for processor 3 and 2, two Local APIC
NMI entries would be needed in the MADT.

Table5-27 Local APIC NMI Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 4 Local APIC NMI Structure
Length 1 1 6
ACPI Processor 1 2 Processor 1D corresponding to the ID listed in the processor
ID object. A value of OxFF signifies that this appliesto al processors
in the machine.
Flags 2 3 MPSINTI flags. See Table 5-25 for a description of thisfield.
Loca APIC 1 5 Local APIC interrupt input LINTnN to which NMI is connected.
LINT#

5.2.12.8 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an override of the physical address of the local
APIC inthe MADT'stable header, which is defined as a 32-bit field.

If defined, OSPM must use the address specified in this structure for al local APICs (and local SAPICs),
rather than the address contained in the MADT’ s table header. Only one Local APIC Address Override
Structure may be defined.

Table5-28 Local APIC Address Override Structure

Byte Byte

Field Length | Offset | Description

Type 1 0 5 Local APIC Address Override Structure

Length 1 1 12

Reserved 2 2 Reserved (must be set to zero)

Local APIC 8 4 Physical address of Local APIC. For Itanium™ Processor Family

Address (IPF)-based platforms, this field contains the starting address of
the Processor Interrupt Block. See the Intel® Itanium™
Architecture Software Developer’s Manual for more information.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 143

5.2.12.9 |1/0 SAPIC Structure

The I/O SAPIC structure is very similar to the 1/0 APIC structure. If both I/O APIC and I/O SAPIC
structures exist for a specific APIC ID, the information in the 1/O SAPIC structure must be used.

The 1/O SAPIC structure uses the I/O_APIC _ID field as defined in the 1/0O APIC table. The Vector_Base
field remains unchanged but has been moved. The 1/0O APIC address has been deleted. A new address and
reserved field have been added.

Table5-29 [/O SAPIC Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 6 I/0 SAPIC Structure
Length 1 1 16
I/OAPICID 1 2 /O SAPIC ID
Reserved 1 3 Reserved (must be zero)
Globa System 4 4 The global system interrupt number where this1/0 SAPIC's
Interrupt Base interrupt inputs start. The number of interrupt inputs is determined
by the I/O SAPIC’'s Max Redir Entry register.
/O SAPIC 8 8 The 64-bit physical addressto accessthis|/O SAPIC. Each 1/O
Address SAPIC resides at a unique address.

If defined, OSPM must use the information contained in the 1/0 SAPIC structure instead of the information
from the 1/0O APIC structure.

If both 1/0 APIC and an 1/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/O APIC and I/O SAPIC addresses. Thisis done by ensuring that there are at least as many 1/0O
SAPIC structures as 1/0O APIC structures and that every 1/0 APIC structure has a corresponding 1/0 SAPIC
structure (same APIC ID).

5.2.12.10 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the deeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table5-30 Processor Local SAPIC Structure

Byte Byte

Field Length | Offset | Description

Type 1 0 7 Processor Local SAPIC structure

Length 1 1 Length of the Local SAPIC Structure in bytes.

ACPI Processor | 1 2 OSPM associates the Local SAPIC Structure with a processor

ID object declared in the namespace using the Processor statement by
matching the processor object’s ProcessorI D value with thisfield.
For a definition of the Processor object, see section 18.5.93,
“Processor (Declare Processor).”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

144 Advanced Configuration and Power Interface Specification

Byte Byte

Field Length | Offset | Description

Loca SAPICID |1 3 The processor’slocal SAPIC ID

Local SAPIC 1 4 The processor’slocal SAPIC EID

EID

Reserved 3 5 Reserved (must be set to zero)

Flags 4 8 Local SAPIC flags. See Table 5-22 for a description of thisfield.

ACPI Processor | 4 12 OSPM associates the Local SAPIC Structure with a processor

UID Vaue object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluatesto a
numeric value, by matching the numeric value with this field.

ACPI Processor | >=1 16 OSPM associates the Local SAPIC Structure with a processor

UID String object declared in the namespace using the Device statement,
when the _UID child object of the processor device evaluatesto a
string, by matching the string with thisfield. Thisvalueis stored
as anull-terminated ASCII string.

5.2.12.11 Platform Interrupt Source Structure

The Platform Interrupt Source structure is used to communicate which 1/0 SAPIC interrupt inputs are
connected to the platform interrupt sources.

Platform Management Interrupts (PMIs) are used to invoke platform firmware to handle various events
(similar to SM1 in 1A-32). The Intel® Itanium™ architecture permits the I/O SAPIC to send a vector value
in the interrupt message of the PMI type. Thisvalue is specified in the I/O SAPIC Vector field of the
Platform Interrupt Sources Structure.

INIT messages cause processors to soft reset.

If aplatform can generate an interrupt after correcting platform errors (e.g., single bit error correction), the
interrupt input line used to signal such corrected errorsis specified by the Global System Interrupt field in
the following table. Some systems may restrict the retrieval of corrected platform error information to a
specific processor. In such cases, the firmware indicates the processor that can retrieve the corrected
platform error information through the Processor 1D and EID fields in the structure below. OSPM is
required to program the 1/0O SAPIC redirection table entries with the Processor ID, EID va ues specified by
the ACPI system firmware. On platforms where the retrieval of corrected platform error information can be
performed on any processor, the firmware indicates this capability by setting the CPEI Processor Override
flag in the Platform Interrupt Source Flags field of the structure below. If the CPEI Processor Override Flag
isset, OSPM uses the processor specified by Processor 1D, and EID fields of the structure below only asa
target processor hint and the error retrieval can be performed on any processor in the system. However,
firmware is required to specify valid valuesin Processor 1D, EID fields to ensure backward compatibility.

If the CPEI Processor Override flag is clear, OSPM may reject a gjection request for the processor that is
targeted for the corrected platform error interrupt. If the CPEI Processor Override flag is set, OSPM can
retarget the corrected platform error interrupt to a different processor when the target processor is gjected.

Note that the _ MAT object can return a buffer containing Platform Interrupt Source Structure entries. It is
allowed for such an entry to refer to a Global System Interrupt that is already specified by a Platform
Interrupt Source Structure provided through the static MADT table, provided the value of platform
interrupt source flags are identical.

Refer to the Itanium™ Processor Family System Abstraction Layer (SAL) Specification for details on
handling the Corrected Platform Error Interrupt.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 145

Table5-31 Platform Interrupt Sources Structure
Byte Byte

Field Length | Offset | Description
Type 1 0 8 Platform Interrupt Source structure
Length 1 1 16
Flags 2 2 MPS INTI flags. See Table 5-25 for a description of thisfield.
Interrupt Type 1 4 1 PMI

2 INIT

3 Corrected Platform Error Interrupt

All other values are reserved.
Processor ID 1 5 Processor ID of destination.
Processor EID 1 6 Processor EID of destination.
/O SAPIC 1 7 Value that OSPM must use to program the vector field of the 1/0O
Vector SAPIC redirection table entry for entries with the PMI interrupt

type.
Global System 4 8 The Global System Interrupt that this platform interrupt will
Interrupt signal.
Platform 4 12 Platform Interrupt Source Flags. See Table 5-32 for a description
Interrupt Source of thisfield
Flags

Table5-32 Platform Interrupt Source Flags

Platform
Interrupt Source | Bit Bit
Flags Length [Offset | Description
CPEI Processor 1 0 When set, indicates that retrieval of error information is allowed
Override from any processor and OSPM isto use the information provided

by the processor ID, EID fields of the Platform Interrupt Source

Structure (Table 5-30) as atarget processor hint.
Reserved 31 1 Must be zero.

5.2.12.12 Processor Local x2APIC Structure

The Processor X2APIC structure is very similar to the processor local APIC structure. When using the
X2APIC interrupt model, logical processors with APIC ID values of 255 and greater are required to have a
Processor Device object and must convey the processor’s APIC information to OSPM using the Processor
Local X2APIC structure. Logical processors with APIC ID values less than 255 must use the Processor
Local APIC structure to convey their APIC information to OSPM. OSPM does not expect the information
provided in this table to be updated if the processor information changes during the lifespan of an OS boot.
While in the leeping state, logical processors must not be added or removed, nor can their X2APIC ID or
Xx2APIC Flags change. When alogical processor is not present, the processor local X2APIC information is
either not reported or flagged as disabled.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

146 Advanced Configuration and Power Interface Specification

The format of x2APIC structure islisted in Table 5-33.

Table5-33 Processor Local xX2APIC Structure
Byte Byte
Field Length | Offset | Description
Type 1 0 9 Processor Local x2APIC structure
Length 1 1 16
Reserved 2 2 Reserved - Must be zero
X2APICID 4 4 The processor’slocal x2APIC ID.
Flags 4 8 Same as Local APIC flags. See Table 5-22 for a description of
thisfield.
ACPI Processor 4 12 OSPM associates the X2APIC Structure with a processor object
uiD declared in the namespace using the Device statement, when the
_UID child object of the processor device evaluates to anumeric
value, by matching the numeric value with thisfield

5.2.12.13 Local x2APIC NMI Structure

The Local APIC NMI and Local x2APIC NMI structures describe the interrupt input (LINTN) that NM1 is
connected to for each of the logical processorsin the system where such a connection exists. Each NMI

connection to a processor requires a separate NMI structure. Thisinformation is needed by OSPM to enable
the appropriate APIC entry.

NMI connection to alogical processor with local X2APIC ID 255 and greater requires an X2APIC NM|

structure. NMI connection to alogical processor with an x2APIC ID less than 255 requiresaLocal APIC
NMI structure. For example, if the platform contains 8 logical processors with x2APIC 1Ds 0-3 and 256-
259 and NM 1 is connected LINT1 for processor 3, 2, 256 and 257 then two Local APIC NMI entries and
two X2APIC NMI entries must be provided in the MADT.

The Local APIC NMI structureis used to specify global LINTx for all processorsif all logical processors
have x2APIC ID less than 255. If the platform contains any logical processors with an x2APIC ID of 255
or greater then the Local X2APIC NMI structure must be used to specify global LINTx for ALL logical
processors. The format of X2APIC NMI structureislisted in Table 5-34.

Table5-34 Local x2APIC NM|1 Structure

Byte Byte
Field Length | Offset | Description
Type 1 0 OAH Local x2APIC NMI Structure
Length 1 1 12
Flags 2 2 %rgeasMPS INTI flags. See Table 5-25 for a description of this
ield.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 147

Byte Byte
Field Length | Offset | Description
ACPI Processor | 4 4 UID corresponding to the ID listed in the processor Device object.
uiD A value of OxFFFFFFFF signifies that this appliesto all
processorsin the machine.
Local x2APIC 1 8 Local x2APIC interrupt input LINTn to which NMI is connected.
LINT#
Reserved 3 9 Reserved - Must be zero.
Globa System Interrupt Vector Interrupt Input Lines ‘System Vector Base
(ie ACPI PnP IRQ#) on IOAPIC reported in IOAPIC Struc
24 input 0 [|INTIO 0
IOAPIC
23 ||INTI_23
16 input 24 PJINTI_O 24
IOAPIC
39 [|INTI_15
24 input 40 [|INTI_O 40
IOAPIC .
51 [JINTI_11
55 FIINTI_23

Figure5-3 APIC-Global System Interrupts

5.2.13 Global System Interrupts

Global System Interrupts can be thought of as ACPI Plug and Play IRQ numbers. They are used to
virtualize interruptsin tables and in ASL methods that perform resource allocation of interrupts. Do not
confuse global system interrupts with ISA 1RQs although in the case of the | A-PC 8259 interrupts they
correspond in a one-to-one fashion.

There are two interrupt models used in ACPI-enabled systems.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

148 Advanced Configuration and Power Interface Specification

Thefirst model isthe APIC model. In the APIC model, the number of interrupt inputs supported by each
I/0 APIC can vary. OSPM determines the mapping of the Global System Interrupts by determining how
many interrupt inputs each 1/0 APIC supports and by determining the global system interrupt base for each
I/O APIC as specified by the 1/O APIC Structure. OSPM determines the number of interrupt inputs by
reading the Max Redirection register from the 1/O APIC. The global system interrupts mapped to that 1/0
APIC begin at the global system interrupt base and extending through the number of interrupts specified in
the Max Redirection register. This mapping is depicted in Figure 5-3.

Thereisexactly one 1/O APIC structure per 1/0O APIC in the system.

Globa System Interrupt Vector 8259 IA IRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
M aster IRQ3
8259
7 IRQ7
IR8
Save _
8259 | RQll
15 IRQ15

Figure5-4 8259-Global System Interrupts

The other interrupt model is the standard AT style mentioned above which uses | SA |RQs attached to a
master slave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their
mappings to the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in
Figure 5-4.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 149

5.2.14 Smart Battery Table (SBST)

If the platform supports batteries as defined by the Smart Battery Specification 1.0 or 1.1, then an Smart
Battery Table (SBST) is present. This table indicates the energy level trip points that the platform requires
for placing the system into the specified sleeping state and the suggested energy levels for warning the user
to transition the platform into a sleeping state. Notice that while Smart Batteries can report either in current
(mA/mAh) or in energy (mW/mwh), OSPM must set them to operate in energy (mW/mwWh) mode so that
the energy levels specified in the SBST can be used. OSPM uses these tables with the capabilities of the
batteries to determine the different trip points. For more precise definitions of these levels, see section
3.9.3, “Battery Gas Gauge.”

Table5-35 Smart Battery Description Table (SBST) For mat

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘SBST’ Signature for the Smart Battery Description Table.
Length 4 4 Length, in bytes, of the entire SBST
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TablelID | 8 16 For the SBST, the table ID is the manufacturer model ID.
OEM Revision | 4 24 OEM revision of SBST for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, thisisthe ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisisthe revision for the ASL Compiler.
Warning Energy 4 36 OEM suggested energy level in milliWatt-hours (mWh) at which
Level OSPM warns the user.
Low Energy Level | 4 40 OEM suggested platform energy level in mWh at which OSPM
will transition the system to a deeping state.
Critical Energy 4 44 OEM suggested platform energy level in mwWh at which OSPM
Level performs an emergency shutdown.

5.2.15 Embedded Controller Boot Resources Table (ECDT)

This optional table provides the processor-relative, translated resources of an Embedded Controller. The
presence of this table allows OSPM to provide Embedded Controller operation region space access before
the namespace has been evaluated. If thistable is not provided, the Embedded Controller region space will
not be available until the Embedded Controller device in the AML namespace has been discovered and
enumerated. The availability of the region space can be detected by providing a_REG method object
underneath the Embedded Controller device.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

150 Advanced Configuration and Power Interface Specification

Table5-36 Embedded Controller Boot Resour ces Table For mat

Byte Byte
Field Length | Offset | Description
Header
Signature 4 0 ‘ECDT’ Signature for the Embedded Controller Table.
Length 4 4 Length, in bytes, of the entire Embedded Controller Table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID | 8 16 For the Embedded Controller Table, thetable ID isthe
manufacturer model ID.
OEM Revison | 4 24 OEM revision of Embedded Controller Table for supplied OEM
TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, thisisthe ID for the ASL Compiler.
Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, thisistherevision for the ASL Compiler.

EC _CONTROL 12 36 Contains the processor relative address, represented in Generic
Address Structure format, of the Embedded Controller
Command/Status register.

Note: Only System /O space and System Memory space are
valid for values for Address Space ID.

EC DATA 12 48 Contains the processor-relative address, represented in Generic
Address Structure format, of the Embedded Controller Data
register.

Note: Only System I/O space and System Memory space are
valid for values for Address Space ID.

uiD 4 60 Unique | D—Same as the value returned by the _UID under the
device in the namespace that represents this embedded
controller.

GPE BIT 1 64 The bit assignment of the SCI interrupt within the GPEx_STS
register of a GPE block described inthe FADT that the
embedded controller triggers.

EC ID Variable | 65 ASCII, null terminated, string that contains a fully qualified
reference to the namespace object that is this embedded
controller device (for example, “_SB.PCI0.ISA.EC"). Quotes
are omitted in the data field.

ACPI OSPM implementations supporting Embedded Controller devices must also support the ECDT.
ACPI 1.0 OSPM implementation will not recognize or make use of the ECDT. The following example
code shows how to detect whether the Embedded Controller operation regions are available in a manner
that is backward compatible with prior versions of ACPI/OSPM.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 151

Devi ce(EQQ) {
Name(REGC, Ones)
Met hod(_REG 2) {
I f(Lequal (Arg0, 3)) {
Store(Argl, REGQO)
}

}

}
Met hod(ECAV, 0) {
| f (Lequal (RECC, Ones)) {
| f(LgreaterEqual (_REV, 2)) {
Ret ur n(One)

}
El se {
Ret ur n(Zer o)

}
Ret ur n(REGC)

}
}

To detect the availability of the region, call the ECAV method. For example:

If (_SB.PCl0.ECO. ECAV()) {
...regions are available...

el se {
...regions are not available...
}

5.2.16 System Resource Affinity Table (SRAT)

This optional table provides information that allows OSPM to associate processors and memory ranges,
including ranges of memory provided by hot-added memory devices, with system localities/ proximity
domains and clock domains. On NUMA platforms, SRAT information enables OSPM to optimally
configure the operating system during a point in OS initialization when evaluation of objectsin the ACPI
Namespace is not yet possible. OSPM evaluates the SRAT only during OS initialization. The Local APIC
ID /Local SAPICID /Loca x2APIC ID of all processors started at boot time must be present in the
SRAT. If the Local APICID / Local SAPIC ID / Local x2APIC ID of adynamically added processor is not
present in the SRAT, a_PXM object must exist for the processor’s device or one of its ancestorsin the
ACPI Namespace.

Table5-37 Static Resource Affinity Table Format

Field Byte Byte | Description
Length | Offset
Header
Signature 4 0 ‘SRAT'. Signature for the System Resource Affinity Table.
Length 4 4 Length, in bytes, of the entire SRAT. The length implies the
number of Entry fields at the end of the table
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM TableID | 8 16 For the System Resource Affinity Table, thetable ID isthe
manufacturer model ID.
OEM Revision | 4 24 OEM revision of System Resource Affinity Table for supplied
OEM Table|D.
Creator ID 4 28 Vendor ID of utility that created the table.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

152 Advanced Configuration and Power Interface Specification

Field Byte Byte | Description
Length | Offset
Creator Revision | 4 32 Revision of utility that created the table.
Reserved 4 36 Reserved to be 1 for backward compatibility
Reserved 8 40 Reserved
Static Resource --- 48 A list of static resource allocation structures for the platform. See

Allocation
Structure[n]

section 5.2.16.1,” Processor Local APIC/SAPIC Affinity
Structure”, section 5.2.16.2 “Memory Affinity Structure”, and
section 5.2.16.3 “Processor Loca x2APIC Affinity Structure”.

5.2.16.1 Processor Local APIC/SAPIC Affinity Structure

The Processor Local APIC/SAPIC Affinity structure provides the association between the APIC ID or
SAPIC ID/EID of aprocessor and the proximity domain to which the processor belongs. Table 5-38
provides the details of the Processor Local APIC/SAPIC Affinity structure.

Table5-38 Processor Local APIC/SAPIC Affinity Structure

Field Byte Byte [Description
Length | Offset
Type 1 0 0 Processor Local APIC/SAPIC Affinity Structure
Length 1 1 16
Proximity Domain | 1 2 Bit[7:0] of the proximity domain to which the processor belongs.
[7:0]
APICID The processor local APIC ID.
Flags 4 4 Flags — Processor Local APIC/SAPIC Affinity Structure. See
Table 5-39 for adescription of thisfield.
Local SAPICEID |1 8 The processor local SAPIC EID.
Proximity Domain | 3 9 Bit[31:8] of the proximity domain to which the processor
[31:8] belongs.
Clock Domain 4 12 The clock domain to which the processor belongs. See section

6.2.1,“ CDM (Clock Domain)”.

Table5-39 Flags— Processor Local APIC/SAPIC Affinity Structure

Field Bit Bit Description
Length | Offset
Enabled 1 0 If clear, the OSPM ignores the contents of the Processor Local
APIC/SAPIC Affinity Structure. This allows system firmware to
populate the SRAT with a static number of structures but only
enable them as necessary.
Reserved 31 1 Must be zero.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 153

5.2.16.2 Memory Affinity Structure

The Memory Affinity structure provides the following topology information statically to the operating
system:

e The association between arange of memory and the proximity domain to which it belongs
e Information about whether the range of memory can be hot-plugged.
Table 5-40 provides the details of the Memory Affinity structure.

Table5-40 Memory Affinity Structure

Field Byte Byte Description
Length | Offset

Type 1 0 1 Memory Affinity Structure

Length 1 1 40

Proximity Domain | 4 2 Integer that represents the proximity domain to which the
processor belongs

Reserved 2 6 Reserved

Base AddressLow | 4 8 Low 32 Bits of the Base Address of the memory range

Base AddressHigh | 4 12 High 32 Bits of the Base Address of the memory range

Length Low 4 16 Low 32 Bits of the length of the memory range.

Length High 4 20 High 32 Bits of the length of the memory range.

Reserved 4 24 Reserved.

Flags 4 28 Flags— Memory Affinity Structure. Indicates whether the region
of memory is enabled and can be hot plugged. Detailsin See
Table 5-41.

Reserved 8 32 Reserved.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

154 Advanced Configuration and Power Interface Specification

Table5-41 Flags—Memory Affinity Structure

Field Bit Bit Description
Length | Offset
Enabled 1 0 If clear, the OSPM ignores the contents of the Memory Affinity

Structure. This allows system firmware to populate the SRAT
with a static number of structures but only enable then as
necessary.

Hot Pluggable® 1 1 The information conveyed by this bit depends on the value of the
Enabled bit.

If the Enabled bit is set and the Hot Pluggable bit isalso set. The
system hardware supports hot-add and hot-remove of this
memory region

If the Enabled bit is set and the Hot Pluggable bit is clear, the
system hardware does not support hot-add or hot-remove of this
memory region.

If the Enabled bit is clear, the OSPM will ignore the contents of
the Memory Affinity Structure

NonVolatile 1 2 If set, the memory region represents Non-Volatile memory

Reserved 29 3 Must be zero.

5.2.16.3 Processor Local x2APIC Affinity Structure

The Processor Local x2APIC Affinity structure provides the association between the local x2APIC ID of a
processor and the proximity domain to which the processor belongs. Table 5-42 provides the details of the
Processor Local x2APIC Affinity structure.

Table5-42 Processor Local x2APIC Affinity Structure

Field Byte Byte | Description
Length | Offset

Type 1 0 2 Processor Local x2APIC Affinity Structure

Length 1 1 24

Reserved 2 2 Reserved — Must be zero

Proximity Domain | 4 4 The proximity domain to which the logical processor belongs.

X2APICID 4 8 The processor local x2APIC ID.

Flags 4 12 Same as Processor Local APIC/SAPIC Affinity Structure flags.
See Table 5-39 for a description of thisfield.

Clock Domain 4 16 The clock domain to which the logical processor belongs. See
section 6.2.1, “_CDM (Clock Domain)”.

Reserved 4 20 Reserved.

® On x86-based platforms, the OSPM uses the Hot Pluggable bit to determine whether it should shift into
PAE mode to allow for insertion of hot-plug memory with physical addresses over 4 GB.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 155

5.2.17 System Locality Distance Information Table (SLIT)

This optional table provides a matrix that describes the relative distance (memory latency) between all
System Localities, which are also referred to as Proximity Domains. Systems employing a Non Uniform
Memory Access (NUMA) architecture contain collections of hardware resources including for example,
processors, memory, and 1/0 buses, that comprise what is known asa“NUMA node”. Processor accesses
to memory or 1/0 resources within the local NUMA node is generally faster than processor accesses to
memory or /O resources outside of the local NUMA node.

The value of each Entry[i,j] inthe SLIT table, where i represents arow of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

Thei,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace.
See section 6.2.12, “_PXM (Proximity)” for more information.

The entry value is a one-byte unsigned integer. The relative distance from System Locality i to System
Locdlity j isthei*N + j entry in the matrix, where N is the number of System Localities. Except for the
relative distance from a System Locality to itself, each relative distance is stored twice in the matrix. This
provides the capability to describe the scenario where the relative distances for the two directions between
System Localitiesis different.

The diagonal elements of the matrix, the relative distances from a System Locality to itself are normalized
to avalue of 10. The relative distances for the non-diagonal elements are scaled to be relative to 10. For
example, if the relative distance from System Locality i to System Locality j is 2.4, avalue of 24 is stored
intableentry i*N+ j and in j*N+ i, where N is the number of System Localities.

If one locality is unreachable from another, a value of 255 (OxFF) is stored in that table entry. Distance
values of 0-9 are reserved and have no meaning.

Table5-43 SLIT Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SLIT’. Signature for the System Locality Distance
Information Table.
Length 4 4 Length, in bytes, of the entire System Locality Distance
Information Table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM Table D 8 16 For the System Locality Information Table, thetableID is
the manufacturer model 1D.
OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe ID for the ASL
Compiler.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

156 Advanced Configuration and Power Interface Specification

Field Byte Byte Description
Length | Offset
Creator Revision 4 32 Revision of utility that created the table. For the DSDT,

RSDT, SSDT, and PSDT tables, thisisthe revision for the
ASL Compiler.

Number of System 8 36 Indicates the number of System Localitiesin the system.

Localities

Entry[0][0Q] 1 44 Matrix entry (0,0), contains a value of 10.

Entry[O][Number of 1 Matrix entry (O, Number of System Localities-1)

System Localities-1]

Entry[1][0Q] 1 Matrix entry (1,0)

Entry[Number of 1 Matrix entry (Number of System Localities-1, Number of

System Localities- System Localities-1), contains avalue of 10

1][Number of System

Localities-1]

5.2.18 Corrected Platform Error Polling Table (CPEP)

Platforms may contain the ability to detect and correct certain operational errors while maintaining
platform function. These errors may be logged by the platform for the purpose of retrieval. Depending on
the underlying hardware support, the means for retrieving corrected platform error information varies. If
the platform hardware supports interrupt-based signaling of corrected platform errors, the MADT Platform
Interrupt Source Structure describes the Corrected Platform Error Interrupt (CPEI). See section
5.2.11.14," Platform Interrupt Source Structure”. Alternatively, OSPM may poll processors for corrected
platform error information. Error log information retrieved from a processor may contain information for
all processors within an error reporting group. As such, it may not be necessary for OSPM to poll all
processors in the system to retrieve complete error information. This optional table provides information
that allows OSPM to poll only the processors necessary for a complete report of the platform’s corrected
platform error information.

Table5-44 Corrected Platform Error Polling Table Format

Field Byte Byte | Description
Length | Offset
Header
Signature 4 0 ‘CPEP . Signature for the Corrected Platform Error Polling
Table.
Length 4 4 Length, in bytes, of the entire CPET. The length implies the
number of Entry fields at the end of the table
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM TableID | 8 16 For the Corrected Platform Error Polling Table, the table ID isthe
manufacturer model ID.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 157

Field Byte Byte | Description
Length | Offset
OEM Revision | 4 24 OEM revision of Corrected Platform Error Polling Table for
supplied OEM TableID.

Creator ID 4 28 Vendor ID of utility that created the table.

Creator Revision | 4 32 Revision of utility that created the table.
Reserved 8 36 Reserved, must be 0.
CPEP Processor 44 A list of Corrected Platform Error Polling Processor structures for
Structure[n] the platform. See section 5.2.17.1,” Corrected Platform Error

Polling Processor Structure”.

5.2.18.1 Corrected Platform Error Polling Processor Structure

The Corrected Platform Error Polling Processor structure provides information on the specific processors
OSPM pollsfor error information. Table 5-45 provides the details of the Corrected Platform Error Polling

Processor structure.

Table5-45 Corrected Platform Error Polling Processor Structure
Field Byte Byte | Description
Length | Offset
Type 1 0 0 Corrected Platform Error Polling Processor structure for
APIC/SAPIC based processors
Length 1 1 8
Processor ID 1 2 Processor ID of destination.
Processor EID 1 3 Processor EID of destination.
Polling Interval 4 4 Platform-suggested polling interval (in milliseconds)

5.2.19 Maximum System Characteristics Table (MSCT)

This section describes the format of the Maximum System Characteristic Table (MSCT), which provides
OSPM with information characteristics of a system’s maximum topology capabilities. If the system
maximum topology is not known up front at boot time, then thistable is not present. OSPM will use
information provided by the MSCT only when the System Resource Affinity Table (SRAT) exists. The
MSCT must contain al proximity and clock domains defined in the SRAT.

Table5-46 Maximum System Characteristics Table (MSCT) For mat

Byte Byte
Field Length | Offset Description
Header
Signature 4 0 ‘MSCT’ Signature for the Maximum System
Characteristics Table.
Length 4 4 Length, in bytes, of the entire MSCT.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

158 Advanced Configuration and Power Interface Specification

Byte Byte
Field Length | Offset Description
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM TableID 8 16 For the MSCT, the table ID is the manufacturer model
ID.
OEM Revision 4 24 OEM revision of MSCT for supplied OEM TableID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, thisis the revision for the
ASL Compiler.
Offset to Proximity 4 36 Offset in bytes to the Proximity Domain Information
Domain Information Structure table entry.
Structure
[OffsetProxDominfo]
Maximum Number of | 4 40 I ndicates the maximum number of Proximity Domains
Proximity Domains ever possible in the system. The number reported in this
field is (maximum domains — 1). For exampleif there
are 0x10000 possible domains in the system, thisfield
would report OxFFFF.
Maximum Number of | 4 44 Indicates the maximum number of Clock Domains ever
Clock Domains possible in the system. The number reported in thisfield
is (maximum domains— 1). See section 6.2.1, “ CDM
(Clock Domain)”.
Maximum Physical 8 48 Indicates the maximum Physical Address ever possible
Address in the system. Note: thisisthe top of the reachable
physical address.
Proximity Domain — [OffsetProx | A list of Proximity Domain Information for this
Information Dominfo] implementation. The structure format is defined in the

Structurel Maximum
Number of Proximity
Domains]

Maximum Proximity Domain Information Structure
section.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 159

5.2.19.1 Maximum Proximity Domain Information Structure

The Maximum Proximity Domain Information Structure is used to report system maximum characteristics.
It islikely that these characteristics may be the same for many proximity domains, but they can vary from
one proximity domain to another. This structure optimizesto cover the former case, while allowing the
flexibility for the latter as well. These structures must be organized in ascending order of the proximity
domain enumerations. All proximity domains within the Maximum Number of Proximity Domains
reported in the MSCT must be covered by one of these structures.

Table5-47 Maximum Proximity Domain Information Structure

Byte Byte
Field Length | Offset | Description
Revision 1 0 1
Length 1 1 22
Proximity Domain | 4 2 The starting proximity domain for the proximity domain range
Range (low) that this structure is providing information.
Proximity Domain | 4 6 The ending proximity domain for the proximity domain range
Range (high) that this structure is providing information.
Maximum 4 10 The Maximum Processor Capacity of each of the Proximity
Processor Domains specified in the range. A value of 0 means that the
Capacity proximity domains do not contain processors. This field must be
>=the number of processor entries for the domain in the SRAT.
Maximum 8 14 The Maximum Memory Capacity (size in bytes) of the Proximity
Memory Capacity Domains specified in the range. A value of 0 means that the
proximity domains do not contain memory.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

160 Advanced Configuration and Power Interface Specification

5.3 ACPI Namespace

For all Definition Blocks, the system maintains a single hierarchical namespace that it usesto refer to
objects. All Definition Blocks load into the same namespace. Although this allows one Definition Block to
reference objects and data from another (thus enabling interaction), it also means that OEMs must take care
to avoid any naming collisions’. Only an unload operation of a Definition Block can remove names from
the namespace, so a name collision in an attempt to load a Definition Block is considered fatal. The
contents of the namespace changes only on aload or unload operation.

The namespace is hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:
e All namesare afixed 32 bits.
e Thefirst byte of anameisinclusiveof: ‘A’—2Z’,* ', (0x41-0x5A, Ox5F).
e Theremaining three bytes of anameareinclusiveof: ‘A’—27','0'—'9", * ’, (0x41-0x5A, 0x30—
0x39, Ox5F).
e By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with
trailing underscores (). See the language definition for AML NameSeg in Section 16, “ACPI
Source Language Reference.”
e Namesbeginning with*_’ arereserved by this specification. Definition Blocks can only use names
beginning with * " as defined by this specification.
e A name proceeded with ‘\' causes the name to refer to the root of the namespace (‘\" is not part of
the 32-hit fixed-length name).
e A name proceeded with ‘' causes the name to refer to the parent of the current namespace (‘' is
not part of the 32-bit fixed-length name).

Except for names preceded with a‘\’, the current namespace determines where in the namespace hierarchy
aname being created goes and where a name being referenced isfound. A name islocated by finding the
matching name in the current namespace, and then in the parent namespace. If the parent namespace does
not contain the name, the search continues recursively upwards until either the nameis found or the
namespace does not have a parent (the root of the namespace). Thisindicates that the name is not found’.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of namespace paths: an absolute namespace path (that is, one that startswith a‘\’
prefix), and arelative namespace path (that is, one that is relative to the current namespace). The
namespace search rules discussed above, only apply to single NameSeg paths, which isarelative
namespace path. For those rel ative name paths that contain multiple NameSegs or Parent Prefixes, ‘v, the
search rules do not apply. If the search rules do not apply to arelative namespace path, the namespace
object islooked up relative to the current namespace. For example:

ABCD /Isearch rules apply

~ABCD /Isearch rules do not apply
XYZ. ABCD /Isearch rules do not apply
\ XYZ. ABCD /Isearch rules do not apply

® For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will
load into a different part of the hierarchy. The root of the name space and certain locations where
interaction is being designed are the areas in which extra care must be taken.

" Unless the operation being performed is explicitly prepared for failure in name resolution, thisis
considered an error and may cause the system to stop working.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 161

All name references use a 32-bit fixed-length name or use a Name Extension prefix to concatenate multiple
32-hit fixed-length name components together. Thisis useful for referring to the name of an object, such as
acontrol method, that is not in the scope of the current namespace.

The figure below shows a sample of the ACPI namespace after a Differentiated Definition Block has been
loaded.

[Root
_PR — Processor Tree
4?@ CPUO — Processor 0 object
_@g \PIDO — Power resource for IDEO
] _STA — Method to return status of power resourse
] _ON — Method to turn on power resourse
L™ _OFF — Method to turn off power resourse
L {3 \ sB — System bus tree
PCIO —PCl bus
_HID — Device ID
_CRS — Current resources (PCI bus number)
IDEO — IDEO device Key
_ADR — PCI device #, function # lﬁ Package
_PRO — Power resource requirements for DO |1‘| Processor Object
_GPE — General purpose events (GP_STS) E (P)(t))\j/g:rt Resource
_Lo1 — Method to handle level GP_STS.1 @ Bus/Device Object
_EO02 — Method to handle edge GP_STS.2 D Data Object
LE _Lo3 — Method to handle level GP_STS.3 — Control Method (AML code)

Figure5-5 Example ACPI NameSpace

Care must be taken when accessing namespace objects using arelative single segment name because of the
namespace search rules. An attempt to access a relative object recurses toward the root until the object is
found or the root is encountered. This can cause unintentional results. For example, using the namespace
described in Figure 5.5, attempting to access a_CRS named object from withinthe\ SB_.PCI0.IDEO will
have different results depending on if an absolute or relative path name is used. If an absolute pathname is
specified (_SB_.PCI0.IDEO._CRS) an error will result since the object does not exist. Accessusing a
single segment name (_CRS) will actually accessthe\ SB_.PCI0._CRS object. Notice that the access will
occur successfully with no errors.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

162 Advanced Configuration and Power Interface Specification

5.3.1 Predefined Root Namespaces
The following namespaces are defined under the namespace root.

Table 5-48 Namespaces Defined Under the Namespace Root

Name Description
\ GPE Genera eventsin GPE register block.
\ PR ACPI 1.0 Processor Namespace. ACPI 1.0 requires all Processor objects to be defined

under this namespace. ACPI allows Processor object definitions under the\ SB
namespace. Platforms may maintain the\ PR namespace for compatibility with ACPI 1.0
operating systems. An ACPI-compatible namespace may define Processor objectsin
either the\ SB or _PR scope but not both.

For more information about defining Processor objects, see section 8, “Processor
Configuration and Control.”

\ SB All Device/Bus Objects are defined under this namespace.

\ S System indicator objects are defined under this namespace. For more information about
defining system indicators, see section 9.1, _SI System Indicators.”

\ Tz ACPI 1.0 Thermal Zone namespace. ACPI 1.0 requires al Thermal Zone objectsto be

defined under this namespace. Thermal Zone object definitions may now be defined under
the\ SB namespace. ACPI-compatible systems may maintain the\ TZ namespace for
compatibility with ACPI 1.0 operating systems. An ACPI-compatible namespace may
define Thermal Zone objectsin either the\ _SB or _TZ scope but not both.

For more information about defining Thermal Zone objects, see section 11, “Thermal
Management.”

5.3.2 Objects

All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime
and are used to process the current invocation from beginning to end.

The contents of objects vary greatly. Nevertheless, most objects refer to data variables of any supported
data type, a control method, or system software-provided functions.

Objects may contain arevision field. Successive ACPI specifications define object revisions so that they
are backwards compatible with OSPM implementations that support previous specifications/ object
revisions. New object fields are added at the end of previous object definitions. OSPM interprets objects
according to the revision number it supportsincluding all earlier revisions. As such, OSPM expects that an
object’s length can be greater than or equal to the length of the known object revision. When evaluating
objects with revision numbers greater than that known by OSPM, OSPM ignores internal object fields
values that are beyond the defined abject field range for the known revision.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects,
and packages. The Definition Block is encoded as a stream from beginning to end. The lead byte in the
stream comes from the AML encoding tables shown in section 18, “ACPI Source Language (ASL)
Reference,” and signifies how to interpret some number of following bytes, where each following byte can
in turn signify how to interpret some number of following bytes. For afull specification of the AML
encoding, see section 18, “ACPI Source Language (ASL) Reference.”

Within the stream there are two levels of data being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents/run-time).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 163

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take
the form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadByte PkgLength data... LeadByte ...
\—b PkgLength —T

Figure5-6 AML Encoding

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that,
at some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytes in the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used
in one-byte encodings, which allows for one-byte encodings on alength up to 0x3F. Longer encodings,
which do not use these two bits, have a maximum length of the following: two-byte encodings of OxOFFF,
three-byte encodings of OXOFFFFF, and four-byte length encodings of OXOFFFFFFFFF.

It isfatal for a package length to not fall on alogical boundary. For example, if a packageiscontained in
another package, then by definition its length must be contained within the outer package, and similarly for
adatum of implicit length.

At some point, the system software decidesto “load” a Definition Block. Loading is accomplished when
the system makes a pass over the data and populates the ACPI namespace and initializes objects
accordingly. The namespace for which population occursis either from the current namespace location, as
defined by all nested packages or from the root if the name is preceded with ‘\.

Thefirst object present in a Definition Block must be a named control method. This isthe Definition
Block’sinitialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be
considered avertex of an array, and any object contained within a package can be another package. This
permits multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in
the “root.” Unnamed objects can be used as argumentsin control methods.

Control method execution may generate errors when creating objects. This can occur if a Method that
creates named objects blocks and is reentered while blocked. This will happen because all named objects
have an absolute path. Thisis true even if the object name specified is relative. For example, the following
ASL code segments are functionally identical.

1)
Met hod (DEAD,) ({
Scope (_SB .FOO ({
Name (BAR,) /1 Run time definition
}

}
)

Scope (_SB) {
Name (_SB . FOO BAR)) // Load time definition
}

Notice that in the above exampl e the execution of the DEAD method will always fail because the object
\ SB_.FOO.BAR iscreated at load time.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

164 Advanced Configuration and Power Interface Specification

5.5 Using the ACPI Control Method Source Language

OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use atrandator to produce the byte stream encoding described in section 5.4, “Definition Block
Encoding”. For example, the ASL statements that produce the example byte stream shown in that earlier
section are shown in the following ASL example. For afull specification of the ASL statements, see section
18, “ACPI Source Language (ASL) Reference.”

/1 ASL Exanple
DefinitionBl ock (

"forbook.am ", /] Qutput Filename

" DSDT", /1 Signature

0x02, /| DSDT Conpliance Revision
"CEM', /l CEM D

"f orbook", /1 TABLE ID

0x1000 /1 OEM Revi si on

{ /1 start of definition block
OperationRegion(\A O System O 0x125, 0x1)
Field(\A@ O ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(\ _SB) { // start of scope

Devi ce(PCl 0) { /] start of device
Power Resour ce(FETO, 0, 0) { /Il start of pw
Met hod (_ON) {
Store (Ones, CT01) /] assert power
Sl eep (30) /1 wait 30ns

}
Met hod (_OFF) {
Store (Zero, CT01) /| assert reset#

}
Met hod (_STA) {
Return (CT01)

} /1 end of power
} /1 end of device
} /1 end of scope
} /1 end of definition block

5.5.1 ASL Statements

ASL isprincipally adeclarative language. ASL statements declare objects. Each object has three parts, two
of which can be null:

Obj ect := ObjectType FixedList Vari abl eLi st

FixedList refersto alist of known length that supplies data that all instances of a given ObjectType must
have. It iswritten as (a, b, c,), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is(a, b, (g, 1, s, t), d). Arguments to a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have a null FixedList.

VariablelList refersto alist, not of predetermined length, of child objects that help define the parent. It is
written as{x, v, z, aa, bb, cc}, where any argument can be a nested object. ObjectType determines what
terms are legal elements of the VariablelList. Some ObjectTypes can have anull variable list.

For a detailed specification of the ASL language, see section 18, “ACPI Source Language (ASL)
Reference.” For a detailed specification of the ACPI Control Method Machine Language (AML), upon
which the output of the ASL trandlator is based, see section 19, “ACPI Machine Language (AML)
Specification.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 165

5.5.2 Control Method Execution

OSPM evaluates control method objects as necessary to either interrogate or adjust the system-level
hardware state. Thisis called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand,
which can include defined control methods provided by the operating software. Control Methods can
reference any objects anywhere in the Namespace. Interpretation of a Control Method is not preemptive,
but it can block. When a control method does block, OSPM can initiate or continue the execution of a
different control method. A control method can only assume that access to global objectsis exclusive for
any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.2.1 Arguments

Up to seven arguments can be passed to a control method. Each argument is an object that in turn could be
a“package” style object that refers to other objects. Accessto the argument objectsis provided viathe ASL
ArgTerm (ArgX) language elements. The number of arguments passed to any control method is fixed and
is defined when the control method package is created.

Method arguments can take one of the following forms:

1) AnACPI name or namepath that refers to a named object. Thisincludes the Local X and ArgX names.
In this case, the object associated with the name is passed as the argument.

2) An ACPI name or namepath that refers to another control method. In this case, the method is invoked
and the return value of the method is passed as the argument. A fatal error occursif no object is
returned from the method. If the object is not used after the method invocation it is automatically
deleted.

3) A valid ASL expression. In the case, the expression is evaluated and the object that results from this
evaluation is passed as the argument. If this object is not used after the method invocation it is
automatically deleted.

5.5.2.2 Method Calling Convention

The calling convention for control methods can best be described as call-by-reference-constant. In this
convention, objects passed as arguments are passed by “reference”, meaning that they are not copied to
new objects as they are passed to the called control method (A calling convention that copies objects or
object wrappers during a call is known as call-by-value or call-by-copy).

This call-by-reference-constant convention allows internal objectsto be shared across each method
invocation, therefore reducing the number of object copies that must be performed as well as the number of
buffers that must be copied. This calling convention is appropriate to the low-level nature of the ACPI
subsystem within the kernel of the host operating system where non-paged dynamic memory istypically at
apremium. The ASL programmer must be aware of the calling convention and the related side effects.

However, unlike a pure call-by-reference convention, the ability of the called control method to modify
arguments is extremely limited. This reduces aliasing issues such as when a called method unexpectedly
modifies a object or variable that has been passed as an argument by the caller. In effect, the arguments that
are passed to control methods are passed as constants that cannot be modified except under specific
controlled circumstances.

Generally, the objects passed to a control method via the ArgX terms cannot be directly written or modified
by the called method. In other words, when an ArgX term is used as atarget operand in an ASL statement,
the existing ArgX object is not modified. Instead, the new object replaces the existing object and the ArgX
term effectively becomes aLoca X term.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

166 Advanced Configuration and Power Interface Specification

The only exception to the read-only argument ruleisif an ArgX term contains an Object Reference created
viathe RefOf ASL operator. In this case, the use of the ArgX term as atarget operand will cause any
existing object stored at the ACPI name referred to by the RefOf operation to be overwritten.

In some limited cases, a new, writable object may be created that will allow a control method to change the
value of an ArgX object. These cases are limited to Buffer and Package objects where the “value” of the
object isrepresented indirectly. For Buffers, awritable Index or Field can be created that refersto the
original buffer data and will allow the called method to read or modify the data. For Packages, a writable
Index can be created to allow the called method to modify the contents of individual elements of the
Package.

5.5.2.3 Local Variables and Locally Created Data Objects

Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initial control method execution, the local data objects are NULL. Accessto local objectsis
viathe ASL Local Term language el ements.

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or saveit to a different object if it wantsto
preserve it. See the description of the Return ASL operator for additional details

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of
the method execution. They are created when specified by the code and are destroyed on exit. A method
may create dynamic objects outside of the current scope in the NameSpace using the scope operator or
using full path names. These objects will still be destroyed on method exit. Objects created at load time
outside of the scope of the method are static. For example:

Scope (\XYz) {

Name (BAR, 5) /] Creates \ XYZ. BAR

Met hod (FOO, 1) {
Store (BAR, CREG /1 same effect as Store (\XYZ BAR, CREG
Narme (BAR, 7) /] Creates \XYZ. FOO. BAR
Store (BAR, DREG /1 same effect as Store (\XYZ FOO BAR, DREG

Narme (\ XYZ. FOOB, 3) /1 Creates \XYZ. FOOB
} /1 end nethod
} /1 end scope

The object \XYZ.BAR isastatic object created when the table that contains the above ASL isloaded. The
object \XY Z.FOO.BAR is adynamic object that is created when the Name (BAR, 7) statement in the FOO
method is executed. The object \XYZ.FOOB is a dynamic object created by the \X'Y Z.FOO method when
the Name (\XYZ.FOOB, 3) statement is executed. Notice that the \XY Z.FOOB object is destroyed after the
\XY Z.FOO method exits.

5.5.2.4 Access to Operation Regions

Control Methods read and write data to locations in address spaces (for example, System memory and
System 1/O) by using the Field operator (see section 18.5.44 Field (Declare Field Objects)”) to declare a
data element within an entity known as an “ Operation Region” and then performing accesses using the data
element name. An Operation Region is a specific region of operation within an address space that is
declared as a subset of the entire address space using a starting address (offset) and alength (see section
18.5.89 “ OperationRegion (Declare Operation Region)”). Control methods must have exclusive access to
any address accessed viafields declared in Operation Regions. Control methods may not directly access
any other hardware registers, including the ACPI-defined register blocks. Some of the ACPI registers, in
the defined ACPI registers blocks, are maintained on behalf of control method execution. For example, the
GPEx_BLK isnot directly accessed by a control method but is used to provide an extensible interrupt
handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the slow nature of the embedded controller, an embedded controller OpRegion field access may
block.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 167

There are eight predefined Operation Region types specified by ACPI as described in Table 5-49.
Table5-49 Operation Region Address Space | dentifiers

Name (RegionSpace K eywor d) Value

SystemM emory
Systeml O
PCI_Config
EmbeddedControl
SMBus

CMOS
PCIBARTar get
IPMI

Reserved 0x08-0x7F

N~Njlo|loa|[h~|[W|IDN|FL]|O

In addition, OEMs may define Operation Regions Address Space I D types 0x80 to OxFF.

Operation region access to the SystemMemory, Systeml O, and PCI_Config address spaces is simple and
straightforward. Operation region access to the EmbeddedControl address space is described in Section 12,
“ACPI Embedded Controller Interface Specification”. Operation region access to the SMBus address space
isdescribed in Section 13, “ACPI System Management Bus Interface Specification”. Operation region
accessto the CMOS. PCIBARTarget. and IPMI address spacesis described in the following sections.

55.2.4.1 CMOS Protocols

This section describes how CMOS battery-backed non-volatile memory can be accessed from ASL. Most
computers contain an RTC/CMOS device that can be represented as alinear array of bytes of non-volatile
memory. There is a standard mechanism for accessing the first 64 bytes of non-volatile RAM in devices
that are compatible with the Motorola RTC/CMOS device used in the original IBM PC/AT. Existing
RTC/CMOS devicestypically contain more than 64 bytes of non-volatile RAM, and no standard
mechanism exists for access to this additional storage area. To provide accessto all of the non-volatile
memory in these devices from AML, PnP IDs exist for each type of extension. These are PNPOBOO,
PNPOBO01, and PNPOBO02. The specific devices that these PnP 1Ds support are described in section 9.16,
“PC/AT RTC/CMOS Device’, along with field definition ASL example code. The drivers corresponding to
these device handle operation region accesses to the CMOS operation region for their respective device
types.

All bytes of CMOS that are related to the current time, day, date, month, year and century are read-only.

5.5.2.4.2 PCI Device BAR Target Protocols

This section describes how PCI devices control registers can be accessed from ASL. PCI devices each
have an address space associated with them called the Configuration Space. At offset 0x10 through offset
0x27, there are as many as six Base Address Registers, (BARS). These BARs contain the base address of a
series of control registers (in 1/0 or Memory space) for the PCl device. Since a Plug and Play OS may
change the values of these BARs at any time, ASL cannot read and write from these deterministically using
1/0O or Memory operation regions. Furthermore, a Plug and Play OS will automatically assign ownership of
the 1/0 and Memory regions associated with these BARs to a device driver associated with the PCI device.
An ACPI OS (which must also be a Plug and Play operating system) will not allow ASL to read and write
regions that are owned by native device drivers.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

168 Advanced Configuration and Power Interface Specification

If aplatform uses a PCl BAR Target operation region, an ACPlI OS will not load a native device driver for
the associated PCI function. For example, if any of the BARs in a PCl function are associated with a PCI
BAR Target operation region, then the OS will assume that the PCI function isto be entirely under the
control of the ACPI BIOS. No driver will be loaded. Thus, a PCI function can be used as a platform
controller for some task (hot-plug PCl, and so on) that the ACPI BIOS performs.

5.5.2.4.2.1 Declaring a PCI BAR Target Operation Region

PCI BARs contain the base address of an I/O or Memory region that a PCI device's control registerslie
within. Each BAR implements a protocol for determining whether those control registers are within 1/O or
Memory space and how much address space the PCI device decodes. (See the PCI Specification for more
details.)

PCl BAR Target operation regions are declared by providing the offset of the BAR within the PCI device's
PCI configuration space. The BAR determines whether the actual access to the device occurs through an
I/0O or Memory cycle, not by the declaration of the operation region. The length of the region is similarly
implied.

Intheterm Qper at i onRegi on(PBAR, Pci Bar Target, 0x10, 0x4), theoffsetisthe offset of the
BAR within the configuration space of the device. This would be an example of an operation region that
usesthefirst BAR in the device.

5.5.2.4.2.2 PCIl Header Types and PCI BAR Target Operation Regions

PCI BAR Target operation regions may only be declared in the scope of PCI devices that have a PCI
Header Type of 0. PCI devices with other header types are bridges. The control of PCI bridgesis beyond
the scope of ASL.

5.5.2.4.3 Declaring IPMI Operation Regions

This section describes the Intelligent Platform Management Interface (IPM1) address space and the use of
this address space to communicate with the Baseboard Management Controller (BMC) hardware from
AML.

Similar to SMBus, IPMI operation regions are command based, where each offset within an IPM| address
space represent an IPM1 command and response pair. Given this uniqueness, IPMI operation regions
include restrictions on their field definitions and require the use of an IPMI-specific data buffer for all
transactions. The IPMI interface presented in this section isintended for use with any hardware
implementation compatible with the IPM| specification, regardless of the system interface type.

Support of the IPMI generic address space by ACPI-compatible operating systemsis optional, and is
contingent on the existence of an ACPI IPMI device, i.e. adevice with the “IPI0001” plug and play ID. If
present, OSPM should load the necessary driver software based on the system interface type as specified by
the IFT (IPMI Interface Type) control method under the device, and register handlers for accesses into the
IPMI operation region space.

For more information, refer to the IPMI specification.

Each IPMI operation region definition identifies asingle IPMI network function. Operation regions are
defined only for those IPMI network functions that need to be accessed from AML. As with other regions,
IPMI operation regions are only accessible via the Field term (see section 5.5.2.4.3.1, “Declaring IPMI
Fields").

Thisinterface models each IPMI network function as having a 256-byte linear address range. Each byte
offset within this range corresponds to a single command value (for example, byte offset OxC1 equatesto
command value 0xC1), with a maximum of 256 command values. By doing this, IPMI address spaces
appear linear and can be processed in a manner similar to the other address space types.

The syntax for the Oper ationRegion term (from section 18.5.89, “OperationRegion (Declare Operation
Region]”) is described below.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 169

Oper at i onRegi on (

Regi onNane, /1 NameString
Regi onSpace, /1 Regi onSpaceKeywor d
O fset, /'l Ter mAr g=>I nt eger
Length /1 Ter mAr g=>I nt eger

)

Where:

e RegionName specifies aname for this IPMI network function (for example, “POWR”").

e RegionSpace must be set to IPM 1 (operation region type value 0x07).

o Offset isaword-sized value specifying the network function and initial command value offset for the
target device. The network function addressis stored in the high byte and the command value offset is
stored in the low byte. For example, the value 0x3000 would be used for a device with the network
function of 0x06, and an initial command value offset of zero (0).

e Lengthisset to the 0x100 (256), representing the maximum number of possible command values, for
regions with an initial command value offset of zero (0). The difference of these two valuesis used for
regions with non-zero offsets. For example, aregion with an Offset value of 0x3010 would have a
corresponding Length of OxFO (0x100 minus 0x10).

For example, a Baseboard Management Controller will support power metering capabilities at the network
function 0x30, and IPMI commands to query the BM C device information at the network function 0x06.

The following ASL code shows the use of the OperationRegion term to describe these IPMI functions:
Device (I PM)
{

Nanme(_HI D, "I Pl 0001") /1 IPM device

Name(_I FT, 0x1) /1 KCS systeminterface type
Oper at i onRegi on(DEVC, | PM, 0x0600, 0x100) /1 Device info network function
Oper at i onRegi on(POAR, | PM, 0x3000, 0x100) /'l Power network function

}

Notice that these operation regions in this example are defined within the immediate context of the
‘owning’ IPMI device. This ensures the correct operation region handler will be used, based on the value
returned by the _IFT object. Each definition corresponds to a separate network function, and happens to use
aninitial command value offset of zero (0).

5.5.2.4.3.1 Declaring IPMI Fields

As with other regions, IPMI operation regions are only accessible viathe Field term. Each field element is
assigned a unique command value and represents a virtual command for the targeted network function.

The syntax for the Field term (from section 18.5.38, “Event (Declare Event Synchronization Object]”) is
described below.

Fi el d(
Regi onNane, /1 NameSt ri ng=>Oper at i onRegi on
AccessType, /'l AccessTypeKeyword - BufferAcc
LockRul e, /1 LockRul eKeywor d
Updat eRul e /1 Updat eRul eKeyword — ignored

) {FieldUnitList}

Where:

e RegionName specifies the operation region name previously defined for the network function.

e AccessType must be set to Buffer Acc. Thisindicates that access to field elements will be done using a
region-specific data buffer. For this access type, the field handler is not aware of the data buffer’s
contents which may be of any size. When afield of thistype is used as the source argument in an
operation it simply evaluates to a buffer. When used as the destination, however, the buffer is passed
bi-directionally to allow data to be returned from write operations. The modified buffer then becomes
the response message of that command. Thisis dlightly different than the normal case in which the

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

170 Advanced Configuration and Power Interface Specification

execution result is the same as the value written to the destination. Note that the source is never
changed, since it only represents a virtual register for a particular IPMI command.

e LockRuleindicatesif accessto this operation region requires acquisition of the Global Lock for
synchronization. This field should be set to L ock on system with firmware that may access the BMC
vialPMI, and NoL ock otherwise.

e UpdateRuleis not applicable to IPMI operation regions since each virtual register is accessed in its
entirety. Thisfield isignored for al IPMI field definitions.

IPMI operation regions require that all field elements be declared at command value granularity. This
means that each virtual register cannot be broken down to itsindividual bits within the field definition.

Access to sub-portions of virtual registers can be done only outside of the field definition. Thislimitation is
imposed both to simplify the IPMI interface and to maintain consistency with the physical model defined
by the IPMI specification.

Since the system interface used for IPMI communication is determined by the IFT object under the IPMI
device, there is no need for using of the AccessAs term within the field definition. In fact its usage will be
ignored by the operation handler.

For example, the register at command value OxC1 for the power meter network function might represent
the command to set a BMC enforced power limit, while the register at command value 0xC2 for the same
network function might represent the current configured power limit. At the same time, the register at
command value 0xC8 might represent the latest power meter measurement.

The following ASL code shows the use of the OperationRegion, Field, and Offset terms to represent these
virtual registers:

Oper ati onRegi on(POAR, | PM, 0x3000, 0x100) /1 Power network function
Fi el d(POAR, BufferAcc, NoLock, Preserve)
{
O fset (0xCl), /1 Skip to command val ue 0xCl
SPW., 8, // Set power limt [conmand val ue OxCl]
GPW, 8, /] Get power limt [conmand val ue O0xC2]
O fset (0xC8), /1 Skip to command val ue 0xC8
GPW 8 /1 Get power neter neasurenent [command val ue 0xC8]

}

Notice that command val ues are equivalent to the field element’ s byte offset (for example, SPWL=0xC1,
GPWL=0xC2, GPMM=0xC8).

5.5.2.4.3.2 Declaring and Using IPMI Request and Response Buffer

Since each virtual register in the IPMI operation region represents an individual IPMI command, and the
operation relies on use of bi-directional buffer, acommon buffer structure is required to represent the
request and response messages. The use of a data buffer for IPMI transactions allows AML to receive
status and data length values.

The IPMI data buffer is defined as a fixed-length 66-byte buffer that, if represented using a‘C'-styled
declaration, would be modeled as follows:

typedef struct

BYTE St at us; // Byte O of the data buffer
BYTE Lengt h; // Byte 1 of the data buffer
BYTE[64] Dat a; /1 Bytes 2 through 65 of the data buffer

Where:

o Satus (byte 0) indicates the status code of a given IPMI command. See section 5.5.2.4.3.3, “1PMI
Status Code,” for more information.

o Length (byte 1) specifies the number of bytes of valid data that exists in the data buffer. VValid Length
values are 0 through 64. Before the operation is carried out, this value represents the length of the
request data buffer. Afterwards, this val ue represents the length of the result response data buffer.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 171

e Data (bytes 2-65) represents a 64-byte buffer, and is the location where actual datais stored. Before
the operation is carried out, this represents the actual request message payload. Afterwards, this
represents the response message payload as returned by the IPM1 command.

For example, the following ASL shows the use of the IPMI data buffer to carry out a command for a power
function. This codeis based on the example ASL presented in section 5.5.2.4.3.1, “Declaring IPMI Fields,”
which lists the operation region and field definitions for relevant IPM| power metering commands.

/* Create the IPM data buffer */

Name(BUFF, Buffer(66){}) /!l Create |PM data buffer as BUFF
Cr eat eByt eFi el d(BUFF, 0x00, STAT) /1 STAT = Status (Byte)

Cr eat eByt eFi el d(BUFF, 0x01, LENG /1 LENG = Length (Byte)

Cr eat eByt eFi el d(BUFF, 0x02, MODE) /1 MODE = Mode (Byte)

Cr eat eByt eFi el d(BUFF, 0x03, RESV) /1l RESV = Reserved (Byte)

St ore(0x2, LENG /! Request message is 2 bytes |ong

St ore(0x1, MODE) /1 Set Mdde to 1

St ore(St ore(BUFF, GPMM), BUFF) /!l Wite the request into the GPMM conmmand,

/1 then read the results

COr eat eByt eFi el d(BUFF, 0x02, CMPC) /1 CMPC
Cr eat eWor dFi el d(BUFF, 0x03, APOW /1 APOW

Conpl eti on code (Byte)
Aver age power neasurenent (Wrd)

| f (LAnd(LEqual (STAT, 0x0), LEqual (CMPC, 0x0))) /'l Successful ?

Ret ur n(APOY /1 Return the average power neasurenent

}

El se

Ret ur n(Ones) /! Return invalid
}

Notice the use of the CreateField primitives to access the data buffer’ s sub-elements (Satus, Length, and
Data), where Data (bytes 2-65) is ‘typecast’ into different fields (including the result completion code).

The example above demonstrates the use of the Store() operator and the bi-directional data buffer to invoke
the actual IPM1 command represented by the virtual register. The inner Store() writes the request message
data buffer to the IPMI operation region handler, and invokes the command. The outer Store() takes the
result of that command and writesit back into the data buffer, this time representing the response message.

5.5.2.4.3.3 IPMI Status Code

Every IPMI command results in a status code returned as the first byte of the response message, contained
in the bi-directional data buffer. This status code can indicate success, various errors, and possibly timeout
from the IPMI operation handler. Thisis necessary because it is possible for certain IPMI commands to
take up to 5 seconds to carry out, and since an AML Store() operation is synchronous by nature, it is
essential to make sure the IPMI operation returns in atimely fashion so as not to block the AML interpreter
in the OSPM.

Note: This status code is different than the IPMI completion code, which is returned as the first byte of the
response message in the data buffer payload. The completion code is described in the complete IPMI
specification.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

172 Advanced Configuration and Power Interface Specification

Table5-50 IPMI Status Codes

Status Code | Name Description

00h IPMI OK I ndicates the command has been successfully completed.

07h IPMI Unknown Indicates failure because of an unknown IPMI error.
Failure

10h IPMI Command Indicates the operation timed out.

Operation Timeout

5.6 ACPI Event Programming Model

The ACPI event programming model is based on the SCI interrupt and General-Purpose Event (GPE)
register. ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this

section.

5.6.1 ACPI Event Programming Model Components

The components of the ACPI event programming model are the following:

e OSPM
FADT

PM1la STS, PM1b STSand PMl1a EN, PM1b EN fixed register blocks
GPEO_BLK and GPE1 BLK register blocks

GPE register blocks defined in GPE block devices

SCI interrupt

ACPI AML code general-purpose event model

ACPI device-specific model events

ACPI Embedded Controller event model

Therole of each component in the ACPI event programming model is described in the following table.

Table5-51 ACPI Event Programming M odel Components

Component Description

OSPM Receives all SCI interruptsraised (receives all SCI events). Either handles the
event or masks the event off and later invokes an OEM-provided control method
to handle the event. Events handled directly by OSPM are fixed ACPI events;
interrupts handled by control methods are general -purpose events.

FADT Specifies the base address for the following fixed register blocks on an ACPI-
compatible platform: PM1x_STSand PM1x_EN fixed registers and the
GPEx_STS and GPEx_EN fixed registers.

PM1x STSand PM1x_STShitsraise fixed ACPI events. WhileaPM1x_STShit is set, if the

PM1x_EN fixed matching PM1x_EN bit is set, the ACPI SCI event is raised.

registers

GPEx_STSand GPEX_STS hits that raise general-purpose events. For every event bit

GPEX_EN fixed implemented in GPEx_STS, there must be a comparable bit in GPEx_EN. Up to

registers 256 GPEX_ST S bits and matching GPEx_EN hits can be implemented. While a

GPEX_STShit is set, if the matching GPEX_EN hit is set, then the general-
purpose SCI event israised.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 173

Component

Description

SCI interrupt

A level-sengitive, shareable interrupt mapped to a declared interrupt vector. The
SCI interrupt vector can be shared with other low-priority interrupts that have a
low freguency of occurrence.

ACPI AML code
general-purpose event
model

A model that allows OEM AML code to use GPEx_STS events. Thisincludes
using GPEx_STS events as “wake” sources as well as other general service events
defined by the OEM (“button pressed,” “thermal event,” “device present/not
present changed,” and so on).

ACPI device-specific

Devicesin the ACPI namespace that have ACPI-specific device IDs can provide

model events additional event model functionality. In particular, the ACPI embedded controller
device provides a generic event model.
ACPI Embedded A model that allows OEM AML code to use the response from the Embedded

Controller event model

Controller Query command to provide general-service event defined by the OEM.

5.6.2 Types of ACPI Events

At the ACPI hardware level, two types of events can be signaled by an SCI interrupt:
1. Fixed ACPI events
2. General-purpose events

In turn, the general -purpose events can be used to provide further levels of eventsto the system. And, asin
the case of the embedded controller, awell-defined second-level event dispatching is defined to make a
third type of typical ACPI event. For the flexibility common in today’ s designs, two first-level general -
purpose event blocks are defined, and the embedded controller construct alows alarge number of
embedded controller second-level event-dispatching tables to be supported. Then if needed, the OEM can
also build additional levels of event dispatching by using AML code on a general -purpose event to sub-
dispatch in an OEM defined manner.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

174 Advanced Configuration and Power Interface Specification

5.6.3 Fixed Event Handling

When OSPM receives afixed ACPI event, it directly reads and handles the event registersitself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see section 4, “ACPI
Hardware Specification.”

Table5-52 Fixed ACPI Events

Event Comment
Power For more information, see the description of the TMR_STS and TMR_EN bhits of the
management PM1x fixed register block in section 4.7.3.1, “PM1 Event Grouping,” as well asthe

timer carry bit
Set.

TMR_VAL register inthe PM_TMR_BLK in section 4.7.3.3, “Power Management
Timer.”

Power button
signa

A power button can be supplied in two ways. One way isto simply use the fixed status
bit, and the other uses the declaration of an ACPI power device and AML codeto
determine the event. For more information about the alternate-device based power
button, see section 4.7.2.2.1.2, Control Method Power Button.”

Notice that during the SO state, both the power and dleep buttons merely notify OSPM
that they were pressed.

If the system does not have a sleep button, it is recommended that OSPM use the power
button to initiate sleep operations as requested by the user.

Sleep button A sleep button can be supplied in one of two ways. One way isto ssimply use the fixed

signal status button. The other way requires the declaration of an ACPI sleep button device and
AML code to determine the event.

RTC aarm ACPI-defines an RTC wake alarm function with a minimum of one-month granularity.
The ACPI status bit for the deviceis optional. If the ACPI status bit is not present, the
RTC status can be used to determine when an alarm has occurred. For more information,
see the description of the RTC_STS and RTC_EN bits of the PM 1x fixed register block
in section 4.7.3.1, “PM1 Event Grouping.”

Wake status The wake status bit is used to determine when the sleeping state has been completed. For
more information, see the description of the WAK_STS and WAK_EN bits of the PM 1x
fixed register block in section 4.7.3.1, “PM1 Event Grouping.”

System bus The bus-master status bit provides feedback from the hardware as to when a bus master

master request cycle has occurred. Thisis necessary for supporting the processor C3 power savings
state. For more information, see the description of the BM_STS bit of the PM 1x fixed
register block in section 4.7.3.1, “PM1 Event Grouping.”

Global release This statusisraised as aresult of the Global Lock protocol, and is handled by OSPM as

status part of Global Lock synchronization. For more information, see the description of the

GBL_STShit of the PM 1x fixed register block in section 4.7.3.1, “PM1 Event
Grouping.” For more information on Global Lock, see section 5.2.10.1, “Global Lock.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 175

5.6.4 General-Purpose Event Handling

When OSPM receives a general -purpose event, it either passes control to an ACPI-aware driver, or uses an
OEM -supplied control method to handle the event. An OEM can implement up to 128 general -purpose
event inputs in hardware per GPE block, each as either alevel or edge event. It is also possible to
implement a single 256-pin block aslong asit’s the only block defined in the system.

An example of a general-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC STSand EC _EN bits are defined to enable OSPM to communicate with an ACPI-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a platform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (1/0 space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.1, “ General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEXx blocks directly, although the source to those eventsis not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event is from a GPEx_BLK STS bit), OSPM does the following:
1. Disablestheinterrupt source (GPEx_BLK EN bit).
2. If an edge event, clears the status bit.
3. Performs one of the following:
e Digpatchesto an ACPI-aware device driver.
e Queues the matching control method for execution.
e Manages awake event using device _PRW objects.
4. If alevel event, clearsthe status bit.
5. Enablesthe interrupt source.

For OSPM to manage the bits in the GPEx_BLK blocks directly:
e Enable bits must be read/write.
e Status bits must be latching.
e Status bits must be read/clear, and cleared by writing a“1” to the status bit.

5.6.4.1 _Exx, Lxx,and _Qxx Methods for GPE Processing

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name\ GPE._TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’ for alevel
event). The event values for status bitsin GPEQ_BLK start at zero (_T00) and end at the

(GPEO BLK_LEN/2) - 1. The event values for status bitsin GPE1 BLK start at GPE1 BASE and end at
GPE1 BASE + (GPE1 BLK_LEN/2)-1. GPEO_BLK_LEN, GPE1 BASE, and GPE1_BLK_LEN are all
defined in the FADT.

The _Qxx methods are used for the Embedded Controller and SMBus (below.)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

176 Advanced Configuration and Power Interface Specification

5.6.4.1.1 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, OSPM uses a naming convention to determine which control
method to queue for execution and how the GPE EQI isto be handled. The GPEx_STS bitsin the
GPEx_BLK areindexed with a number from 0 through FF. The name of the control method to queue for an
event raised from an enable status bit is always of the form_GPE. Txx where xx isthe event valueand T
indicates the event EOI protocol to use (either ‘E’ for edge triggered, or ‘L’ for level triggered). The event
values for status bitsin GPEO_BLK start at zero (_T00), end at the (GPEO_ BLK _LEN/2) - 1, and
correspond to each status bit index within GPEO_BLK. The event values for status bitsin GPE1_BLK are
offset by GPE_BASE and therefore start at GPE1 BASE and end at GPE1 BASE + (GPEL BLK_LEN/
2)-1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPEO_STS bitsto raise the wake event status. In an OEM-provided Definition Block, there must be a
Method declaration that uses the name\ GPE._L 04 or \GPE._E04 to handle the event. An example of a
control method declaration using such a name is the following:

Met hod (_GPE. _L04) { /Il GPE 4 | evel wake handl er
Notify (_SB. PCl O COWD, 2)

The control method performs whatever action is appropriate for the event it handles. For example, if the
event means that a device has appeared in a dot, the control method might acknowledge the event to some
other hardware register and signal a change notify request of the appropriate device object. Or, the cause of
the general -purpose event can result from more then one source, in which case the control method for that
event determines the source and takes the appropriate action.

When a general-purpose event israised from the GPE hit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from O through FF, yielding event codes 01 through
FF. (A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The
name of the control method to queue is aways of the form _Qxx where xx is the number of the query
acknowledged by the embedded controller. An example declaration for a control method that handles an
embedded controller query is the following:

Met hod(_@34) { /1 enbedded controller event for thernal
Notify (_SB. TZO. THML, 0x80)

When an SMBus aarm is handled by the SMBus driver, the SMBus driver uses a similar naming
convention defined by ACPI for the driver to determine the control method to queue for execution. When
an aarmisreceived by the SMBus host controller, it generally receives the SMBus address of the device
issuing the alarm and one word of data. On implementations that use SMBALERT# for natifications, only
the device address will be received. The name of the control method to queueis always of the form _Qxx
where xx is the SMBus address of the device that issued the alarm. The SMBus addressis 7 bits long
corresponding to hex values 0 through 7F, although some addresses are reserved and will not be used. The
control method will always be queued with one argument that contains the word of data received with the
alarm. An exception isthe case of an SMBus using SMBALERT# for notifications, in this case the
argument will be 0. An example declaration for a control method that handles a SMBus alarm follows:

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 177

Met hod(_Q18, 1) { /1 Thernmal sensor device at address 0011 000

/1 Arg0 contains notification value (if any)
/1 Arg0 = 0 if device supports only SMBALERT#

Notify (_SB.TZ0. THML, 0x80)

5.6.4.1.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device.
Such GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific
control method.

In the case of the embedded controller, an OS-native, ACPI-aware driver is given the GPE event for its
device. Thisdriver services the embedded controller device and determines when events are to be reported
by the embedded controller by using the Query command. When an embedded controller event occurs, the
ACPI-aware driver dispatches the requests to other ACPI-aware drivers that have registered to handle the
embedded controller queries or queues control methods to handle each event. If there is no device driver to
handl e specific queries, OEM AML code can perform OEM -specific functions that are customized to each
event on the particular platform by including specific control methods in the namespace to handle these
events. For an embedded controller event, OSPM will queue the control method of the name _QXX, where
XX isthe hex format of the query code. Notice that each embedded controller device can have query event
control methods.

Similarly, for an SMBus driver, if no driver registers for SMBus alarms, the SMBus driver will queue
control methods to handle these. Methods must be placed under the SMBus device with the name _QXX
where XX isthe hex format of the SMBus address of the device sending the alarm.

5.6.4.2 GPE Wake Events

An important use of the general-purpose events isto implement device wake events. The components of the
ACPI event programming model interact in the following way:

e When adevice asserts its wake signal, the general-purpose status event bit used to track that
deviceis set.

e Whilethe corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

o |f the systemis deeping, thiswill cause the hardware, if possible, to transition the system into the
SO state.

e Oncethe system isrunning, OSPM will dispatch the corresponding GPE handler.

e The handler needs to determine which device object has signaled wake and performs a wake
Notify command on the corresponding device object(s) that have asserted wake.

e Inturn OSPM will notify OSPM native driver(s) for each device that will wake its device to
serviceit.

Events that wake may not be intermixed with non-wake (runtime) events on the same GPE input. The only
exception to thisrule is made for the special devices below. Only the following devices are allowed to
utilize a single GPE for both wake and runtime events:

1) Button Devices
e PNPOCOC — Power Button Device
e PNPOCOD — Lid Device
e PNPOCOE — Sleep Button Device
2) PCI Bus Wakeup Event Reporting (PME)
e PNPOAO3 — PCI Host Bridge

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

178 Advanced Configuration and Power Interface Specification

All wake events that are not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) must have individual enable and status bits in order to properly handle the semantics used by
the system.

5.6.4.2.1 Managing a Wake Event Using Device PRW Objects

A device's PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general -purpose status bit from either GPEO_BLK or GPE1_BLK is used as the specific
device' s wake mask. Although the hardware must maintain individual device wake enable bits, the system
can have multiple devices using the same general -purpose event bit by using OEM-specific hardware to
provide second-level status and enable bits. In this case, the OEM AML codeis responsible for the second-
level enable and status bits.

OSPM enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its_PSW control method (which is used to take care of the second-level enables). When the GPE
is asserted, OSPM still executes the corresponding GPE control method that determines which device
wakes are asserted and notifies the corresponding device objects. The native OS driver isthen notified that
its device has asserted wake, for which the driver powers on its device to service it.

If the system isin a deeping state when the enabled GPE hit is asserted the hardware will transition the
system into the SO state, if possible.

5.6.4.2.2 Determining the System Wake Source Using _Wxx Control
Methods

After atransition to the SO state, OSPM may evaluate the SWS object in the\ GPE scope to determine the
index of the GPE that was the source of the transition event. When a single GPE is shared among multiple
devices, the platform provides a_Wxx control method, where xx is GPE index as described in Section
5.6.2.2.3, that allows the source device of the transition to be determined . If implemented, the Wxx

control method must exist in the_ GPE scope or in the scope of a GPE block device.

If _Wxxisimplemented, either hardware or firmware must detect and save the source device as described
in Section 7.3.5, “_SWS (System Wake Source)”. During invocation, the _Wxx control method determines
the source device and issues a Notify(<device>,0x2) on the device that caused the system to transition to
the SO state. If the device uses a bus-specific method of arming for wakeup, then the Notify must be issued
on the parent of the device that hasa_PRW method. The _Wkx method must issue a Notify(<device>,0x2)
only to devices that contain a_PRW method within their device scope. OSPM’s evaluation of the SWS
and _Wxx objectsisindeterminate. As such, the platform must not rely on _SWSor Wxx evaluation to
clear any hardware state, including GPEx_ST S hits, or to perform any wakeup-related actions.

If the GPE index returned by the SWS object is only referenced by asingle PRW object in the system, it
isimplied that the device containing that _ PRW is the wake source. In this casg, it is not necessary for the
platform to provide a_Wkx method.

5.6.5 Device Object Notifications

During normal operation, the platform needs to notify OSPM of various device-related events. These
notifications are accomplished using the Notify operator, which indicates a target device, thermal zone, or
processor object and a notification value that signifies the purpose of the notification. Notification values
from O through Ox7F are common across all device object types. Natification values of 0xC0 and above are
reserved for definition by hardware vendors for hardware specific notifications. Notification values from
0x80 to OxBF are device-specific and defined by each such device. For more information on the Notify
operator, see section 18.5.85, “Notify (Notify).”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 179

Table5-53 Device Object Naotification Values

Value

Description

Bus Check. This notification is performed on a device object to indicate to OSPM that it
needs to perform a Plug and Play re-enumeration operation on the device tree starting
from the point where it has been notified. OSPM will typically perform afull
enumeration automatically at boot time, but after system initialization it is the
responsibility of the ACPI AML code to notify OSPM whenever a re-enumeration
operation is required. The more accurately and closer to the actual change in the device
tree the notification can be done, the more efficient the operating system’ s response will
be; however, it can also be an issue when a device change cannot be confirmed. For
example, if the hardware cannot recognize a device change for a particular location
during a system sleeping state, it issues a Bus Check notification on wake to inform
OSPM that it needs to check the configuration for a device change.

Device Check. Used to notify OSPM that the device either appeared or disappeared. If
the device has appeared, OSPM will re-enumerate from the parent. If the device has
disappeared, OSPM will invalidate the state of the device. OSPM may optimize out re-
enumeration. If _DCK ispresent, then Notify(object,1) is assumed to indicate an undock
request. If the deviceis a bridge, OSPM may re-enumerate the bridge and the child bus.

Device Wake. Used to notify OSPM that the device has signaled its wake event, and that
OSPM needs to notify OSPM native device driver for the device. Thisis only used for
devicesthat support PRW.

Eject Request. Used to notify OSPM that the device should be g ected, and that OSPM
needs to perform the Plug and Play €jection operation. OSPM will run the _EJx method.

Device Check Light. Used to notify OSPM that the device either appeared or
disappeared. If the device has appeared, OSPM will re-enumerate from the device itself,
not the parent. If the device has disappeared, OSPM will invalidate the state of the
device.

Frequency Mismatch. Used to notify OSPM that a device inserted into a slot cannot be
attached to the bus because the device cannot be operated at the current frequency of the
bus. For example, this would be used if a user tried to hot-plug a 33 MHz PCI device
into a dot that was on a bus running at greater than 33 MHz.

Bus M ode Mismatch. Used to notify OSPM that a device has been inserted into aslot or
bay that cannot support the device in its current mode of operation. For example, this
would be used if a user tried to hot-plug a PCI device into a slot that was on a bus
running in PCI-X mode.

Power Fault. Used to notify OSPM that a device cannot be moved out of the D3 state
because of a power fault.

Capabilities Check. This notification is performed on a device object to indicate to
OSPM that it needs to re-evaluate the _OSC control method associated with the device.

Device PLD Check. Used to notify OSPM to reevaluate the PLD object, asthe
Device's connection point has changed.

OxA

Reserved.

0xB

System L ocality Information Update. Dynamic reconfiguration of the system may
cause existing relative distance information to change. The platform sends the System
Locality Information Update notification to a point on a device tree to indicate to OSPM
that it needs to invokethe _SL | objects associated with the System Localities on the
device tree starting from the point notified.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

180 Advanced Configuration and Power Interface Specification

Value

Description

0x0C-0x7F

Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table5-54 Control Method Battery Device Notification Values

Hex value Description

0x80 Battery Status Changed. Used to notify OSPM that the Control Method Battery device
status has changed.

0x81 Battery Information Changed. Used to notify OSPM that the Control Method Battery
device information has changed. This only occurs when a battery is replaced.

0x82 Battery Maintenance Data Status Flags Check. Used to notify OSPM that the Control
Method Battery device battery maintenance data status flags should be checked.

0x83-0xBF | Reserved.

Table5-55 Power Source Object Notification Values

Hex value Description

0x80 Power Sour ce Status Changed. Used to notify OSPM that the power source status has
changed.

0x81 Power Sour ce Information Changed. Used to notify OSPM that the power source
information has changed.

0x82-0xBF | Reserved.

Table5-56 Thermal Zone Object Notification Values

Hex value Description

0x80 Thermal Zone Status Changed. Used to notify OSPM that the thermal zone
temperature has changed.

0x81 Thermal Zone Trip points Changed. Used to notify OSPM that the thermal zone trip
points have changed.

0x82 Device Lists Changed. Used to notify OSPM that the thermal zone device lists (_ALX,
_PSL, TZD) have changed.

0x83 Thermal / Active Cooling Relationship Table Changed. Used to notify OSPM that
valuesin the either the thermal relationship table or the active cooling relationship table
have changed.

0x84-OxBF | Reserved.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 181

Table5-57 Control Method Power Button Notification Values

Hex value Description

0x80 S0 Power Button Pressed. Used to notify OSPM that the power button has been pressed
while the system isin the SO state. Notice that when the button is pressed while the
systemisin the S1-$4 state, a Device Wake notification must be issued instead.

0x81-0xBF | Reserved.

Table5-58 Control Method Sleep Button Notification Values

Hex value Description

0x80 S0 Sleep Button Pressed. Used to notify OSPM that the sleep button has been pressed
while the system isin the SO state. Notice that when the button is pressed while the
systemisin the S1-$4 state, a Device Wake notification must be issued instead.

0x81-0xBF | Reserved.

Table5-59 Control Method Lid Notification Values

Hex value Description

0x80 Lid Status Changed. Used to notify OSPM that the control method lid device status has
changed.

0x81-0xBF | Reserved.

Table5-60 Processor Device Notification Values

Hex value Description

0x80 Performance Present Capabilities Changed. Used to notify OSPM that the number of
supported processor performance states has changed. This notification causes OSPM to
re-evaluate the PPC object. See section 8, “Processor Configuration and Control,” for
more information.

0x81 C States Changed. Used to notify OSPM that the number or type of supported processor
C States has changed. This notification causes OSPM to re-evaluate the _CST aobject.
See section 8, “Processor Configuration and Control,” for more information.

0x82 Throttling Present Capabilities Changed. Used to notify OSPM that the number of
supported processor throttling states has changed. This notification causes OSPM to re-
evaluate the _TPC object. See section 8, “Processor Configuration and Control,” for
more information.

0x83-0xBF | Reserved.

Table5-61 User Presence Device Notification Values

Hex value Description

0x80 User Presence Changed. Used to notify OSPM that a meaningful change in user
presence has occurred, causing OSPM to re-evaluate the _UPD object.

0x81-0xBF | Reserved.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

182 Advanced Configuration and Power Interface Specification

Table5-62 Ambient Light Sensor Device Notification Values

Hex value Description

0x80 AL S Illuminance Changed. Used to notify OSPM that a meaningful change in ambient
light illuminance has occurred, causing OSPM to re-evaluate the AL object.

0x81 AL S Color Temperature Changed. Used to notify OSPM that a meaningful changein
ambient light color temperature or chromaticity has occurred, causing OSPM to re-
evaluatethe ALT and/or _ALC objects.

0x82 AL S Response Changed. Used to notify OSPM that the set of points used to convey the
ambient light response has changed, causing OSPM to re-evaluate the _ALR object.

0x83-0xBF | Reserved.

Table5-63 Power Meter Object Notification Values

Hex value Description

0x80 Power Meter Capabilities Changed. Used to notify OSPM that the power meter
information has changed.

0x81 Power Meter Trip Points Crossed. Used to notify OSPM that one of the power meter
trip points has been crossed.

0x82 Power Meter Hardware Limit Changed. Used to notify OSPM that the hardware limit
has been changed by the platform.

0x83 Power Meter Hardware Limit Enforced. Used to notify OSPM that the hardware limit
has been enforced by the platform.

0x84 Power Meter Averaging Interval Changed. Used to notify OSPM that the power
averaging interval has changed.

0x85-0xBF | Reserved.

Table5-64 Fan Device Notification Values

Hex value Description

0x80 Low Fan Speed. Used to notify OSPM of alow (errant) fan speed. Causes OSPM to re-
evaluate the FSL object.

0x81-0xBF | Reserved.

Table5-65 Memory Device Notification Values

Hex value Description

0x80 Memory Bandwidth L ow Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been reduced by the platform to less than
the low memory bandwidth threshold.

0x81 Memory Bandwidth High Threshold crossed. Used to notify OSPM that bandwidth of
memory described by the memory device has been increased by the platform to greater
than or equal to the high memory bandwidth threshold.

0x82-0xBF | Reserved.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 183

5.6.6 Device Class-Specific Objects

Most device objects are controlled through generic objects and control methods and they have generic
device IDs. These generic objects, control methods, and device | Ds are specified in sections 6, 7, 8, 9, 10,
and 11. Section 5.6.7, “Predefined ACPI Names for Objects, Methods, and Resources,” lists all the generic
objects and control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section
lists these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The table below lists the Plug and Play I Ds defined by the ACPI specification.

Note: Plug and Play IDsthat are not defined by the ACPI specification are defined and described in the
following document:

http://downl oad.microsoft.com/downl oad/5/7/7/577a5684-8a83-43ae-9272-1260a9c20e2/pnp _|egacy.doc

Table5-66 ACPI DevicelDs

Plug and Description
Play ID

PNPOCO08 ACPI. Not declared in ACPI asadevice. ThisID isused by OSPM for the hardware
resources consumed by the ACPI fixed register spaces, and the operation regions used by
AML code. It represents the core ACPI hardware itself.

PNPOAO5 Generic Container Device. A device whose settings are totally controlled by its ACPI
resource information, and otherwise needs no device or bus-specific driver support. This
was originally known as Generic |SA Bus Device. This D should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNPOAOS device's _CRS object must be consumed by the
container itself.

PNPOAO6 Generic Container Device. This device behaves exactly the same as the PNPOA05
device. Thiswas originally known as Extended 1/0 Bus. This D should only be used for
containers that do not produce resources for consumption by child devices. Any system
resources claimed by a PNPOAO6 device's _CRS object must be consumed by the
container itself.

PNPOC09 Embedded Controller Device. A host embedded controller controlled through an ACPI-
aware driver.

PNPOCOA Control Method Battery. A device that solely implements the ACPI Control Method
Battery functions. A device that has some other primary function would use its normal
device ID. ThisID is used when the devices primary function is that of a battery.

PNPOCOB Fan. A device that causes cooling when “on” (DO device state).

PNPOCOC Power Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This deviceis only needed if the power button is not
supported using the fixed register space.

PNPOCOD Lid Device. A device controlled through an ACPI-aware driver that provideslid status
functionality. This deviceisonly needed if thelid state is not supported using the fixed
register space.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-ff260a9c20e2/pnp_legacy.doc

184 Advanced Configuration and Power Interface Specification

Plug and Description

Play ID

PNPOCOE Sleep Button Device. A device controlled through an ACPI-aware driver that provides
power button functionality. This deviceis optional.

PNPOCOF PCI Interrupt Link Device. A device that alocates an interrupt connected to a PCI
interrupt pin. See section 6., “Device Configuration,” for more details.

PNPOC80 Memory Device. This device isa memory subsystem.

ACPI0001 SMBus 1.0 Host Controller. An SMBus host controller (SMB-HC) compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 1.0
Specification.

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 10,
“Power Source Devices.”

ACPI0003 Power Sour ce Device. The Power Source device specified in section 10, “Power Source
Devices.” This can represent either an AC Adapter (on mobile platforms) or afixed
Power Supply.

ACPI0004 Module Device. This device is a container object that acts as a bus node in a namespace.
A Module Device without any of the _CRS, _PRS and _SRS methods behaves the same
way as the Generic Container Devices (PNPOAO5 or PNPOAOG). If the Module Device
containsa_CRS method, only these resources described in the _CRS are available for
consumption by its child devices. Also, the Module Device can support _PRS and _SRS
methodsif _CRS s supported.

ACPI0005 SMBus 2.0 Host Controller. An SMBus host controller (SMB-HC compatible with the
embedded controller-based SMB-HC interface (as specified in section 12.9, “SMBus
Host Controller Interface via Embedded Controller”) and implementing the SMBus 2.0
Specification.

ACPI0006 GPE Block Device. This device alows a system designer to describe GPE blocks
beyond the two that are described in the FADT.

ACPI0007 Processor Device. Thisdevice provides an alternative to declaring processors using the
Processor ASL statement. See section 8.4, “Declaring Processors’, for more details.

ACPI0008 Ambient Light Sensor Device. Thisdevice isan ambient light sensor. See section 9.2,
“Ambient Light Sensor Device’.

ACPI0009 I/OXAPIC Device. Thisdeviceisan 1/0 unit that complies with both the APIC and
SAPIC interrupt models.

ACPIO00A I/0O APIC Device. Thisdeviceisan I/O unit that complies with the APIC interrupt
model.

ACPI000B [/O SAPIC Device. Thisdeviceisan I/O unit that complies with the SAPIC interrupt
model.

ACPI000C Processor Aggregator Device. This device provides a control point for all processorsin
the platform. See section 8.5, “Processor Aggregator Device”.

ACPIO00D Power Meter Device. Thisdevice isa power meter. See section 10.4. “Power Meters’.

ACPIOOOE | Wake Alarm Device. This device is a control method-based wake alarm. See section

9.18. “Wake Alarm Device”.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 185

5.6.7 Predefined ACPI Names for Objects, Methods, and Resources

The following table summarizes the predefined names for the ACPI namespace objects, control methods,
and resource descriptor fields defined in this specification. Provided for each name is a short description
and a reference to the section number and page number of the actual definition of the name. ACPI names

that are predefined by other specifications are also listed along with their corresponding specification

reference.
Note: All

names that begin with an underscore are reserved for ACPI use only.

Table5-67 Predefined ACPI Names

Name | Description Section Page
_ACx Active Cooling — returns the active cooling policy threshold values. 1141 422
_ADR | Address— (1) returnsthe address of a device on its parent bus. 6.1.1 200
(2) returns aunique ID for the display output device. B.6.1 704
(3) resource descriptor field. 18.1.8 552
_ALC | Ambient Light Chromaticity — returns the ambient light color chromaticity. 9.24 337
_ALI Ambient Light Illuminance — returns the ambient light brightness. 9.22 337
_ALN | Alignment — base alignment, resource descriptor field. 18.1.8 552
_ALP Ambient Light Polling — returns the ambient light sensor polling frequency. 9.2.6 342
_ALR | Ambient Light Response — returns the ambient light brightness to display 9.25 338
brightness mappings.
_ALT Ambient Light Temperature — returns the ambient light color temperature. 9.2.3 337
_ALx Active List —returnsalist of active cooling device objects. 11.4.2 422
_ART | Active cooling Relationship Table — returns thermal relationship information | 11.4.3 423
between platform devices and fan devices.
_AS Address Space I d — resource descriptor field. 18.1.8 552
_ASz Access Size — resource descriptor field. 18.1.8 552
_ATT Type-Specific Attribute — resource descriptor field. 18.1.8 552
_BAS | Base Address— range base address, resource descriptor field. 18.1.8 552
_BBN | Bios Bus Number — returns the PCI bus number returned by the BIOS. 6.5.5 279
_BCL Brightness Control Levels—returnsalist of supported brightness control B.6.2 704
levels.
_BCM | Brightness Control Method — sets the brightness level of the display device. B.6.3 704
_BCT Battery Charge Time — returns time remaining to compl ete charging battery. 10.2.29 395
_BDN | Bios Dock Name — returns the Dock 1D returned by the BIOS. 6.5.3 277
_BFS Back Erom Sleep —inform AML of awake event. 731 296
_BIF Battery | nformation — returns a Control Method Battery information block. 10.2.2.1 387
_BIX Battery | nformation Extended — returns a Control Method Battery extended 10.2.2.2 388
information block.
_BLT Battery Level Threshold — set battery level threshold preferences. 9.1.3 335
_BM Bus Master — resource descriptor field. 18.1.8 552

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

186 Advanced Configuration and Power Interface Specification

Table5-67 Predefined ACPI Names

Name | Description Section Page
_BMA | Battery Measurement Averaging Interval — Sets battery measurement 10.2.24 392
averaging interval.
_BMC | Battery Maintenance Control — Sets battery mai ntenance and control 10.2.2.11 | 397
features.
_BMD | Battery Maintenance Data — returns battery maintenance, control, and state 10.2.2.10 | 395
data.
_BMS | Battery Measurement Sampling Time — Sets the battery measurement 10.2.25 392
sampling time.
_BQC | Brightness Query Current — returns the current display brightnesslevel. B.6.4 705
_BST Battery Status — returns a Control Method Battery status block. 10.2.2.6 393
_BTM | Battery Time — returns the battery runtime. 10.2.2.8 394
_BTP Battery Trip Point — sets a Control Method Battery trip point. 10.2.2.7 394
_CBA | Configuration Base Address — setsthe CBA for a PCl Express host bridge.
See the PCI Firmware Specification, Revision 3.0 at http://pcisig.com
_CDM | Clock Domain —returns alogica processor’s clock domain identifier. 6.2.1 211
_CID Compatible 1D —returns adevice' s Plug and Play Compatible ID list. 6.1.2 201
_CRS Current Resource Settings — returns the current resource settings for adevice. | 6.2.2 212
_CRT Critical Temperature — returns the shutdown critical temperature. 1144 425
_CsD C State Dependencies —returns alist of C-state dependencies. 8.4.2.2 318
_CsT C States—returns alist of supported C-states. 84.21 316
_DCK | Dock — sets docking isolation. Presence indicates device is a docking station. | 6.5.2 277
_DCS | Display Current Status — returns status of the display output device. B.6.6 705
_DDC | Display Data Current — returns the EDID for the display output device. B.6.5 705
_DDN | Dos Device Name — returns a device logical name. 6.1.3 201
_DEC | Decode — device decoding type, resource descriptor field. 18.1.8 552
_DGS | Display Graphics State — return the current state of the output device. B.6.7 706
_DIS Disable — disables adevice. 6.2.3 212
DMA | Direct I/I_emory Access — returns a device's current resources for DMA 6.2.4 212
transactions.
_DOD | Display Qutput Devices — enumerate all devices attached to the display B.4.2 698
adapter.
_DOS | Disable Qutput Switching — sets the display output switching mode. B.4.1 697
_DSM | Device Specific Method — executes device-specific functions. 9.14.1 366
_DSS Device Set State — sets the display device state. B.6.8 706
_DSW | Device Sleep Wake — sets the sleep and wake transition states for a device. 721 287
_DTI Device Temperature | ndication — conveys native device temperature to the 1145 425
platform.
_Exx Edge GPE — method executed as a result of a general-purpose event. 5.6.4.1 175
_EC Embedded Controller — returns EC offset and query information. 12.12 463

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 187

Table5-67 Predefined ACPI Names

Name | Description Section Page

_EDL Eject Device List —returns alist of devicesthat are dependent on a device 6.3.1 241
(docking).

_EJD Ejection Dependent Device — returns the name of dependent (parent) device 6.3.2 241
(docking).

_EX Eject —begin or cancel adevice gection request (docking). 6.3.3 243

_FDE Eloppy Disk Enumerate — returns floppy disk configuration information. 9.9.1 350

_FDI FEloppy Drive Information — returns a floppy drive information block. 9.9.2 351

_FDM | Eloppy Drive Mode — sets a floppy drive speed. 9.9.3 352

_FIF Ean | nformation — returns fan device information. 11311 417

_FIX Fixed Register Resource Provider — returns alist of devices that implement 6.2.5 215
FADT register blocks.

_FPS Ean Performance States —returns a list of supported fan performance states. 11.3.1.2 418

_FSL Ean Set Level — Control method that sets the fan device's speed level 11.3.1.3 420
(performance state).

_FST Fan Status — returns current status information for afan device. 11.3.14 420

_GAI Get Averaging | nterval — returns the power meter averaging interval. 10.4.5 403

_GHL | Get Hardware Limit — returns the hardware limit enforced by the power 10.4.7 404
meter.

_GL Global Lock — OS-defined Global Lock mutex object. 57.1 193

_GLK | Global Lock —returnsadevice's Global Lock requirement for device access. | 6.5.7 281

_GPD | Get Post Data — returns the value of the VGA device that will be posted at B.4.4 702
boot.

_GPE General Purpose Events — (1) predefined Scope (\ GPE.) 531 162
(2) Returns the SCI interrupt associated with the Embedded Controller. 1211 462

_GRA | Granularity — address space granularity, resource descriptor field. 18.1.8 552

_GSB Global System Interrupt Base — returns the GSB for a|/O APIC device. 6.2.6 216

_GTF Get Task File—returnsalist of ATA commands to restore adrive to default 9.8.1.1 345
state.

_GTM | Get Timing Mode —returns alist of IDE controller timing information. 9.8.21.1 | 347

_GTS | Going To Sleep —inform AML of pending sleep. 733 297

_HE High-Edge — interrupt triggering, resource descriptor field. 18.1.8 552

_HID Hardware | D — returns adevice’ s Plug and Play Hardware ID. 6.1.4 202

_HOT | Hot Temperature — returns the critical temperature for sleep (entry to $4). 11.4.6 425

_HPP Hot Plug Parameters —returns alist of hot-plug information for a PCI device. | 6.2.7 217

_HPX Hot Plug Parameter Extensions — returns alist of hot-plug information fora | 6.2.8 219
PCI device. Supersedes HPP.

_IFT IPMI Interface Type. See the Intelligent Platform Management Interface
Specification at http://www.intel.com/design/servers/ipmi/index.htm

_INI Initialize — performs device specific initialization. 6.5.1 276

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

188 Advanced Configuration and Power Interface Specification

Table5-67 Predefined ACPI Names

Name | Description Section Page
_INT Interrupts — interrupt mask bits, resource descriptor field. 18.1.8 552
_IRC Inrush Current — presence indicates that a device has a significant inrush 7.2.13 292
current draw.
_Lxx Level GPE — Control method executed as aresult of a general-purpose event. | 5.6.4.1 175
_LCK Lock — locks or unlocks a device (docking). 6.34 243
_LEN Length — range length, resource descriptor field. 18.1.8 552
_LID Lid — returns the open/closed status of the lid on a mobile system. 94.1 343
LL Low Level —interrupt polarity, resource descriptor field. 18.1.8 552
_MAF | Maximum Address Fixed — resource descriptor field. 18.1.8 552
_MAT | Multiple Apic Table Entry —returns alist of MADT APIC structure entries. 6.2.9 224
_MAX | Maximum Base Address — resource descriptor field. 18.1.8 552
_MBM | Memory Bandwidth Monitoring Data — returns bandwidth monitoring data 9.122.1 358
for a memory device.
_MEM | Memory Attributes — resource descriptor field. 18.1.8 552
_MIF Minimum Address Fixed — resource descriptor field. 18.1.8 552
_MIN Minimum Base Address — resource descriptor field. 18.1.8 552
_MLS | Multiple Language String — returns a device description in multiple 6.1.5 202
languages.
_MSG | Message — sets the system message waiting status indicator. 9.1.2 335
_MSM | Memory Set Monitoring — sets bandwidth monitoring parameters for a 9.12.2.2 359
memory device.
_MTP | Memory Type — resource descriptor field. 18.1.8 552
_NTT Notification Temperature Threshold — returns a threshold for device 11.4.7 426
temperature change that requires platform notification.
_OFF Off — sets a power resource to the off state. 7.1.2 284
_ON On — sets a power resource to the on state. 7.1.3 285
_0s Operating System — returns a string that identifies the operating system. 57.3 196
_0OSC | Operating System Capabilities—inform AML of host features and 6.2.10 225
capabilities.
_0sl Operating System | nterfaces — returns supported interfaces, behaviors, and 5.7.2 193
features.
_OsT Ospm Status | ndication —inform AML of event processing status. 6.3.5 244
_PAI Power Averaging I nterval — sets the averaging interval for a power meter. 10.4.4 403
_PCL Power Consumer List —returns alist of devices powered by a power source. 10.3.2 399
_PCT Eer_formance Control —returns processor performance control and status 8.4.4.1 327
registers.
_PDC | Processor Driver Capabilities—inform AML of processor driver capabilities. | 8.4.1 314
_PDL P-state Depth Limit — returns the lowest available performance P-state. 8.4.4.6 332
_PIC PIC —inform AML of the interrupt model in use. 581 197

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 189

Table5-67 Predefined ACPI Names

Name | Description Section Page

_PIF Power Source Information — returns a Power Source information block. 10.3.3 399

_PLD Physical Device Location — returns adevice' s physical location information. | 6.1.6 203

_PMC | Power Meter Capabilities—returnsalist of Power Meter capabilitiesinfo. 1041 400

_PMD | Power Metered Devices—returns alist of devicesthat are measured by the 10.4.8 404
power meter device.

_PMM | Power Meter Measurement — returns the current value of the Power Meter. 10.4.3 403

_PPC Performance Present Capabilites— returns alist of the performance states 8.4.4.3 328
currently supported by the platform.

_PPE Polling for Platform Error — returns the polling interval to retrieve Corrected | 8.4.5 333
Platform Error information.

_PR Processor — predefined scope for processor objects. 531 162

_PRO Power Resources for DQ —returns alist of dependent power resources to 727 289
enter state DO (fully on).

_PR1 Power Resourcesfor D1 —returns alist of dependent power resources to 7.2.8 289
enter state D1.

_PR2 Power Resources for D2 —returns alist of dependent power resources to 7.29 290
enter state D2.

_PR3 Power Resources for D3hot — returns alist of dependent power resources to 7.2.10 290
enter state D3hot.

_PRL Power Source Redundancy List —returns alist of power source devicesinthe | 10.3.4 400
same redundancy grouping.

_PRS Possible Resource Settings — returns alist of a device's possible resource 6.2.11 233
settings.

_PRT Pci Routing Table —returns alist of PCI interrupt mappings. 6.2.12 233

_PRW | Power Resources for Wake — returns alist of dependent power resources for 7.2.11 290
waking.

PO Power State 0 — sets a device' s power state to DO (device fully on). 7.2.2 287

_Ps1 Power State 1 — setsa device' s power stateto D1. 7.2.3 288

_Ps2 Power State 2 — sets a device's power state to D2. 724 288

_PSs3 Power State 3 — setsa device's power state to D3 (device off). 7.25 288

_PSC Power State Current — returns a device's current power state. 7.2.6 288

_PSD Processor State Dependencies — returns processor P-State dependencies. 8.4.45 330

_PSL Passive List —returns alist of passive cooling device objects. 11.4.8 426

_PSR Power Source — returns the power source device currently in use. 10.31 398

_PSSs Performance Supported States — returns alist of supported processor 8.4.4.2 327
performance states.

_Psv Passive — returns the passive trip point temperature. 11.4.9 426

_PSW | Power State Wake — sets a device's wake function. 7.2.12 291

PTC Processor Throttling Control — returns throttling control and statusregisters. | 8.4.3.1 320

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

190 Advanced Configuration and Power Interface Specification

Table5-67 Predefined ACPI Names

Name | Description Section Page

_PTP Power Trip Points— sets trip points for the Power Meter device. 10.4.2 402

_PTS Prepare To Sleep — inform the platform of an impending sleep transition. 7.3.2 297

_PUR | Processor Utilization Request — returns the number of processors that the 85.1.1 334
platform would liketo idle.

_PXM | Proximity — returns a device's proximity domain identifier. 6.2.13 236

_OQxx Query — Embedded Controller query and SMBus Alarm control method. 5.6.4.1 175

_RBO | Register Bit Offset — resource descriptor field. 18.1.8 552

_RBW | Register Bit Width — resource descriptor field. 18.1.8 552

_REG | Region—inform AML code of an operation region availability change. 6.5.4 277

_REV Revision —returns the revision of the ACPI specification that isimplemented. | 5.7.4 197

_RMV | Remove —returns adevice’' s removal ability status (docking). 6.3.6 248

_RNG | Range—memory range type, resource descriptor field. 18.1.8 552

_ROM | Read-Only Memory — returns a copy of the ROM data for a display device. B.4.3 701

_RT Resource Type — resource descriptor field. 18.1.8 552

_RTV Relative Temperature Values — returns temperature value information. 11.4.10 426

_RW Read-Write Status — resource descriptor field. 18.1.8 552

S0 S0 System State — returns values to enter the system into the SO state. 7341 300

_S1 S1 System State — returns values to enter the system into the S1 state. 7.34.2 300

2 S2 System State — returns values to enter the system into the S2 state. 7343 300

_S3 S3 System State — returns values to enter the system into the S3 state. 7344 301

A A System State — returns values to enter the system into the 4 state. 7.345 301

S5 S5 System State — returns values to enter the system into the S5 state. 7.3.4.6 302

_S1D S1 Device Sate — returns the highest D-state supported by a device when in 7.2.14 292
the S1 state.

_S2D S2 Device Sate — returns the highest D-state supported by a device when in 7.2.15 293
the S2 state.

_S3D S3 Device Sate — returns the highest D-state supported by a device when in 7.2.16 293
the S3 state.

_$AD 4 Device Sate — returns the highest D-state supported by a device when in 7.2.17 294
the 4 state.

_SOW | S0 Device Wake Sate —returns the lowest D-state that the device can wake 7.2.18 295
itself from SO.

_SIW | Sl Device Wake Sate — returns the lowest D-state for this device that can 7.2.19 295
wake the system from S1.

_S2W | S2 Device Wake Sate — returns the lowest D-state for this device that can 7.2.20 295
wake the system from S2.

_S3W | S3 Device Wake Sate —returns the lowest D-state for this device that can 7.2.21 295
wake the system from S3.

_SAW | HA Device Wake Sate —returns the lowest D-state for this device that can 7.2.22 296

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 191

Table5-67 Predefined ACPI Names

Name | Description Section Page
wake the system from $4.
_SB System Bus — scope for device and bus objects. 531 162
_SBS Smart Battery Subsystem — returns the subsystem configuration. 10.1.3 382
_SCP Set Cooling Policy — sets the cooling policy (active or passive). 11.4.11 427
_SDD Set Device Data — sets datafor a SATA device. 9.8.331 | 350
_SEG Segment — returns a device's PCI Segment Group number. 6.5.6 279
_SHL Set Hardware Limit — sets the hardware limit enforced by the Power Meter. 10.4.6 404
_SHR Sharable — interrupt share status, resource descriptor field. 18.1.8 552
_S System | ndicators — predefined scope. 531 162
Sz Size— DMA transfer size, resource descriptor field. 18.1.8 552
_SLI System Locality | nformation — returns alist of NUMA system localities. 6.2.14 236
_SPD Set Post Device — sets which video device will be posted at boot. B.4.5 702
_SRS Set Resource Settings — sets a device' s resource allocation. 6.2.15 239
_SRV IPMI Spec Revision. See the Intelligent Platform Management Interface
Specification at http://www.intel.com/design/servers/ipmi/index.htm
_SST System Status — sets the system status indicator. 9.1.1 335
_STA Status— (1) returns the current status of adevice. 6.3.7 248
(2) Returnsthe current on or off state of a Power Resource. 714 285
_ST™M Set Timing Mode — sets an I DE controller transfer timings. 9.8.21.2 | 348
_STP Set Expired Timer Wake Policy — sets expired timer policies of the wake 9.18.2 375
alarm device.
_STR String — returns a device' s description string. 6.1.7 209
_STV Set Timer Value — set timer values of the wake alarm device. 9.18.3 376
_SUN Slot User Number — returns the slot unique 1D number. 6.1.8 210
_SWS | System Wake Source — returns the source event that caused the system to 7.35 302
wake.
T X Temporary — reserved for use by ASL compilers. 18.21.1 558
_TC1 Thermal Constant 1 — returns TC1 for the passive cooling formula. 11.4.12 429
_TC2 Thermal Constant 2 — returns TC2 for the passive cooling formula. 11.4.13 430
_TDL T-Sate Depth Limit — returns the _TSS entry number of the lowest power 8.4.35 326
throttling state.
_TIP Expired Timer Wake Policy —returns timer policies of the wake alarm device. | 9.18.5 376
_TIvV Timer Values — returns remaining time of the wake alarm device. 9.184 376
_TMP | Temperature —returns athermal zone’s current temperature. 11.4.14 430
_TPC Throttling Present Capabilities — returns the current number of supported 8.4.3.3 322
throttling states.
_TPT Trip Point Temperature — inform AML that a devices' embedded temperature | 11.4.15 430

sensor has crossed a temperature trip point.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

192 Advanced Configuration and Power Interface Specification

Table5-67 Predefined ACPI Names

Name | Description Section Page

_TRA Translation — address trandlation offset, resource descriptor field. 18.1.8 552

_TRS Translation Sparse — sparse/dense flag, resource descriptor field. 18.1.8 552

_TRT Thermal Relationship Table — returns thermal relationships between platform | 11.4.16 430
devices.

_TSD Throttling State Dependencies — returns a list of T-state dependencies. 8.4.34 323

_TSF Type-Specific Flags — resource descriptor field. 18.1.8 552

_TSP Thermal Sampling Period — returns the thermal sampling period for passive 11.4.17 431
cooling.

_TSS Throttling Supported States — returns supported throttling state information. 8.4.3.2 321

_TST Temperature Sensor Threshold — returns the minimum separation for a 11.4.18 431
device' stemperature trip points.

_TTP Trandlation Type — trandlation/static flag, resource descriptor field. 18.1.8 552

\ TTS | Transition To State—inform AML of an S-state transition. 7.3.6 303

_TYP | Type— DMA channel type (speed), resource descriptor field. 18.1.8 552

VA Thermal Zone — predefined scope: ACPI 1.0. 531 162

_TzD Thermal Zone Devices—returns alist of device names associated with a 11.4.19 432
Thermal Zone.

_TZM | Thermal Zone Member — returns a reference to the thermal zone of which a 11.4.20 432
deviceisamember.

_TZP Thermal Zone Polling — returns a Thermal zone's polling frequency. 11421 432

_UID Unique ID — return a device' s unique persistent ID. 6.1.9 210

_UPC | USB Port Capabilities—returns alist of USB port capabilities. 9.13 360

_UPD | User Presence Detect — returns user detection information. 9.16.1 372

_UPP User Presence Poalling — returns the recommended user presence polling 9.16.2 372
interval.

_VPO | Video Post Options — returns the implemented video post options. B.4.6 703

\ WAK | Wake —inform AML that the system has just awakened. 7.3.7 303

Wxx Wake Event — method executed as aresult of a wake event. 5.6.4.22 | 178

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 193

5.7 Predefined Objects

The AML interpreter of an ACPI compatible operating system supports the evaluation of a number of
predefined objects. The objects are considered “built in” to the AML interpreter on the target operating
system.

A list of predefined object names are shown in the following table.
Table5-68 Predefined Object Names

Name [Description
\ GL Global Lock mutex

\ OS Name of the operating system

\ OSl Operating System I nterface support

\ REV | Revision of the ACPI specification that isimplemented

5.7.1 \ GL (Global Lock Mutex)

This predefined object is a Mutex object that behaves like a Mutex as defined in section 18.5.79, “Mutex
(Declare Synchronization/M utex Object),” with the added behavior that acquiring this Mutex also acquires
the shared environment Global Lock defined in section 5.2.10.1, “Global Lock.” This allows Control
Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 _OSI (Operating System Interfaces)

This object provides the platform with the ability to query OSPM to determine the set of ACPI related
interfaces, behaviors, or features that the operating system supports.

The _OSI method has one argument and one return value. The argument is an OS vendor defined string
representing a set of OS interfaces and behaviors or an ACPI defined string representing an operating
system and an ACPI feature group of the form, “OSVendor Sring-FeatureGroupString”.

Arguments: (1)
Arg0— A String containing the OS interface / behavior compatibility string or the Feature Group

string, as defined in Table 5-70, or the “OS Vendor String Prefix — OS Vendor Specific
String”. OS Vendor String Prefixes are defined in Table 5-69

Return Value:
An Integer containing a Boolean that indicates whether the requested feature is supported:
0x0 — Theinterface, behavior, or feature is not supported

OxFFFFFFFF — Theinterface, behavior, or feature is supported

OSPM may indicate support for multiple OS interface / behavior strings if the operating system supports
the behaviors. For example, a newer version of an operating system may indicate support for strings from
all or some of the prior versions of that operating system.

_Osl provides the platform with the ability to support new operating system versions and their associated
features when they become available. OSPM can choose to expose new functionality based onthe OSl
argument string. That is, OSPM can use the strings passed into _OSI to ensure compatibility between older
platforms and newer operating systems by maintaining known compatible behavior for a platform. As such,
it isrecommended that _OSI be evaluated by the\ SB.INI control method so that platform compatible
behavior or features are available early in operating system initialization.

Since feature group functionality may be dependent on OSPM implementation, it may be required that OS
vendor-defined strings be checked before feature group strings.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

194 Advanced Configuration and Power Interface Specification

Platform devel opers should consult OS vendor specific information for OS vendor defined strings
representing a set of OS interfaces and behaviors. ACPI defined strings representing an operating system
and an ACPI feature group are listed in the following tables.

Table5-69 Operating System Vendor Strings

Operating System Vendor String Prefix Description

“FreeBSD” FreeBSD

“HP-UX” HP Unix Operating Environment
“Linux” GNU/Linux Operating system
“OpenVMS’ HP OpenVMS Operating Environment
“Windows’ Microsoft Windows

Table5-70 Feature Group Strings

Feature Group String

Description

“Module Device’

OSPM supports the declaration of module device (ACPI0004) in the
namespace and will enumerate objects under the module device scope.

“Processor Device’

OSPM supports the declaration of processors in the namespace using the
ACPI0007 processor device HID.

“3.0 Thermal Model”

OSPM supports the extensions to the ACPI thermal model in Revision
3.0.

“Extended Address Space
Descriptor”

OSPM supports the Extended Address Space Descriptor

“3.0 _SCP Extensions’

OSPM evaluates _SCP with the additional acoustic limit and power limit
arguments defined in ACPI 3.0.

“Processor Aggregator
Device”

OSPM supports the declaration of the processor aggregator device in the
namespace using the ACPI000C processor aggregator device HID.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 195

_ 0S| Example ASL using OS vendor defined string:
Scope (_SB) /| Scope
Name (TOCS, 0) // dobal variable for type of CS.

/1 This nmethods sets the "TOOS" variabl e depending on the type of OS
/1 installed on the system

/] TOOS =1 // Wndows 98 & SE

/1l TOOS = 2 /1 W ndows Me.

/1l TOOS = 3 /1 W ndows 2000 GS or above version.
/1l TOOS = 4 /1 W ndows XP OS or above version.
Met hod (_INI)

If (CondRef O (_OsI, Local 0))
If (_OSI ("Wndows 2001"))

Store(4, TOOS)

}
}
El se
{
Store (_OS, local0)
If (LEqual (local0, "Mcrosoft Wndows NT"))
Store (3, TOOS)
}
El sel f (LEqual (LocalO, "M crosoft Wndows"))
Store (1, TOOS)
}
El sel f (LEqual (LocalO, "M crosoft WndowsME: M Il ennium Edition"))
Store (2, TOOS)
}
}

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

196 Advanced Configuration and Power Interface Specification

_ 0S| Example ASL using an ACPI defined string:

Scope (_SB) {

Method (_INI) {

If (CondRefOf (_OSI, Local 0)) {

If (_OSI ("Mdule Device")) {
/| Expose PCl Root Bridge under Modul e Device
LoadTabl e(“ CEML", “CEM D', “Tablel",,,)}

El se {
/'l Expose PClI Root Bridge under _SB — OS does not support Modul e Device
LoadTabl e(“CEML", “CEM D', “Table2",,,)}

}
El se {
/1 Default Behavior
LoadTabl e(“CEML", “CEM D', “Table2",,,)}
} //_INl Method
} /1 _SB scope

DefinitionBl ock (“MDLSSDT.am ", “CEML", 0x02,
“CEM D', "Tablel", 0) {
Scope(_SB) {
Devi ce (_SB. NODO) ({
Narme (_HI D, "ACPI0004") // Modul e device
Namre (_UI D, 0)
Name (_PRS, ResourceTenmplate() {...})
Method (_SRS, 1) {...}
Method (_CRS, 0) {...}
Device (PCI0O) { // PCl Root Bridge
Narme (_HI D, ElI SAI D("PNP0OA03"))
Namre (_UI D, 0)
Nare (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {...})
} /1 end of PCl Root Bridge
} /1 end of Modul e device
} /1 end of _SB Scope
} // end of Definition Block

DefinitionBl ock (“MDLSSDT.am ", “CEML", 0x02,
“CEM D', "Table2", 0) {
Scope(_SB) {
Device (PCI0O) { // PCl Root Bridge
Narme (_HI D, EI SAI D("PNP0OA03"))
Namre (_UI D, 0)
Narre (_BBN, 0x00)
Name (_PRS, ResourceTemplate () {...})
} /1 end of PClI Root Bridge
} /1 end of _SB Scope
} // end of Definition Block

5.7.3 _OS (OS Name Object)

This predefined object evaluates to a string that identifies the operating system. In robust OSPM
implementations, \ OS evaluates differently for each OS release. This may allow AML codeto
accommodate differencesin OSPM implementations. This value does not change with different revisions
of the AML interpreter.

Arguments:
None

Return Value:
A String containing the operating system name

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

ACPI Software Programming Model 197

5.7.4 \ REV (Revision Data Object)

This predefined object evaluatesto the revision of the ACPI Specification that the specified\ OS
implements as a DWORD. Larger values are newer revisions of the ACPI specification.

Arguments:
None

Return Value:
An Integer containing the revision of the currently executing ACPI implementation

5.8 System Configuration Objects

5.8.1 _PIC Method

The\ PIC optional method is used to report to the BIOS the current interrupt model used by the OS. This
control method returns nothing. The argument passed into the method signifies the interrupt model OSPM
has chosen, PIC mode, APIC mode, or SAPIC mode. Notice that calling this method is optional for OSPM.
If the method is never called, the BIOS must assume PIC mode. It isimportant that the BIOS save the value
passed in by OSPM for later use during wake operations.

Arguments: (1)
Arg0—An Integer containing a code for the current interrupt model:
0-— PIC mode
1- APIC mode
2- SAPIC mode
Other values— Reserved
Return Value:
None

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

198 Advanced Configuration and Power Interface Specification

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 199

6 Device Configuration

This section specifies the objects OSPM uses to configure devices. There are three types of configuration

objects:

e Deviceidentification objects associate platform devices with Plug and Play IDs.

e Device configuration objects declare and configure hardware resources and characteristics for devices
enumerated via ACPI.

e Deviceinsertion and removal objects provide mechanisms for handling dynamic insertion and removal
of devices.

This section also defines the ACPI device—resource descriptor formats. Device-resource descriptors are
used as parameters by some of the device configuration objects.

6.1 Device Identification Objects

Device identification objects associate each platform device with a Plug and Play device ID for each
device. All the device identification objects are listed Table 6-1.

Table6-1 Device ldentification Objects

Object Description

_ADR Object that evaluates to a device's address on its parent bus.

_CID Object that evaluates to a device's Plug and Play-compatible ID list.
_DDN Object that associates alogical software name (for example, COM1) with a device.
_HID Object that evaluatesto adevice's Plug and Play hardware ID.

_MLS Object that provides a human readabl e description of a device in multiple languages.

_PLD Object that provides physical location description information.

_SUN Object that evaluates to the slot-unique ID number for adot.

_STR Object that contains a Unicode identifier for adevice.

_UID Object that specifies a device’ s unique persistent 1D, or a control method that generates it.

For any device that is not on an enumerable type of bus (for example, an ISA bus), OSPM enumerates the
devices' Plug and Play ID(s) and the ACPI BIOS must supply an_HID object (plus an optional _CID
object) for each device to enable OSPM to do that. For devices on an enumerable type of bus, such asaPCl
bus, the ACPI system must identify which device on the enumerable busis identified by a particular Plug
and Play ID; the ACPI BIOS must supply an _ADR object for each device to enable this. A device object
must contain either an _HID object or an _ADR object, but can contain both.

If any of these objects are implemented as control methods, these methods may depend on operation
regions. Since the control methods may be eval uated before an operation region provider becomes
available, the control method must be structured to execute in the absence of the operation region provider.
(_REG methods notify the BIOS of the presence of operation region providers.) When a control method
cannot determine the current state of the hardware due to alack of operation region provider, it is
recommended that the control method should return the condition that was true at the time that control
passed from the BIOS to the OS. (The control method should return a default, boot value).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

200 Advanced Configuration and Power Interface Specification

6.1.1 _ADR (Address)

Thisobject is used to supply OSPM with the address of a device on its parent bus. An _ADR object must
be used when specifying the address of any device on a bus that has a standard enumeration algorithm (see
3.7, “Configuration and Plug and Play”, for the situations when these devices do appear in the ACPI
namespace).

Arguments:
None

Return Value:
An Integer containing the address of the device

An_ADR object can be used to provide capabilities to the specified address even if adeviceis not present.
This allows the system to provide capabilities to a ot on the parent bus.

OSPM infers the parent bus from the location of the _ADR object’ s device package in the ACPI
namespace. For more information about the positioning of device packagesin the ACPI namespace, see
section 18.5.28, “ Device (Declare Bus/Device Package)”

_ADR object information must be static and can be defined for the following bus types listed in Table 6-2.
Table6-2 _ADR Object Address Encodings

BUS Address Encoding
EISA EISA slot number 0-F
Floppy Bus Drive select values used for programming the floppy controller to access the specified

INT13 unit number. The _ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller O0—Primary Channel, 1-Secondary Channel

IDE Channel 0—Master drive, 1-Slave drive

Intel® High High word — SDI (Seria DataIn) ID of the codec that contains the function group.

Definition Audio | | ow word — Node 1D of the function group.

PCI High word-Device #, Low word—Function #. (for example, device 3, function 2 is
0x00030002). To refer to al the functions on a device #, use a function number of
FFFF).

PCMCIA Socket #; 0—First Socket

PC CARD Socket #; 0—First Socket

Serial ATA SATA Port: High word—Root port #, Low word—port number off of a SATA port

multiplier, or OXFFFF if no port multiplier attached. (For example, root port 2 would be
Ox0002FFFF. If instead a port multiplier had been attached to root port 2, the ports
connected to the multiplier would be encoded 0x00020000, 0x00020001, etc.) The
value OXFFFFFFFF is reserved.

SMBus Lowest Slave Address

USB Root HUB | Only one child of the host controller. It must have an _ADR of 0. No other children or
valuesof _ADR are allowed.

USB Ports Port number (1-n)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 201

6.1.2 _CID (Compatible ID)

This optional object isused to supply OSPM with a device's Plug and Play-Compatible Device ID. Use
_CID objects when a device has no other defined hardware standard method to report its compatible 1Ds.

Arguments:
None

Return Value:
An Integer or String containing asingle CID or a Package containing alist of CIDs

A _CID object evaluates to either:
e A single Compatible Device ID

e A package of Compatible Device IDs for the device— in the order of preference, highest preference
first.

Each Compatible Device ID must be either:
e AvalidHID vaue (a32-bit compressed EISA type ID or a string such as “ACPI0004").

e A string that uses a bus-specific nomenclature. For example, _CID can be used to specify the PCI ID.
The format of aPCI ID string is one of the following:

“PCI\ CC ccss”

“PCI\ CC _ccsspp”

“PCI\ VEN _vvvv&DEV dddd&SUBSYS ssssSSSSS&REV rr”
“PCI\ VEN vvvv&DEV dddd&SUBSYS ssssssss”

“PCI\ VEN_vvvv&DEV_dddd&REV rr”

“PCI\ VEN_vvvv&DEV_dddd”

Where:
cc — hexadecimal representation of the Class Code byte
ss — hexadecimal representation of the Subclass Code byte
pp — hexadecimal representation of the Programming Interface byte
vwww —hexadecimal representation of the Vendor ID

dddd - hexadecimal representation of the Device ID
— hexadecimal representation of the Subsystem ID
re — hexadecimal representation of the Revision byte

A compatible ID retrieved from a_CID object isonly meaningful if itisanon-NULL value.
Example ASL:
Devi ce (XYZ) {

Name (_HI D, EI SAID ("PNP0303")) /1 PC Keyboard Controller
Narme (_CI D, EISAI D ("PNP0O30B"))

}

6.1.3 _DDN (DOS Device Name)

Thisobject is used to associate alogical name (for example, COM1) with a device. This name can be used
by applications to connect to the device.

Arguments:
None

Return Value:
A String containing the DOS device name

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

202 Advanced Configuration and Power Interface Specification

6.1.4 _HID (Hardware ID)

This object is used to supply OSPM with the device’'s Plug and Play hardware |D.® When describing a
platform, use of any _HID objectsis optional. However, a_HID object must be used to describe any device
that will be enumerated by OSPM. OSPM only enumerates a device when no bus enumerator can detect the
device ID. For example, devices on an I SA bus are enumerated by OSPM. Use the _ADR object to describe
devices enumerated by bus enumerators other than OSPM.

Arguments:
None

Return Value:
An Integer or String containing the HID

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string. If astring, the
format must be an alphanumeric PNP or ACPI ID with no asterisk or other leading characters.

A valid PNP ID must be of the form *“ AAA####” where A isan uppercase letter and # is a hex digit. A
valid ACPI ID must be of the form “ ACPI ####” where# isahex digit.

Example ASL:
Name (_HI D, EISAID ("PNPOCOC")) /1 Control -Method Power Button
Narme (_HI D, EISAID ("I NT0800")) /1 Firmware Hub
Name (_HI D, "ACPI 0003") /1 AC adapter device

6.1.5 _MLS (Multiple Language String)

The MLS object provides OSPM a human readabl e description of a device in multiple languages. This
information may be provided to the end user when the OSPM is unable to get any other information about
this device. Although this functionality is also provided by the STR object, MLS expands that
functionality and provides vendors with the capability to provide multiple strings in multiple languages.
The _MLS object evaluates to a package of packages. Each sub-package consists of a Language identifier
and corresponding unicode string for a given locale. Specifying alanguage identifier allows OSPM to
easily determineif support for displaying the Unicode string is available. OSPM can use this information to
determine whether or not to display the device string, or which string is appropriate for a user’s preferred
locale.

It is assumed that OSPM will always support the primary English locale to accommodate English
embedded in a non-English string, such as a brand name.

If OSPM doesn’t support the specific sub-language ID it may choose to use the primary language ID for
displaying device text.

Arguments:
None

Return Value:
A variable-length Package containing alist of language descriptor Packages as described below.

8A Plug and Play (EISA) ID can be obtained by sending e-mail to pnpid@microsoft.com.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 203

Return Value Infor mation

Package {
LanguageDescri pt or[0] /| Package
LanguageDescri pt or [n] /| Package

Each Language Descriptor sub-Package contains the elements described below:

Package {
Languagel d /1 String
Uni codeDescri ption /1 String

}

Languageld is a string identifying the language. This string follows the format specified in the Internet
RFC 3066 document (Tags for the Identification of Languages). In addition to supporting the existing
strings in RFC 3066, Table 6-3 lists aliases that are also supported.

Table6-3 Additional Language ID Alias Strings

RFC String Supported Alias String
zh-Hans zh-chs
zh-Hant zh-cht

UnicodeDescription is a Unicode (UTF-16) string. This string contains the language-specific description of
the device corresponding to the Languagel D.

Example:

Devi ce (XYZ) {
Narme (_ADR, 0x00020001)
Name (_M.S, Package(){(2){“en”, Unicode("ACME super DVD controller")}})

}

6.1.6 _PLD (Physical Device Location)

This optional object isamethod that conveysto OSPM a general description of the physical location of a
device' s external connection point. The _PLD may be child object for any ACPI Namespace object the
system wants to describe. This information can be used by system software to describe to the user which
specific connector or device input mechanism may be used for a given task or may need user intervention
for correct operation. The PLD should only be evaluated when its parent device is present as indicated by
the device's presence mechanism (i.e. _STA or other)

An externally exposed device connection point can reside on any surface of a system’s housing. The
respective surfaces of a system’s housing are identified by the “Panel” field (described below). The PLD
method returns data to describe the location of where the device's connection point resides and a Shape
(described below) that may be rendered at that position. One physical device may have several connection
points. A _PLD describes the offset and rotation of a single device connection point from an “origin” that
resides in the lower left hand corner of its Panel.

All Panel references (Top, Bottom, Right, Left, etc.) are interpreted as though the user is facing the front of
the system. For example, the Right Panel is the right side of the system as viewed from the front.

All “origin” references for a Panel are interpreted as its lower |eft corner when the user is facing the
respective Panel. The Top Panel shall be viewed with the system is viewed resting on its Front Panel, and
the Bottom Panel shall be viewed with the system resting on its Back Panel. All other Panels shall be
viewed with the system resting on its Bottom Panel. Refer to Figure 6-1 for more information.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

204 Advanced Configuration and Power Interface Specification

Figure6-1 System Panel and Panel Origin Positions

Top

Top Panel
Origin
[— | Back
Panel
Left Origin
Panel Front
- Right
Panel O
Origin anel QO Panel
o Origin
Origin Bottom
Bottom Panel
Origin

The data bits also assume that if the system is capable of opening up like alaptop that the device may exist
on the base of the laptop system or on the lid. In the case of the latter, the “Lid” bit (described below)
should be set indicating the device connection point is on the lid. If the device is on thelid, the description
describes the device’ s connection point location when the system is opened with the lid up. If the device
connection point is not on the lid, then the description describes the device’ s connection point location
when the system with the lid closed.

Figure6-2 Laptop Pane and Panel Origin Positions

Front
Panel (base)
Lid Top Panel
. Origin
Lid
Front Panel S
Origin Ny
(base) = = °° =
Front Panel

Origin

Torender aview of asystem Panel, all _PLDsthat define the same Panel and Lid values are collected. The
_PL Ds are then sorted by the value of their Order field and the view of the panel isrendered by drawing the
shapes of each connection point (in their correct Shape, Color, Horizontal Offset, Vertical Offset, Width,
Height, and Orientation) starting with all Order = 0 _PLDsfirst. Refer to Figure 6-4 for an example.

The location of a device connection point may change as a result of the system connecting or disconnecting
to adocking station or a port replicator. As such, Notify event of type 0x08 will cause OSPM to re-evaluate
the PLD object residing under the particular device notified. If a platform is unable to detect the change of
connecting or disconnecting to a docking station or port replicator, a_PLD object should not be used to
describe the device connection points that will change location after such an event.

Arguments:
None

Return Value:
A variable-length Package containing alist of Buffers

This method returns a package containing a single or multiple buffer entries. At least one buffer entry must
be returned using the bit definitions below.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 205

Buffer 0 Return Value:

Bit 6:0 — Revision. The current revision is 0x2

Bit 7 — Ignore Color. If thisbit is set, the Color field isignored, asthe color is unknown.

Bit 31:8 — Color — 24bit RGB value for the color of the device connection point. (bits 8:15 = red, bits
16:23 = green, bits 24:31 = blue)

Bit 47:32 — Width: Describes, in millimeters, the width (widest point) of the device connection point.
Bit 63:48 — Height: Describes, in millimeters, the height (tallest point) of the device connection point.

Bit 64 — User Visible: Set if the device connection point can be seen by the user without disassembly.
Bit 65 — Dock: Set if the device connection point resides in a docking station or port replicator.
Bit 66 — Lid: Set if this device connection point resides on the lid of laptop system.

Bit 69:67 — Panel: Describes which panel surface of the system’s housing the device connection point
resides on.

0-Top

1 - Bottom

2 —Left

3—Right

4 — Front

5-Back

6 — Unknown (Vertical Position and Horizontal Position will be ignored)

Bit 71:70 — Vertical Position on the panel where the device connection point resides.
0 — Upper
1 - Center
2 —Lower

Bit 73:72 — Horizontal Position on the panel where the device connection point resides.
0 —Left
1 —Center
2—Right

Bit 77:74 — Shape: Describes the shape of the device connection point. The Width and Height fields
may be used to distort a shape, e.g. A Round shape will look like an Oval shape if the Width and
Height are not equal. And aVertical Rectangle or Horizontal Rectangle may look like a square if
Width and Height are equal. Refer to Figure 6-3.

0 —Round

1-0vd

2 —Square

3 —Vertical Rectangle

4 — Horizontal Rectangle

5—Vertical Trapezoid

6 — Horizontal Trapezoid

7 — Unknown — Shape rendered as a Rectangle with dotted lines

8 — Chamfered

15:9 — Reserved

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

206 Advanced Configuration and Power Interface Specification

Figure 6-3 Default Shape Definitions

Shape = Round/Oval Shape = Square/

Vertical Rectangle/ Shape = Trapezoid
Horizontal Rectangle/

Unknown
‘«Width»‘

‘<—Height—>‘

i
1

Height
«——Width——
FWidtH

Origin: Lower, Left

Origin: Lower, Left Origin: Lower, Left

Shape = Chamfered

Rotation = 0 for all
The Origin of a shape is always in . displayed reference
the in lower left corner. Height shapes

/ Width
Origin: Lower, Left

Bit 78 — Group Orientation: if Set, indicates vertical grouping, otherwise horizontal is assumed.
Bit 86:79 — Group Token: Unique numerical value identifying a group.
Bit 94:87 — Group Position: Identifies this device connection point's position in the group (i.e. 1%, 2"
Bit 95 —Bay: Set if describing a device in abay or if device connection point isabay.
Bit 96 — Ejectable: Set if the device is gjectable. Indicates g ectability in the absence of _EJx objects.
Bit 97 — OSPM Ejection required: Set if OSPM needs to be involved with gjection process. User-
operated physical hardware gection is not possible.
Bit 105:98 — Cabinet Number. For single cabinet system, thisfield is always 0.
Bit 113:106 — Card cage Number. For single card cage system, thisfield isalways0.
Bit 114 — Reference: if Set, this_PLD defines a“reference” shape that is used to help orient the user
with respect to the other shapes when rendering _PLDs.
Bit 118:115 — Rotation: Rotates the Shape clockwise in 45 degree steps around its origin where:
0-0°
1-45°
2-90°
3-135°
4-180°
5-225°
6-270°
7-315°
Bit 123:119 — Order: Identifies the drawing order of the connection point described by a_PLD. Order
= 0 connection points are drawn before Order = 1 connection points. Order = 1 before Order = 2, and
so on. Order = 31 connection points are drawn last. Order should always start at 0 and be consecutively
assigned.
Bit 127:124 — Reserved, must contain a value of 0.
Bit 143:128 — Vertical Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
OxFFFFFFFF indicates that this field is not supplied.
Bit 159:144 — Horizontal Offset: Offset of Shape Origin from Panel Origin (in mm). A value of
OxFFFFFFFF indicates that this field is not supplied.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 207

All additional buffer entries returned, may contain OEM specific data, but must begin in a{GUID, data}
pair. These additional data may provide complimentary physical |ocation information specific to certain
systems or class of machines.

Buffers 1 —N Return Value (Optional):

Buffer 1 Bit 127:.0-GUID 1
Buffer 2 Bit 127:0 — Data 1
Buffer 3 Bit 127:0-GUID 2
Buffer 4 Bit 127:0 — Data 2

Figure 6-4 provides an example of arendering of the external device connection points that may be
conveyed to the user by _PLD information. Note that three PLDs (System Back Panel, Power Supply, and
Motherboard (MB) Connector Area) that are associated with the System Bustree (_SB) object. Their
Reference flag is set indicating that are used to provide the user with visual queues for identifying the
relative locations of the other device connection points.

The connection points (C1 through C16) are defined by _PLD objects found in the System bus tree.

The following connection points all have their Panel and Lid fields set to Back and O, respectively. And the
Reference flag of the System Back Panel, Power Supply, and MB Connector Area connection points are set
to 1. in this example are used to render Figure 6-4:

Table6-4 _PLD Back Panel Example Settings

Name Ignore | R G B | Width | Height | VOff | HOff | Shape | Nota- | Goup | Rota-
Color tion | Position | tion

Back Yes 0 0 0 2032 4318 0 0 \Y 1 0

Panel Rect

MB Yes 0 0 0 445 1556 | 1588 | 127 \ 2 0

Conn Rect

area

Power Yes 0 0 0 1524 889 3302 | 127 H 2 0

Supply Rect

USB No 0 0 0 125 52 2223 | 159 H C1 3 90

Port 1 Rect

USB No 0 0 0 125 52 2223 | 254 H c2 3 90

Port 2 Rect

USB No 0 0 0 125 52 2223 | 350 H C3 3 90

Port 3 Rect

USB No 0 0 0 125 52 2223 | 445 H C4 3 90

Port 4 Rect

USB No 0 0 0 125 52 2007 | 159 H C5 3 90

Port 5 Rect

USB No 0 0 0 125 52 2007 | 254 H C6 3 90

Port 6 Rect

Ethernet No 0 0 0 157 171 2007 | 350 \Y Cc7 3 90
Rect

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

208 Advanced Configuration and Power Interface Specification

Name Ignore | R G B | Width | Height | VOff | HOff | Shape | Nota- | Goup | Rota-
Color tion | Position | tion

Audio 1 No FF | FF | FF 127 127 1945 | 151 | Round | C8 3 90

Audio 2 No 151 | 247 | 127 | 127 127 1945 | 286 | Round | C9 3 90

Audio 3 No 0 0 0 127 127 1945 | 427 | Round | C10 3 90

SPDIF No 0 0 0 112 126 1756 | 176 \% C11 3 90
Trap

Audio 4 No 0 FF 0 127 127 1765 | 288 | Round | C12 3 90

Audio 5 No 0 0 FF 127 127 1765 | 429 | Round | C13 3 90

SATA No 0 0 0 239 88 3091 | 159 H C14 3 90
Rect

1394 No 0 0 0 112 159 2890 | 254 H C15 3 0
Trap

Coax No 0 0 0 159 159 2842 | 143 | Round | C16 3 90

PCl 1 No 0 0 0 1016 127 127 127 H 1 3 0
Rect

PCI 2 No 0 0 0 1016 127 334 127 H 2 3 0
Rect

PCI 3 No 0 0 0 1016 127 540 127 H 3 3 0
Rect

PCl 4 No 0 0 0 1016 127 747 127 H 4 3 0
Rect

PCI 5 No 0 0 0 1016 127 953 127 H 5 3 0
Rect

PCI 6 No 0 0 0 1016 127 1159 | 127 H 6 3 0
Rect

PCI 7 No 0 0 0 1016 127 1366 | 127 H 7 3 0
Rect

Note that the origin isin the lower |eft hand corner of the Back Panel, where positive Horizontal and
Vertical Offset values are to the right and up, respectively.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 209

Figure6-4 _PLD Back Panel Rendering Example

/E)wer Supply
A

c Motherboard

connector area
Vertical /EI Backpanels
Offset

T

\ 7 |

| E | System

\ 5 | Backpanel

\ 4 |

\ 3 |

\ 2 |

\ 1 |

ol

Origin 0 Horizontal Offset

6.1.7 _STR (String)

The _STR object evaluates to a Unicode string that describes the device. It may be used by an OSto
provide information to an end user. Thisinformation is particularly valuable when no other information is
available.

Arguments:
None

Return Value:
A Buffer containing a Unicode string that describes the device

Example ASL:

Devi ce (XYZ) {
Nane (_ADR, 0x00020001)
Nane (_STR, Unicode ("ACME super DVD controller"))

}

Then, when all elsefails, an OS can use the info included in the _STR object to describe the hardware to
the user.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

210 Advanced Configuration and Power Interface Specification

6.1.8 _SUN (Slot User Number)

_SUN isan object that eval uates to the slot-unique ID number for adot. _SUN isused by OSPM Ul to
identify slots for the user. For example, this can be used for battery dots, PCI slots, PCMCIA dots, or
swappable bay dotsto inform the user of what devices arein each dot. _SUN evaluates to an integer that is
the number to be used in the user interface.

Arguments:
None

Return Value:
An Integer containing the slot’s unique ID

The _SUN valueis required to be unique among the dots of the same type. It is also recommended that this
number match the slot number printed on the physical sot whenever possible.

6.1.9 _UID (Unique ID)

This object provides OSPM with alogical device ID that does not change across reboots. This object is
optional, but is required when the device has no other way to report a persistent unique device ID. The
_UID must be unique across all devices with either acommon _HID or _CID. Thisis because a device
needs to be uniquely identified to the OSPM, which may match on either a_HID or a_CID to identify the
device. The uniqueness match must be true regardless of whether the OSPM usesthe HID or the CID.
OSPM typically uses the unique device ID to ensure that the device-specific information, such as network
protocol binding information, is remembered for the device even if itsrelative location changes. For most
integrated devices, this object contains a unique identifier.

A _UID object evaluates to either a numeric value or a string.

Arguments:
None

Return Value:
An Integer or String containing the Unique ID

6.2 Device Configuration Objects

This section describes objects that provide OSPM with device specific information and allow OSPM to
configure device operation and resource utilization.

OSPM uses device configuration objects to configure hardware resources for devices enumerated via
ACPI. Device configuration objects provide information about current and possible resource requirements,
the relationship between shared resources, and methods for configuring hardware resources.

Note: these objects must only be provided for devices that cannot be configured by any other hardware
standard such as PCI, PCMCIA, and so on.

When OSPM enumerates a device, it calls_PRS to determine the resource requirements of the device. It
may also call _CRSto find the current resource settings for the device. Using thisinformation, the Plug and
Play system determines what resources the device should consume and sets those resources by calling the
device's SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
aproprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 211

Some resources, however, may be shared amongst several devices. To describe this, devicesthat share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3, “Large Resource Data Type.” These descriptors point to a single device object (resource producer)
that claims the shared resource in its_PRS. This allows OSPM to clearly understand the resource
dependencies in the system and move all related devices together if it needs to change resources.
Furthermore, it allows OSPM to allocate resources only to resource producers when devices that consume
that resource appear.

The device configuration objects are listed in Table 6-5.
Table6-5 Device Configuration Objects

Object Description

_CDM Object that specifies a clock domain for a processor.

_CRS Object that specifies adevice's current resource settings, or a control method that generates
such an object.

_DIS Control method that disables a device.

_DMA Object that specifies adevice's current resources for DMA transactions.

_FIX Object used to provide correlation between the fixed-hardware register blocks defined in the

FADT and the devices that implement these fixed-hardware registers.

_GSB Object that provides the Global System Interrupt Base for a hot-plugged 1/0 APIC device.

_HPP Object that specifies the cache-line size, latency timer, SERR enable, and PERR enable values
to be used when configuring a PCI device inserted into a hot-plug slot or initial configuration
of a PCl device at system boot.

_HPX Object that provides device parameters when configuring a PCl device inserted into a hot-plug
dlot or initial configuration of a PCl device at system boot. Supersedes HPP.

_MAT Object that evaluatesto a buffer of MADT APIC Structure entries.

_0sC An object OSPM evaluates to convey specific software support / capabilities to the platform
allowing the platform to configure itself appropriately.

_PRS An object that specifies a device' s possible resource settings, or a control method that
generates such an object.

_PRT Object that specifies the PCI interrupt routing table.

_PXM Object that specifies a proximity domain for a device.

SLI Object that provides updated distance information for a system locality.

SRS Control method that sets a device's settings.

6.2.1 _CDM (Clock Domain)

This optional object conveys the processor clock domain to which a processor belongs. A processor clock
domain is a unique identifier representing the hardware clock source providing the input clock for agiven
set of processors. This clock source drives software accessible internal counters, such as the Time Stamp
Counter, in each processor. Processor counters in the same clock domain are driven by the same hardware
clock source. In multi-processor platforms that utilize multiple clock domains, such counters may exhibit
drift when compared against processor counters on different clock domains.

The _CDM object evaluates to an integer that identifies the device as belonging to a specific clock domain.
OSPM assumes that two devices in the same clock domain are connected to the same hardware clock.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

212 Advanced Configuration and Power Interface Specification

Arguments:
None

Return Value:
An Integer (DWORD) containing a clock domain identifier.

In the case the platform does not convey any clock domain information to OSPM viathe SRAT or the
_CDM object, OSPM assumes all logical processors to be on acommon clock domain. If the platform
defines_CDM object under alogical processor then it must define_ CDM objects under all logical
processors whose clock domain information is not provided viathe SRAT.

6.2.2_CRS (Current Resource Settings)

Thisreguired object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If adeviceisdisabled, then CRS returns a valid resource template for the device, but the actual
resource assignments in the return byte stream are ignored. If the device is disabled when _CRSiscalled, it
must remain disabled.

The format of the data contained in a_CRS object follows the formats defined in section 6.4, “Resource
Data Typesfor ACPI,” acompatible extension of the formats specified in the PNPBIOS specification.” The
resource datais provided as a series of data structures, with each of the resource data structures having a
unique tag or identifier. The resource descriptor data structures specify the standard PC system resources,
such as memory address ranges, 1/0 ports, interrupts, and DMA channels.

Arguments:
None

Return Value:
A Buffer containing aresource descriptor byte stream

6.2.3 _DIS (Disable)

This control method disables a device. When the deviceis disabled, it must not be decoding any hardware
resources. Prior to running this control method, OSPM will have already put the device in the D3 state.

When adeviceisdisabled viathe DIS, the STA control method for this device must return with the
Disabled hit set.

Arguments:
None

Return Value:
None

6.2.4 _DMA (Direct Memory Access)

This optional object returns a byte stream in the same format asa_CRS object. DMA isonly defined
under devices that represent buses. It specifies the ranges the bus controller (bridge) decodes on the child-
side of itsinterface. (Thisis analogous to the _CRS object, which describes the resources that the bus
controller decodes on the parent-side of itsinterface.) Any ranges described in the resources of a_ DMA
object can be used by child devices for DMA or bus master transactions.

° Plug and Play BIOS Specification Version 1.0A, May 5, 1994, Compag Computer Corp., Intel Corp.,
Phoenix Technologies Ltd.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 213

The DMA object isonly valid if a_CRS object is aso defined. OSPM must re-evaluate the DMA object
after an _SRS object has been executed because the DMA ranges resources may change depending on
how the bridge has been configured.

If the_DMA object is not present for a bus device, the OS assumes that any address placed on abusby a
child device will be decoded either by a device on the bus or by the busitself, (in other words, all address
ranges can be used for DMA).

For example, if a platform implements a PCl bus that cannot access all of physical memory, it hasa_DMA
object under that PCI bus that describes the ranges of physical memory that can be accessed by devices on
that bus.

A DMA object is not meant to describe any “map register” hardware that is set up for each DMA
transaction. It is meant only to describe the DMA properties of a bus that cannot be changed without
reevaluating the _ SRS method.

Arguments:
None

Return Value:
A Buffer containing aresource descriptor byte stream

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

214 Advanced Configuration and Power Interface Specification

_DMA Example ASL:

Devi ce(BUSO)

/1 The _DVA nmethod returns a resource tenplate describing the
/] addresses that are decoded on the child side of this

/1 bridge. The contained resource descriptors thus indicate
/1 the address ranges that bus masters living below this

/1 bridge can use to send accesses through the bridge toward a
/1 destination el sewhere in the system (e.g. main nmenory).

/1 In our case, any bus nmaster addresses need to fall between
/1 0 and 0x80000000 and wi ||l have 0x200000000 added as they
/1 cross the bridge. Furthernore, any chil d-side accesses

/1 falling into the range claimed in our _CRS will be

Il interpreted as a peer-to-peer traffic and will not be

/1 forwarded upstream by the bridge.

/1 Qur upstream address decoder will only claimone range from
/1 0x20000000 to Ox5fffffff in the _CRS. Therefore _DVA

/1 should return two QAORDMenory descriptors, one describing
/1 the range bel ow and one describing the range above this

/'l "peer-to-peer" address range.

11
Met hod(_DMA, ResourceTenpl at e()
{
QAORDMENDI Y (
Resour ceConsuner,
PosDecode, /1 _DEC
M nFi xed, Il _MF
MaxFi xed, /Il _NAF
Pr ef et chabl e, /Il _NEM
ReadW i t e, /Il _RW
0, Il _GRA
0, /'l _MN
ox1fffffff, /1 _NMAX
0x200000000, /Il _TRA
0x20000000, /1 _LEN
)
QAORDMENDT Y (
Resour ceConsuner,
PosDecode, /1l _DEC
M nFi xed, Il _MF
MaxFi xed, /1 _NAF
Pr ef et chabl e, /Il _NEM
ReadWi t e, /Il _RW
0, Il _GRA
0x60000000, /Il _MN
Ox7fffffff, /1 _NMAX
0x200000000, /Il _TRA
0x20000000, /1 _LEN
)
b

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 215

6.2.5 _FIX (Fixed Register Resource Provider)

This optional object isused to provide a correlation between the fixed-hardware register blocks defined in
the FADT and the devicesin the ACPI namespace that implement these fixed-hardware registers. This
object evaluates to a package of Plug and Play-compatible 1Ds (32-bit compressed EISA type IDs) that
correlate to the fixed-hardware register blocks defined in the FADT. The device under which _FIX appears
plays arolein the implementation of the fixed-hardware (for example, implements the hardware or decodes
the hardware’ s address). _FIX conveysto OSPM whether a given device can be disabled, powered off, or
should be treated specially by conveying its role in the implementation of the ACPI fixed-hardware register
interfaces. This object takes no arguments.

The _CRS object describes adevice' sresources. That _CRS object may contain a superset of the resources
inthe FADT, as the device may actually decode resources beyond what the FADT requires. Furthermore,
in a machine that performs trangdation of resources within 1/O bridges, the processor-relative resourcesin
the FADT may not be the same as the bus-relative resources in the _CRS.

Arguments:
None

Return Value:
A variable-length Package containing alist of I ntegers, each containing a PNP ID

Each of fieldsin the FADT hasits own corresponding Plug and Play ID, as shown below:
PNPOC20 - SM _CMD

PNPOC21 - PMla_EVT BLK / X_ PMla_EVT BLK
PNPOC22 - PMLb_EVT BLK / X_PMLb_EVT BLK
PNPOC23 - PMLa_CNT_BLK / X_PMla_CNT_BLK
PNPOC24 - PMLb_CNT BLK / X_ PMLb_CNT BLK

PNPOC25 - PM2_CNT _BLK / X_ PM2_CNT_BLK
PNPOC26 - PM TMR BLK / X_ PM TMR BLK
PNPOC27 - GPEO_BLK / X_GPEO_BLK
PNPOC28 - GPEL1_BLK / X_ GPEL_BLK
PNPOBOO — FI XED_RTC

PNPOBO1 — FI XED_RTC

PNPOB02 — FI XED_RTC

Example ASL for _FIX usage:

Scope(_SB) {

Devi ce(PCI 0) { /1 Root PCl Bus
Name(_HI D, El SAl D(" PNPOA03")) /1 Need _HI D for root device
Name(_ADR, 0) /1 Device 0 on this bus
Met hod (_CRS, 0) { /1 Need current resources for root device

/! Return current resources for root bridge O

}

Name(_PRT, Package() { /1 Need PCl IRQ routing for PCl bridge
/1 Package with PCl IRQ routing table information

1)

Name(_FI X, Package(1) {
El SAI D(" PNPOC25") } /!l PMR control ID
)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

216 Advanced Configuration and Power Interface Specification

Devi ce (PX40) { /1 1SA
Narre(_ADR, 0x00070000)
Name(_FI X, Package(1) {
El SAI D(" PNPOC20") } // SM conmand port

)

Devi ce (NsS17) { /1 NS17 (Nat. Sem 317, an ACPlI part)
Nanme(_HI D, EI SAI D(" PNPOC02"))
Name(_FI X, Package(3) {

El SAI D(" PNPOC22") , /1 PMLb event ID
El SAI D(" PNPOC24") , /1 PMLb control ID
El SAI D(" PNPOC28") } /1 GPE1 ID

}
} /1 end PX40

Devi ce (PX43) { /1 PM Control
Nare(_ADR, 0x00070003)
Nane(_FI X, Package(4) {

El SAI D(" PNPOC21") , /1 PMla event |D
El SAI D(" PNPOC23") , /1l PMLa control ID
El SAI D(" PNPOC26") , /1 PM Timer ID

El SAI D(" PNPOC27") } /1 GPEO ID

)
} /'l end PX43
} /'l end PCIO
} /'l end scope SB

6.2.6 _GSB (Global System Interrupt Base)

_GSB isan optional object that evaluatesto an integer that corresponds to the Global System Interrupt Base
for the corresponding I/O APIC device. The I/O APIC device may either be bus enumerated (e.g. asa PCI
device) or enumerated in the namespace as described in Section 9.18,”1/O APIC Device”. Any 1/O APIC
device that either supports hot-plug or is not described in the MADT must contain a_GSB object.

If the /O APIC device also containsa_MAT object, OSPM evaluates the _GSB object first before
evaluating the _ MAT object. By providing the Global System Interrupt Base of the I/0 APIC, this object
enables OSPM to process only the _MAT entries that correspond to the 1/O APIC device. See section 6.2.8,
“ MAT (Multiple APIC Table Entry)”. Since_ MAT is allowed to potentially return all the MADT entries
for the entire platform, _GSB is needed in the I/O APIC device scope to enable OSPM to identify the
entries that correspond to that device.

If an 1/O APIC device is activated by a device-specific driver, the physical address used to accessthe 1/0
APIC will be exposed by the driver and cannot be determined from the _MAT object. In this case, OSPM
cannot usethe _MAT object to determine the Global System Interrupt Base corresponding to the [/O APIC
device and hence requiresthe _GSB object.

The Global System Interrupt Base is a 64-bit value representing the corresponding I/OAPIC device as
defined in Section 5.2.13, “Global System Interrupts’.

Arguments:
None

Return Value:
An Integer containing the interrupt base

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 217

Example ASL for _GSB usage for a non-PCI based 1/0 APIC Device:

Scope(_SB) {

Devi ce(API Q) { /1 1/0 APIC Devi ce
Name(_HI D, “ACPI 0009") /1 ACPI IDfor 1/OAPIC
Name(_CRS, ResourceTenpl ate()

{ .} /1 only one resource pointing to I/ O APIC regi ster base
Met hod(_GSB) {
Return (0x10) // dobal SystemlInterrupt Base for |I/O APIC starts at 16

}
} // end APIC
} [/l end scope SB

Example ASL for _GSB usage for a PCl-based 1/0 APIC Device:

Scope(_SB) {

Devi ce(PCl 0) /1 Host bridge
Name(_HI D, EI SAlI D(" PNPOA03")) /! Need _HI D for root device
Nanme(_ADR, 0)
Devi ce(PCl 1) { /1 1/0 API C PCl Device

Narre(_ADR, 0x00070000)
Met hod(_GSB) {

Return (0x18) // dobal SystemInterrupt Base for |1/O APIC starts at 24
}

} // end PCl1
} /1 end PCIO
} /'l end scope SB

6.2.7 _HPP (Hot Plug Parameters)

This optional object evaluates to a package containing the cache-line size, latency timer, SERR enable, and
PERR enable values to be used when configuring a PCI device inserted into a hot-plug slot or for
performing configuration of a PCI devices not configured by the BIOS at system boot. The object is placed
under a PCl bus where this behavior is desired, such as a bus with hot-plug sots. _HPP provided settings
apply to all child buses, until another HPP object is encountered.

Arguments:
None

Return Value:
A Package containing the Integer hot-plug parameters

Example:

Met hod (_HPP, 0) {
Ret urn (Package(4){

0x08, /| CachelLineSi ze i n DWORDS
0x40, /1 LatencyTinmer in PCl clocks
0x01, /1 Enabl e SERR (Bool ean)

0x00 /1 Enabl e PERR (Bool ean)

H

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

218 Advanced Configuration and Power Interface Specification

Table6-6 _HPP Package Contents

Field Object Type [Definition

Cache-linesize |Integer Cache-line size reported in number of DWORDs.

Latency timer I nteger Latency timer value reported in number of PCI clock cycles.

Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR

in the command register.

Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.

6.2.7.1 Example: Using HPP
Scope(_SB) {

Devi ce(PCl 0) { /1 Root PCI Bus
Name(_HI D, El SAl D(" PNPOA03")) /1 _H D for root device
Name(_ADR, 0) /1 Device 0 on this bus
Met hod (_CRS, 0) { /1 Need current resources for root dev

/! Return current resources for root bridge O

}
Name(_PRT, Package(){ // Need PCl IRQ routing for PCl bridge
/1 Package with PCl IRQ routing table information

1)

Devi ce (P2P1) ({ /Il First PCl-to-PCl bridge (No Hot Plug slots)
Narre(_ADR, 0x000C0000) /| Device#Ch, Func#0 on bus PCl 0
Nane(_PRT, Package(){ /1 Need PCl IRQ routing for PCl bridge

/1 Package with PCl IRQ routing table information

}
} /1 end P2P1

Devi ce (P2P2) { /1 Second PCl-to-PCl bridge (Bus contains Hot plug slots)
Name(_ADR, 0x000E0000) /| Devi ce#Eh, Func#0 on bus PCI 0
Name(_PRT, Package() { /1 Need PCI IRQ routing for PCl bridge

/1 Package with PCl IRQ routing table information

1)
Name(_HPP, Package(){0x08, 0x40, 0x01, 0x00})

/1 Device definitions for Slot 1- HOT PLUG SLOT

Devi ce (S1F0) ({ /1 Slot 1, Func#0 on bus P2P2
Nanme(_ADR, 0x00020000)
Met hod(_EJO, 1) { // Rerove all power to device}
}
Devi ce (S1F1) { /1 Slot 1, Func#l on bus P2P2
Nanme(_ADR, 0x00020001)
Met hod(_EJO, 1) { // Rerove all power to device}
}
Devi ce (S1F2) { /1 Slot 1, Func#2 on bus P2P2
Name(_ADR, 0x000200 02)
Met hod(_EJO, 1) { /1 Rerove all power to device}
}
Devi ce (S1F3) { /1 Slot 1, Func#3 on bus P2P2
Nanme(_ADR, 0x00020003)
Met hod(_EJO, 1) { // Rerove all power to device}
}
Devi ce (S1F4) { /1 Slot 1, Func#4 on bus P2P2
Nanme(_ADR, 0x00020004)
Met hod(_EJO, 1) { // Rerove all power to device}
}
Devi ce (S1F5) { /1 Slot 1, Func#5 on bus P2P2
Name(_ADR, 0x00020005)
Met hod(_EJO, 1) { // Rerove all power to device}
}

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Devi ce (S1F6) {
Narme(_ADR, 0x00020006)
Met hod(_EJO, 1) {

}

Devi ce (S1F7) {
Narme(_ADR, 0x00020007)
Met hod(_EJO, 1) {

}

/1 Device definitions for Slot 2-

Devi ce (S2F0) ({
Nare(_ADR, 0x00030000)
Met hod(_EJO, 1) {

}
Devi ce (S2F1) {

/1

11

/1

11

11

Device Configuration 219

Slot 1, Func#6 on bus P2P2
Rermove all power to device}
Slot 1, Func#7 on bus P2P2
Rermove all power to device}
HOT PLUG SLOT

Slot 2, Func#0 on bus P2P2
Renove all power to device}

Sl ot 2, Func#1 on bus P2P2

Name(_ADR, 0x00030001)

Met hod(_EJO, 1) { /1 Rermove all power to device}
}
Devi ce (S2F2) { /1 Slot 2, Func#2 on bus P2P2
Nanme(_ADR, 0x00030002)
Met hod(_EJO, 1) { /1 Rermove all power to device}
}
Devi ce (S2F3) { /1 Slot 2, Func#3 on bus P2P2
Nanme(_ADR, 0x00030003)
Met hod(_EJO, 1) { /1 Rerove all power to device}
}
Devi ce (S2F4) { /1 Slot 2, Func#4 on bus P2P2
Nanme(_ADR, 0x00030004)
Met hod(_EJO, 1) { // Rerove all power to device}
}
Devi ce (S2F5) ({ /1 Slot 2, Func#5 on bus P2P2
Nanme(_ADR, 0x00030005)
Met hod(_EJO, 1) { /1 Rerove all power to device}
}
Devi ce (S2F6) { /1 Slot 2, Func#6 on bus P2P2
Nanme(_ADR, 0x00030006)
Met hod(_EJO, 1) { // Rerove all power to device}
}
Devi ce (S2F7) { /1 Slot 2, Func#7 on bus P2P2
Nanme(_ADR, 0x00030007)
Met hod(_EJO, 1) { // Rerove all power to device}

}
} [/l end P2P2
} /'l end PCIO
} /1 end Scope (_SB)

OSPM will configure a PCI device on a card hot-plugged into slot 1 or slot 2, with a cache line size of 32
(Noticethisfield isin DWORDS), latency timer of 64, enable SERR, but leave PERR aone.

6.2.8 _HPX (Hot Plug Parameter Extensions)

This optional object provides platform-specific information to the OSPM PCI driver component
responsible for configuring hot-add PCI, PCI-X, or PCl Express devices. The information conveyed applies
to the entire hierarchy downward from the scope containing the HPX object. If another HPX object is
encountered downstream, the settings conveyed by the lower-level object apply to that scope downward.

OSPM uses the information returned by HPX to determine how to configure PCI devices that are hot-
plugged into the system, and to configure devices not configured by the platform firmware during initial
system boot. The HPX object is placed within the scope of a PCl-compatible bus (see Note 2 below for
restrictions) where this behavior is desired, such as a bus with hot-plug dots. It returns a single package
that contains one or more sub-packages, each containing a single Setting Record. Each such Setting Record
contains a Setting Type (INTEGER), a Revision number (INTEGER) and type/revision specific contents.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

220 Advanced Configuration and Power Interface Specification

The format of data returned by the HPX object is extensible. The Setting Type and Revision number
determine the format of the Setting Record. OSPM ignores Setting Records of typesthat it does not
understand. A Setting Record with higher Revision number supersedes that with lower revision number,
however, the _HPX method can return both together, OSPM shall use the one with highest revision number
that it understands.

_HPX may return multiple types or Record Settings (each setting in a single sub-package.) OSPM is
responsible for detecting the type of hot plugged device and for applying the appropriate settings. OSPM is
also responsible for detecting the device / port type of the PCI Express device and applying the appropriate
settings provided. For example, the Secondary Uncorrectable Error Severity and Secondary Uncorrectable
Error Mask settings of Type 2 record are only applicable to PCI Express to PCI-X/PCI Bridge whose
device/ port type is 1000b. Similarly, AER settings are only applicable to hot plug PCl Express devices
that support the optional AER capability.

Arguments:
None

Return Value:
A variable-length Package containing alist of Packages, each containing asingle PCI or PCI-X
Record Setting as described below

The _HPX object supersedesthe HPP object. If the_HPP and _HPX objects exist within a device's scope,
OSPM will only evaluate the HPX object.

Notes.

1) OSPM may override the settings provided by the HPX object’s Type2 record (PCl Express Settings)
when OSPM has assumed native control of the corresponding feature. For example, if OSPM has
assumed ownership of AER (via_OSC), OSPM may override AER related settings returned by HPX.

2) The_HPX object may exist under PCl compatible buses including host bridges except when the host
bridge spawns a PCI Express hierarchy. For PCI Express hierarchies, the HPX object may only exist
under aroot port or a switch downstream port.

3) Since error status registers do not drive error signaling, OSPM is not required to clear error status
registers as part of _HPX handling.

6.2.8.1 PCI Setting Record (Type 0)

The PCI setting record contains the setting type 0, the current revision 1 and the type/revision specific
content: cache-line size, latency timer, SERR enable, and PERR enable values.

Table 6-7 PCI Setting Record Content

Field Object Type |Definition
Header:
Type I nteger 0x00: Type 0 (PCI) setting record.
Revision I nteger 0x01: Revision 1, defining the set of fields below.
Cache-linesize Integer Cache-line size reported in number of DWORDs.
Latency timer I nteger Latency timer value reported in number of PCI clock cycles.
Enable SERR Integer When set to 1, indicates that action must be performed to enable SERR
in the command register.
Enable PERR Integer When set to 1, indicates that action must be performed to enable PERR
in the command register.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 221

If the hot plug device includes bridge(s) in the hierarchy, the above settings apply to the primary side
(command register) of the hot plugged bridge(s). The settings for the secondary side of the bridge(s)
(Bridge Control Register) are assumed to be provided by the bridge driver.

The Type 0 record is applicable to hot plugged PCI, PCI-X and PCI Express devices. OSPM will ignore
settings provided in the Type0 record that are not applicable (for example, Cache-line size and Latency
Timer are not applicable to PCl Express).

6.2.8.2 PCI-X Setting Record (Type 1)

The PCI-X setting record contains the setting type 1, the current revision 1 and the type/revision specific
content: the maximum memory read byte count setting, the average maximum outstanding split
transactions setting and the total maximum outstanding split transactions to be used when configuring PCI-
X command registers for PCI-X buses and/or devices.

Table 6-8 PCI-X Setting Record Content

Field Object Type |Definition
Header:

Type I nteger 0x01: Type 1 (PCI-X) setting record.

Revision I nteger 0x01: Revision 1, defining the set of fields below.
Maximum memory |l nteger Maximum memory read byte count reported:
read byte count Value 0: Maximum byte count 512

Value 1: Maximum byte count 1024
Value 2: Maximum byte count 2048
Value 3: Maximum byte count 4096

Average maximum |l nteger The following values are defined:
outstanding split Value 0: Maximum outstanding split transaction 1
transactions

Value 1: Maximum outstanding split transaction 2
Value 2: Maximum outstanding split transaction 3
Value 3: Maximum outstanding split transaction 4
Value 4: Maximum outstanding split transaction 8
Value 5: Maximum outstanding split transaction 12
Value 6: Maximum outstanding split transaction 16
Value 7: Maximum outstanding split transaction 32

Total maximum I nteger See the definition for the average maximum outstanding split
outstanding split transactions.
transactions

For simplicity, OSPM could use the Average Maximum Outstanding Split Transactions value asthe
Maximum Outstanding Split Transactions register value in the PCI-X command register for each PCI-X
device. Another alternative is to use a more sophisticated policy and the Total Maximum Outstanding Split
Transactions Value to gain even more performance. In this case, the OS would examined each PCI-X
device that isdirectly attached to the host bridge, determine the number of outstanding split transactions
supported by each device, and configure each device accordingly. The goal isto ensure that the aggregate
number of concurrent outstanding split transactions does not exceed the Total Maximum Outstanding Split
Transactions Value: an integer denoting the number of concurrent outstanding split transactions the host
bridge can support (the minimum valueis 1).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

222 Advanced Configuration and Power Interface Specification

This object does not address providing additional information that would be used to configure registersin
bridge devices, whether architecturally-defined or specification-defined registers or device specific
registers. It is expected that a driver for a bridge would be the proper implementation mechanism to address
both of those issues. However, such a bridge driver should have access to the data returned by the HPX
object for use in optimizing its decisions on how to configure the bridge. Configuration of abridgeis
dependent on both system specific information such as that provided by the HPX object, as well as bridge
specific information.

6.2.8.3 PCI Express Setting Record (Type 2)

The PCI Express setting record contains the setting type 2, the current revision 1 and the type/revision
specific content (the control registers as listed in the table below) to be used when configuring registersin
the Advanced Error Reporting Extended Capability Structure or PCl Express Capability Structure for the
PCI Express devices.

The Type 2 Setting Record allows a PCl Express-aware OS that supports native hot plug to configure the
specified registers of the hot plugged PCI Express device. A PCl Express-aware OS that has assumed
ownership of native hot plug (via_OSC) but does not support or does not have ownership of the AER
register set must use the data values returned by the HPX object's Type 2 record to program the AER
registers of a hot-added PCI Express device. However, since the Type 2 record also includes register bits
that have functions other than AER, OSPM must ignore values contained within this setting record that are
not applicable.

To support PCle RsvdP semantics for reserved hits, two values for each register are provided: an “AND
mask” and an “OR mask”. Each bit understood by firmware to be RsvdP shall be set to 1 inthe “AND
mask” and 0 in the “OR mask”. Each bit that firmware intends to be configured as 0 shall be set to 0 in both
the “AND mask” and the “OR mask”. Each bit that firmware intends to be configured a 1 shall be setto 1
in both the “AND mask” and the “OR mask”.

When configuring a given register, OSPM uses the following algorithm:

1. Readtheregister’s current value, which contains the register’s default value.

2. Peformabit-wise AND operation with the “AND mask” from the table below.
3. Perform abit-wise OR operation with the “OR mask” from the table below.
4

Override the computed settings for any bits if deemed necessary. For example, if OSPM is aware
of an architected meaning for a bit that firmware considers to be RsvdP, OSPM may choose to
override the computed setting for that bit. Note that firmware sets the “AND value” to 1 and the
“OR value’ to 0 for each bit that it considers to be RsvdP.

5. Write the end result value back to the register.

Note that the size of each field in the following table matches the size of the corresponding PCI Express
register.

Table 6-9 PCI Express Setting Record Content

Field Object Type |Definition
Header:

Type I nteger 0x02: Type 2 (PCI Express) setting record.

Revision I nteger 0x01: Revision 1, defining the set of fields below.
Uncorrectable Error Mask Register |Integer Bits O to 31 contain the “AND mask” to be used in
AND Mask the OSPM agorithm described above.
Uncorrectable Error Mask Register |Integer Bits O to 31 contain the “OR mask” to be used in the
OR Mask OSPM algorithm described above.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 223

Field Object Type [Definition

Uncorrectable Error Severity Register |Integer Bits 0 to 31 contain the “AND mask” to be used in

AND Mask the OSPM algorithm described above.

Uncorrectable Error Severity Register |Integer Bits 0 to 31 contain the “OR mask” to be used in the

OR Mask OSPM algorithm described above.

Correctable Error Mask Register Integer Bits O to 31 contain the *AND mask” to be used in

AND Mask the OSPM algorithm described above.

Correctable Error Mask Register OR |Integer Bits O to 31 contain the “OR mask” to be used in the

Mask OSPM algorithm described above.

Advanced Error Capabilities and Integer Bits O to 31 contain the *AND mask” to be used in

Control Register AND Mask the OSPM algorithm described above.

Advanced Error Capabilities and Integer Bits O to 31 contain the “OR mask” to be used in the

Control Register OR Mask OSPM algorithm described above.

Device Control Register AND Mask |Integer Bits O to 15 contain the *AND mask” to be used in
the OSPM algorithm described above.

Device Control Register OR Mask Integer Bits O to 15 contain the “OR mask” to be used in the
OSPM algorithm described above.

Link Control Register AND Mask Integer Bits O to 15 contain the *AND mask” to be used in
the OSPM agorithm described above.

Link Control Register OR Mask Integer Bits O to 15 contain the “OR mask” to be used in the
OSPM algorithm described above.

Secondary Uncorrectable Error Integer Bits O to 31 contain the “AND mask” to be used in

Severity Register AND Mask the OSPM agorithm described above

Secondary Uncorrectable Error Integer Bits O to 31 contain the “OR mask” to be used in the

Severity Register OR Mask OSPM algorithm described above

Secondary Uncorrectable Error Mask |Integer Bits O to 31 contain the “AND mask” to be used in

Register AND Mask the OSPM agorithm described above

Secondary Uncorrectable Error Mask |Integer Bits O to 31 contain the “OR mask” to be used in the

Register OR Mask OSPM algorithm described above

6.2.8.4 _HPX Example

Met hod (_HPX, 0) {
Ret urn (Package(2){

Package(6) { /1
0x00, /1
0x01, /1
0x08, /1
0x40, /1
0x01, /1
0x00 /1

b

Package(5) { /1
0x01, /1
0x01, /1
0x03, /1
0x04, /1
0x07 /1

H

PCl Setting Record

Type O

Revi sion 1

CachelLi neSi ze i n DWORDS
LatencyTimer in PCl clocks
Enabl e SERR (Bool ean)
Enabl e PERR (Bool ean)

PCl - X Setting Record

Type 1

Revi sion 1

Maxi mum Menory Read Byte Count

Average Maxi mum Qutstandi ng Split Transactions
Total Maxi mum Qutstanding Split Transactions

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

224 Advanced Configuration and Power Interface Specification

6.2.9 _MAT (Multiple APIC Table Entry)

This optional object evaluates to a buffer returning datain the format of a series of Multiple APIC
Description Table (MADT) APIC Structure entries. This object can appear under an 1/0 APIC or processor
object definition as processors may contain Local APICs. Specific types of MADT entries are meaningful
to (in other words, is processed by) OSPM when returned via the evaluation of this object as described
below. Other entry types returned by the evaluation of MAT areignored by OSPM.

When MAT appears under a Processor object, OSPM processes Local APIC (section 5.2.12.2, “Processor
Local APIC Structure”), Local SAPIC Structure (section 5.2.12.10, “Local SAPIC Structure”), and local
APIC NMI (section 5.2.12.7, “Local APIC NMI Structure”) entries returned from the object’ s eval uation.
Other entry types are ignored by OSPM. OSPM uses the ACPI processor ID in the entries returned from the
object’s evaluation to identify the entries corresponding to either the ACPI processor 1D of the Processor
object or the value returned by the _UID object under a Processor device.

When _MAT appears under an 1/O APIC, OSPM processes |/0 APIC (section 5.2.12.3, “1/O APIC
Structure”), 1/0 SAPIC (section 5.2.12.9, “1/O SAPIC Structure”), non-maskabl e interrupt sources (section
5.2.12.6, “Non-Maskable Interrupt Source Structure”), interrupt source overrides (section 5.2.12.5,
“Interrupt Source Override Structure”), and platform interrupt source structure (section 5.2.12.11,
“Platform Interrupt Source Structure”) entries returned from the object’ s evaluation. Other entry types are
ignored by OSPM.

Arguments:
None

Return Value:
A Buffer containing alist of APIC structure entries

Example ASL for _MAT usage:

Scope(_SB) {

Devi ce(PCl 0) { /1 Root PCl Bus
Name(_HI D, EI SAlI D(" PNPOA03")) /1 Need _HI D for root device
Name(_ADR, 0) /1 Device 0 on this bus
Met hod (_CRS, 0) { /1 Need current resources for root device

/! Return current resources for root bridge O

}

Name(_PRT, Package() { /1 Need PCl IRQ routing for PCl bridge
/1l Package with PCl IRQ routing table information

9]

Devi ce (P64A) { /1 PB4AA ACPI
Nane(_ADR, 0)
Oper at i onRegi on(TABD, SystenMenory, /] Physi cal address of first
/1 data byte of multiple ACPI table, Length of tables)
Field (TABD, ByteAcc, NoLock, Preserve){
MATD, Length of tables x 8

}
Met hod(_MAT, 0){
Return (MATD)

}
} /1 end P64A

} /1 end PCIO
} /1 end scope SB

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 225

6.2.10 _OSC (Operating System Capabilities)

This optional object isa control method that is used by OSPM to communicate to the platform the feature
support or capabilities provided by a device' s driver. This abject isachild object of a device and may also
existinthe\ SB scope, where it can be used to convey platform wide OSPM capabilities. When supported,
_OSCisinvoked by OSPM immediately after placing the device in the DO power state. Device specific
objects are evaluated after _OSC invocation. This allows the values returned from other objectsto be
predicated on the OSPM feature support / capability information conveyed by _OSC. OSPM may evaluate
_OSC multiple times to indicate changesin OSPM capability to the device but this may be precluded by
specific device requirements. As such, OSC usage descriptionsin section 9, “ ACPI-Defined Devices and
Device Specific Objects’, or other governing specifications describe superseding device specific_ OSC
capabilitiesand / or preclusions.

_OSC enables the platform to configure its ACPI namespace representation and object eval uations to match
the capabilities of OSPM. This enables legacy operating system support for platforms with new features
that make use of new namespace objects that if exposed would not be evaluated when running alegacy OS.
_OSC provides the capability to transition the platform to native operating system support of new features
and capabilities when available through dynamic namespace reconfiguration. _OSC also allows devices
with Compatible I Dsto provide superset functionality when controlled by their native (For example, HID
matched) driver as appropriate objects can be exposed accordingly as aresult of OSPM’s evaluation of
OSC.

Arguments: (4)
Arg0 — A Buffer containing aUUID

Argl — AnInteger containing a Revision ID of the buffer format
Arg2 — AnInteger containing a count of entriesin Arg3
Arg3 — A Buffer containing alist of DWORD capabilities

Return Value:
A Buffer containing alist of capabilities

Argument Information

Arg0: UUID — Universal Unique Identifier (16 Byte Buffer) used by the platform in conjunction with
Revision ID to ascertain the format of the Capabilities buffer.

Argl: Revision ID — Therevision of the Capabilities Buffer format. The revision level is specific to the
UUID.

Arg2: Count — Number of DWORDs in the Capabilities Buffer in Arg3

Arg3: Capabilities Buffer — Buffer containing the number of DWORDs indicated by Count. The first
DWORD of this buffer contains standard bit definitions as described below. Subsequent DWORDS contain
UUID-gpecific bits that convey to the platform the capabilities and features supported by OSPM.
Successive revisions of the Capabilities Buffer must be backwards compatible with earlier revisions. Bit
ordering cannot be changed.

Capabilities Buffers are device-specific and as such are described under specific device definitions. See
section 9, “ACPI Devices and Device Specific Objects’ for any _OSC definitions for ACPI devices. The
format of the Capabilities Buffer and behavior rules may also be specified by OEMs and IHV s for custom
devices and other interface or device governing bodies for example, the PCI SIG.

The first DWORD in the capabilities buffer is used to return errors defined by _OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

e Bit 0- Query Support Flag. If set, the _OSC invocation is a query by OSPM to determine or
negotiate with the platform the combination of capabilities for which OSPM may take control. In
this case, OSPM sets bits in the subsequent DWORDS to specify the capabilities for which OSPM
intends to take control. If clear, OSPM is attempting to take control of the capabilities
corresponding to the bits set in subsequent DWORDs. OSPM may only take control of capabilities
asindicated by the platform by the result of the query.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

226 Advanced Configuration and Power Interface Specification

Bit 1 — Always clear (0).
Bit 2 — Always clear (0).
Bit 3 — Always clear (0).
All others — reserved.

Return Value Infor mation

Capabilities Buffer (Buffer) — The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bits indicate acknowledgement that OSPM may take control of the
capability and cleared bits indicate that the platform either does not support the capability or that OSPM
may not assume control.

The first DWORD in the capabilities buffer is used to return errors defined by _ OSC. This DWORD must
always be present and may not be redefined/reused by unique interfaces utilizing _OSC.

e Bit 0— Reserved (not used)

e Bit1l—_OSCfailure. Platform Firmware was unable to process the request or query. Capabilities
bits may have been masked.

e Bit2—Unrecognized UUID. Thisbit is set to indicate that the platform firmware does not
recognize the UUID passed in via Arg0. Capabilities bits are preserved.

e Bit 3—Unrecognized Revision. Thisbit is set to indicate that the platform firmware does not
recognize the Revision ID passed in via Argl. Capabilities bits beyond those comprehended by the
firmware will be masked.

e Bit4—Capabilities Masked. Thisbit is set to indicate that capabilities bits set by driver software
have been cleared by platform firmware.

e All others—reserved.

Note: OSPM must not use the results of _OSC evaluation to choose a compatible device driver. OSPM
must use _HID, CID, or native enumerable bus device identification mechanisms to select an appropriate
driver for adevice.

The platform may issue a Notify(device, 0x08) to inform OSPM to re-evaluate _ OSC when the availability
of feature control changes. Platforms must not rely, however, on OSPM to evaluate _OSC after issuing a
Notify for proper operation as OSPM cannot guarantee the presence of a target entity to receive and
process the Notify for the device. For example, adevice driver for the device may not be loaded at the time
the Notify issignaled. Further, the issuance and processing rules for notification of changesin the
Capabilities Buffer is device specific. As such, the allowable behavior is governed by device specifications
either in section 9, “ ACPI-Specific Device Objects’, for ACPI-define devices, or other OEM, IHV, or
device governing body’s' device specifications.

Itispermitted for _OSC to return al bits in the Capabilities Buffer cleared. An example of thisiswhen
significant timeis required to disable platform-based feature support. The platform may then later issue a
Notify to tell OSPM to re-evaluate _OSC to take over native control. This behavior is aso device specific
but may also rely on specific OS capability.

In general, platforms should support both OSPM taking and relinquishing control of specific feature
support via multiple invocations of _OSC but the required behavior may vary on a per device basis.

Since platform context is lost when the platform enters the S4 deeping state, OSPM must re-evaluate _ OSC
upon wake from $4 to restore the previous platform state. This requirement will vary depending on the
device specific _OSC functionality.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 227

6.2.10.1 Rules for Evaluating _OSC

This section defines when and how the OS must evaluate OSC, as well as restrictions on firmware
implementation.

6.2.10.1.1 Query Flag

If the Query Support Flag (Capabilities DWORD 1, bit 0) is set by the OS when evaluating _OSC, no
hardware settings are permitted to be changed by firmware in the context of the _OSC call. It is strongly
recommended that the OS evaluate _OSC with the Query Support Flag set until _OSC returns the
Capabilities Masked bit clear, to negotiate the set of features to be granted to the OS for native support; a
platform may reguire a specific combination of features to be supported natively by an OS before granting
native control of a given feature.

6.2.10.1.2 Evaluation Conditions
The OS must evaluate _OSC under the following conditions:

During initialization of any driver that provides native support for features described in the section above.
These features may be supported by one or many drivers, but should only be evaluated by the main bus
driver for that hierarchy. Secondary drivers must coordinate with the bus driver to install support for these
features. Drivers may not relinquish control of features previously obtained (i.e., bits set in Capabilities
DWORD3 after the negotiation process must be set on all subsequent negotiation attempts.)

When a Notify(<device>, 8) is delivered to the PCI Host Bridge device.

Upon resume from S4. Platform firmware will handle context restoration when resuming from S1-S3.

6.2.10.1.3 Sequence of _OSC calls

The following rules govern sequences of callsto _OSC that are issued to the same host bridge and occur
within the same boot.

e TheOSis permitted to evaluate _OSC an arbitrary number of times.

o |f the OS declares support of afeature in the Status Field in one call to _OSC, then it must
preserve the set state of that bit (declaring support for that feature) in all subsequent calls.

e |f the OSisgranted control of afeature in the Control Field in one call to _OSC, then it must
preserve the set state of that bit (requesting that feature) in all subsequent calls.

e Firmware may not reject control of any feature it has previously granted control to.

e Thereisno mechanism for the OSto relinquish control of a feature previously requested and
granted.

6.2.10.2 Platform-Wide OSPM Capabilities

OSPM evauates\ SB. OSC to convey platform-wide OSPM capabilities to the platform. Argument
definitions are as follows:

Arguments: (4)
Arg0 — UUID (Buffer): 0811B06E-4A27-44F9-8D60-3CBBC22E7B48

Argl —Revision ID (Integer): 1

Arg2 — Count of Entriesin Arg3 (I nteger): 2

Arg3 — DWORD capahilities (Buffer): First DWORD: as described in section 6.2.9, Second DWORD:
See Table 6-10

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

228 Advanced Configuration and Power Interface Specification

Table 6-10 Platform-Wide OSC CapabilitiesDWORD 2

Bits Field Name Definition

0 Processor Aggregator Thishit isset if OSPM supports the Processor Aggregator device as
Device Support described in Section 8.5, “Processor Aggregator Device’

1 _PPC _OST Processing Thishitisset if OSPM will evaluate the _OST object defined under
Support aprocessor as aresult of _PPC change notification (Notify 0x80)

2 _ PR3 Support Thishitisset if OSPM supportsreading PR3and using power

resources to switch power. Note this handshake translates to an
operating model that the platform and OSPM supports both the
power model containing both D3hot and D3.

3 Insertion/ Ejection _OST | Thishit isset if OSPM will evaluate the OST object defined under
Processing Support adevice when processing insertion and ejection source event codes.
4 APEI Support Thishit isset if OSPM supports the ACPI Platform Error Interfaces.
See Section 17, “ACPI Platform Error Interfaces’.
315 Reserved (must be 0)

Return Value Infor mation

Capabilities Buffer (Buffer) — The platform acknowledges the Capabilities Buffer by returning a buffer of
DWORDs of the same length. Set bitsindicate acknowledgement and cleared bits indicate that the platform
does not support the capability.

6.2.10.3 _OSC Implementation Example for PCI Host Bridge Devices

The following section is an excerpt from the PCI Firmware Specification Revision 3.0 and is reproduced
with the permission of the PCI SIG. Note: The PCI SIG ownsthe definition of _OSC behavior and
parameter bit definitionsfor PCI devices. In the event of a discr epancy between the following
example and the PCI Firmwar e Specification, the latter has precedence.

The _OSC interface defined in this section applies only to “Host Bridge” ACPI devices that originate PCI,
PCI-X or PCI Express hierarchies. These ACPI devices must havea_HID of (or _CID including) either
EISAID(“PNPOAQO3") or EISAID(“*PNPOA08"). For a host bridge device that originates a PCl Express
hierarchy, the _OSC interface defined in this section isrequired. For a host bridge device that originates a
PCI/PCI-X bus hierarchy, inclusion of an _OSC object is optional.

The _OSC interface for a PCI/PCI-X/PCI Express hierarchy isidentified by the following Universal
Uniform Identifier (UUID):

33DB4D5B-1FF7-401C-9657-7441C03DD766

A revision ID of 1 encompasses fields defined in this section of thisrevision of this specification,
comprised of 3 DWORDs, including the first DWORD described by the generic ACPI definition of _OSC.

The first DWORD in the _OSC Capabilities Buffer contain bits are generic to _OSC and include status and
error information.

The second DWORD inthe OSC capabilities buffer is the Support Field. Bits defined in the Support Field
provide information regarding OS supported features. Contents in the Support Field are passed one-way;
the OS will disregard any changes to this field when returned. See Table 6-8 for descriptions of capabilities
bitsin this field passed as a parameter into the _OSC control method.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 229

The third DWORD in the _OSC Capabilities Buffer isthe Control Field. Bits defined in the Control Field
are used to submit request by the OS for control/handling of the associated feature, typically (but not
excluded to) those features that utilize native interrupts or events handled by an OS-level driver. See Table
6-10 for descriptions of capabilities bitsin this field passed as a parameter into the _OSC control

method. If any bitsin the Control Field are returned cleared (masked to zero) by the _OSC control method,
the respective feature is designated unsupported by the platform and must not be enabled by the OS. Some
of these features may be controlled by platform firmware prior to OS boot or during runtime for alegacy
OS, while others may be disabled/inoperative until native OS support is available. See Table 6-11 for
descriptions of capabilities bitsin thisreturned field.

If the _OSC control method is absent from the scope of a host bridge device, then the OS must not enable
or attempt to use any features defined in this section for the hierarchy originated by the host bridge. Doing
so could contend with platform firmware operations, or produce undesired results. It is recommended that a
machine with multiple host bridge devices should report the same capabilities for all host bridges, and also
negotiate control of the features described in the Control Field in the same way for all host bridges.

Table6-11 Interpretation of _OSC Support Field

Support Field | Interpretation

bit offset

0 Extended PCI Config operation regions supported
The OS setsthisbit to 1 if it supports ASL accesses through PCI Config operation
regions to extended configuration space (offsets greater than OxFF). Otherwise, the
OS sets thisbit to 0.

1 Active State Power Management supported
The OS setsthis bit to 1 if it natively supports configuration of Active State Power
Management registersin PCl Express devices. Otherwise, the OS sets this bit to 0.

2 Clock Power Management Capability supported

The OS setsthisbit to 1 if it supports the Clock Power Management Capability, and
will enable this feature during a native hot plug insertion event if supported by the
newly added device. Otherwise, the OS sets this bit to O.

Note: The Clock Power Management Capability is defined in an errata to the PCI
Express Base Specification, 1.0.
3 PCI Segment Groups supported

The OS setsthisbit to 1 if it supports PCI Segment Groups as defined by the _ SEG
object, and access to the configuration space of devicesin PCl Segment Groups as
described by this specification. Otherwise, the OS sets this bit to 0.

4 MSI supported

The OS setsthis bit to 1 if it supports configuration of devices to generate message-
signaled interrupts, either through the MSI Capability or the MSI-X Capability.
Otherwise, the OS sets this bit to O.

5-31 Reserved

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

230 Advanced Configuration and Power Interface Specification

Table6-12 Interpretation of _OSC Control Field, Passed in via Arg3

Control Field
bit offset

I nterpretation

0

PCI Express Native Hot Plug control

The OS sets this bit to 1 to request control over PCl Express native hot plug. If the
OS successfully receives control of this feature, it must track and update the status of
hot plug slots and handle hot plug events as described in the PCl Express Base
Specification.

SHPC Native Hot Plug control

The OS sets this bit to 1 to request control over PCI/PCI-X Standard Hot-Plug
Controller (SHPC) hot plug. If the OS successfully receives control of this feature, it
must track and update the status of hot plug slots and handle hot plug events as
described in the SHPC Specification.

PCI Express Native Power Management Events control

The OS sets this bit to 1 to request control over PCl Express native power
management event interrupts (PMEs). If the OS successfully receives control of this
feature, it must handle power management events as described in the PCI Express
Base Specification.

PCI Express Advanced Error Reporting control

The OS sets this bit to 1 to request control over PCI Express Advanced Error
Reporting. If the OS successfully receives control of this feature, it must handle error
reporting through the Advanced Error Reporting Capability as described in the PCI
Express Base Specification.

PCI Express Capability Structure control

The OS sets this bit to 1 to request control over the PCI Express Capability
Structures (standard and extended) defined in the PCI Express Base Specification
version 1.1. These capability structures are the PCl Express Capability, the virtual
channel extended capability, the power budgeting extended capability, the advanced
error reporting extended capability, and the serial number extended capability. If the
OS successfully receives control of this feature, it is responsible for configuring the
registersin all PCl Express Capabilitiesin a manner that complies with the PCI
Express Base Specification. Additionally, the OS is responsible for saving and
restoring all PCI Express Capability register settings across power transitions when
register context may have been lost.

5-31

Reserved

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 231

Table 6-13 Interpretation of _OSC Control Field, Returned Value

Control Field | Interpretation
bit offset

0 PCI Express Native Hot Plug control

The firmware setsthis bit to 1 to grant control over PCl Express native hot plug
interrupts. If firmware allows the OS control of this feature, then in the context of the
_OSC method it must ensure that all hot plug events are routed to device interrupts as
described in the PCl Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not update the state of hot plug slots, including
the state of the indicators and power controller. If control of this feature was
requested and denied or was not requested, firmware returns this bit set to 0.

1 SHPC Native Hot Plug control

The firmware setsthis bit to 1 to grant control over control over PCI/PCI-X Standard
Hot-Plug Controller (SHPC)hot plug. If firmware allows the OS control of this
feature, then in the context of the _OSC method it must ensure that all hot plug
events are routed to device interrupts as described in the SHPC Specification.
Additionally, after control istransferred to the OS, firmware must not update the
state of hot plug dots, including the state of the indicators and power controller. If
control of this feature was requested and denied or was not requested, firmware
returns this bit set to 0.

2 PCI Express Native Power Management Events control

The firmware sets this bit to 1 to grant control over control over PCI Express native
power management event interrupts (PMES). If firmware allows the OS control of
this feature, then in the context of the _OSC method it must ensure that all PMEs are
routed to root port interrupts as described in the PCl Express Base Specification.
Additionally, after control is transferred to the OS, firmware must not update the
PME Status field in the Root Status register or the PME Interrupt Enable field in the
Root Control register. If control of this feature was requested and denied or was not
requested, firmware returns this bit set to 0.

3 PCI Express Advanced Error Reporting control

The firmware sets this bit to 1 to grant control over PCI Express Advanced Error
Reporting. If firmware allows the OS control of this feature, then in the context of
the _OSC method it must ensure that error messages are routed to device interrupts
as described in the PCI Express Base Specification. Additionally, after control is
transferred to the OS, firmware must not modify the Advanced Error Reporting
Capability. If control of this feature was requested and denied or was not requested,
firmware returns this bit set to 0.

4 PCI Express Capability Structure control

The firmware setsthis bit to 1 to grant control over the PCI Express Capability. If the
firmware does not grant control of this feature, firmware must handle configuration
of the PCI Express Capability Structure.

If firmware grants the OS control of this feature, any firmware configuration of the
PCI Express Capability may be overwritten by an OS configuration, depending on
OS policy.

531 Reserved

6.2.10.4 ASL Example

A sample _OSC implementation for a mobile system incorporating a PCl Express hierarchy is shown
below:

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

232 Advanced Configuration and Power Interface Specification

Devi ce(PCl 0) /'l Root PCl bus

{
Name(_HI D, EI SAI D(" PNPOA08")) // PCl Express Root Bridge
Nane(_Cl D, El SAI D(" PNPOA03")) // Conpatible PCl Root Bridge
Name(SUPP, 0) /1 PCl _OSC Support Field value
Name(CTRL, 0) /1 PCl _OSC Control Field value

Met hod(_OSC, 4)

{ /Il Check for proper UU D
I f (LEqual (Ar g0, ToUU D(" 33DB4D5B- 1FF7- 401C- 9657- 7441C03DD766")))
{

/]l Create DWrd-adressable fields fromthe Capabilities Buffer
Cr eat eDWor dFi el d(Arg3, 0, CDWL)
Cr eat eDWor dFi el d(Ar g3, 4, CDV2)
Cr eat eDWr dFi el d(Ar g3, 8, CDVB)

/1 Save Capabilities DWrd2 & 3
St or e(CDV2, SUPP)
St or e(CDWB, CTRL)

/1 Only allow native hot plug control if OS supports:
/1 * ASPM

/Il * Cdock PM

/[l * NMSI/WMBI-X

I f (LNot Equal (And(SUPP, 0x16), 0x16))

And(CTRL, Ox1E) // Mask bit O (and undefined bits)
}

/1 Always all ow native PME, AER (no dependenci es)

/'l Never allow SHPC (no SHPC controller in this system
And(CTRL, 0x1D, CTRL)

If(Not(And(CDWL, 1))) // Query flag clear?
{ /1 Disable GPEs for features granted native control.
I f (And(CTRL, 0x01)) // Hot plug control granted?

Store(0,HPCE) // clear the hot plug SCI enable bit
Store(1,HPCS) // clear the hot plug SCI status bit

}
I f (And(CTRL, 0x04)) // PME control granted?

Store(0,PMCE) // clear the PME SCI enable bit
Store(1,PMCS) // clear the PME SCI status bit

}
I f (And(CTRL, 0x10)) // OS restoring PCle cap structure?
{ /] Set status to not restore PCle cap structure

/1 upon resunme from S3

Store(1, S3CR

}

I f (LNot Equal (Argl, One))
{ /1 Unknown revision

Or (CDWL, 0x08, CDW.)
}

| f (LNot Equal (CDWB, CTRL))
{ I/l Capabilities bits were nasked
Or (CDWL, 0x10, CDWL)

}
/1 Update DWORD3 in the buffer
St or e(CTRL, CDWB)
Ret urn(Arg3)
} Else {
O (CDW, 4, CDWL) /1 Unrecogni zed UU D
Ret urn(Arg3)

}
} // End _OSC
} // End PCIO

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 233

6.2.11 _PRS (Possible Resource Settings)

This optional object evaluates to a byte stream that describes the possible resource settings for the device.
When describing a platform, specify a_PRS for al the configurable devices. Static (hon-configurable)
devices do not specify a_PRS object. The information in this package is used by OSPM to select a
conflict-free resource all ocation without user intervention. This method must not reference any operation
regions that have not been declared available by a_ REG method.

The format of the datain a_PRS object follows the same format asthe _CRS object (for more information,
seethe CRS object definition in section 6.2.2, “_ CRS (Current Resource Settings)”).

If the device isdisabled when PRSiscalled, it must remain disabled.

Arguments:
None

Return Value:
A Buffer containing a Resource Descriptor byte stream

6.2.12 _PRT (PCI Routing Table)

PCI interrupts are inherently non-hierarchical. PCl interrupt pins are wired to interrupt inputs of the
interrupt controllers. The PRT object provides a mapping from PCI interrupt pins to the interrupt inputs of
the interrupt controllers. The PRT object is required under all PCI root bridges. PRT evaluatesto a
package that contains alist of packages, each of which describes the mapping of a PCl interrupt pin.

Arguments:
None

Return Value:
A Package containing variable-length list of PCI interrupt mapping packages, as described below

Note: The PCI function number in the Address field of the PRT packages must be OxFFFF, indicating
“any” function number or “all functions’.

The PRT mapping packages have the fields listed in Table 6-14.
Table6-14 Mapping Fields

Field Type Description

Address | DWORD | The address of the device (uses the same format as_ ADR).

Pin BYTE The PCI pin number of the device (O-INTA, 1-INTB, 2-INTC, 3-INTD).

Source NamePath | Name of the device that allocates the interrupt to which the above pinis

Or connected. The name can be afully qualified path, arelative path, or asimple

BYTE name segment that utilizes the namespace search rules. Note: Thisfieldisa
NamePath and not a String literal, meaning that it should not be surrounded by

quotes. If thisfield isthe integer constant Zero (or aBY TE value of 0), then the

interrupt is alocated from the global interrupt pool.

Source DWORD | Index that indicates which resource descriptor in the resource template of the
Index device pointed to in the Source field thisinterrupt is allocated from. If the
Sour cefield isthe BY TE value zero, then thisfield is the global system
interrupt number to which the pin is connected.

There are two waysthat _PRT can be used. Typically, the interrupt input that a given PCI interrupt isonis
configurable. For example, agiven PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a PCl Interrupt
Link Device.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

234 Advanced Configuration and Power Interface Specification

These objectshave PRS, CRS, SRS, and _DIS control methods to allocate the interrupt. Then, OSPM
handl es the interrupts not as interrupt inputs on the interrupt controller, but as PCI interrupt pins. The driver
looks up the device' s pinsin the PRT to determine which device objects allocate the interrupts. To move
the PCI interrupt to a different interrupt input on the interrupt controller, OSPM uses _PRS, CRS, SRS,
and _DIS control methods for the PCI Interrupt Link Device.

In the second model, the PCI interrupts are hardwired to specific interrupt inputs on the interrupt controller
and are not configurable. In this case, the Source field in _PRT does not reference a device, but instead
contains the value zero, and the Source Index field contains the global system interrupt to which the PCI
interrupt is hardwired.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 235

6.2.12.1 Example: Using PRT to Describe PCI IRQ Routing

The following example describes two PCI dots and a PCl video chip. Notice that the interrupts on the two
PCI dots are wired differently (barber-poled).

Scope(_SB) {
Devi ce(LNKA) {
Nanme(_HI D, EI SAI D(" PNPOCOF")) /1 PC interrupt link
Nanme(_UI D, 1)
Nane(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, .) {10, 11} /1 1RQ 10,11

})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKB) {
Narme(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Narme(_UI D, 2)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, .) {11, 12} /Il 1RQs 11,12

})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKC) {
Narme(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Nanme(_UI D, 3)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, .) {12, 14} /Il TRQs 12, 14

})

Met hod(_DI S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKD) {
Name(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt link
Narme(_Ul D, 4)
Nane(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, .) {10, 15} /1l 1RQs 10,15

})
Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}
}
Devi ce(PCl 0) {

Néne(_PRT, Package{

Package{ Ox0004FFFF, 0, _SB_.LNKA, 0}, /1 Slot 1, INTA /1 Afully
Package{ 0x0004FFFF, 1, _SB .LNKB, 0}, /1 Slot 1, |INTB /1 qualified
Package{ Ox0004FFFF, 2, _SB_.LNKC, 0}, /1 Slot 1, INTC /1 pat hnane
Package{ Ox0004FFFF, 3, _SB_.LNKD, 0}, /1 Slot 1, INTD /1 can be used,
Package{ 0x0005FFFF, 0, LNKB, 0}, /1l Slot 2, INTA /1 or a sinmple
Package{ 0x0005FFFF, 1, LNKC, 0}, /1 Slot 2, |INTB /1 name segment
Package{ Ox0005FFFF, 2, LNKD, 0}, /1 Slot 2, INTC /] utilizing the
Package{ OxO005FFFF, 3, LNKA, 0}, /1 Slot 2, INTD Il search rules
Package{ 0xO006FFFF, 0, LNKC, 0} /'l Video, |NTA

19

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

236 Advanced Configuration and Power Interface Specification

6.2.13 _PXM (Proximity)

This optional object isused to describe proximity domains within a machine. _PXM evaluates to an integer
that identifies the device as belonging to a specific proximity domain. OSPM assumes that two devicesin
the same proximity domain are tightly coupled. OSPM could choose to optimize its behavior based on this.
For example, in a system with four processors and six memory devices, there might be two separate
proximity domains (0 and 1), each with two processors and three memory devices. In this case, the OS may
decide to run some software threads on the processorsin proximity domain O and others on the processors
in proximity domain 1. Furthermore, for performance reasons, it could choose to allocate memory for those
threads from the memory devices inside the proximity domain common to the processor and the memory
device rather than from a memory device outside of the processor’s proximity domain. _PXM can be used
to identify any device belonging to a proximity domain. Children of a device belong to the same proximity
domain as their parent unless they contain an overriding _PXM. Proximity domains do not imply any
gjection relationships.

An OS makes no assumptions about the proximity or nearness of different proximity domains. The
difference between two integers representing separate proximity domains does not imply distance between
the proximity domains (in other words, proximity domain 1 is not assumed to be closer to proximity
domain O than proximity domain 6).

If the Local APIC ID / Local SAPIC ID / Local x2APIC ID of adynamically added processor is not present
in the System Resource Affinity Table (SRAT), a_PXM object must exist for the processor’s device or one
of its ancestorsin the ACPI Namespace.

Arguments:
None

Return Value:
An Integer (DWORD) containing a proximity domain identifier.

6.2.14 _SLI (System Locality Information)

The System Locality Information Table (SLIT) table defined in Section 5.2.17, “ System Locality Distance
Information Table (SLIT)” provides relative distance information between all System Localities for use
during OS initialization.

The value of each Entry[i,j] inthe SLIT table, where i represents arow of a matrix and j represents a
column of a matrix, indicates the relative distances from System Locality / Proximity Domain i to every
other System Locality j in the system (including itself).

Thei,j row and column values correlate to the value returned by the _PXM object in the ACPI namespace.
See section 6.2.13, “_PXM (Proximity)” for more information.

Dynamic runtime reconfiguration of the system may cause the distance between System Localitiesto
change.

_SLI isan optional object that enables the platform to provide the OS with updated relative System
Locality distance information at runtime. _SLI provide OSPM with an update of the relative distance from
System Locality i to al other System Localities in the system.

Arguments:
None

Return Value:
A Buffer containing a system locality information table

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 237

If System Locality i > N, where N is the number of System Localities, the _SLI method returns a buffer
that contains these relative distances:

[(i, 0), (i, 1), ., (i, i-1), (i, i), (0, i), (2, i), .(i-1, i), (i, i)]

If System Locality i <N, the SLI method returns a buffer that contains these relative distances:

[(i, 0), (i, 1), ., (i, i), (i, N1), (0, i), (2, i),.€i, i), .. (N1, i)]
Note: (i, i) isalwaysavalue of 10.

Example

Node O Node 1 Node 2 X X) Node n

¥ ¥

The figure above diagrams a 4-node system where the nodes are numbered 0 through 3 (Node n = Node 3)
and the granularity is at the node level for the NUMA distance information. In this example we assign
System Localities/ Proximity Domain numbers equal to the node numbers (0-3). The NUMA relative
distances between proximity domains asimplemented in this system are described in the matrix represented
in Table 6-15. Proximity Domains are represented by the numbersin the top row and left column.
Distances are represented by the valuesin cellsinternal in the table from the domains.

Table 6-15 Example Relative Distances Between Proximity Domains

Proximity 0 1 2 3
Domain

0 10 15 20 18
1 15 10 16 24
2 20 16 10 12
3 18 24 12 10

An example of these distances between proximity domains encoded in a System Locality Information
Table for consumption by OSPM at boot time is described in Table 6-16.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

238 Advanced Configuration and Power Interface Specification

Table6-16 Example System L ocality Infor mation Table
Field Byte Byte Description

Length Offset
Header

Signature 4 0 ‘SLIT.

Length 4 4 60

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table D 8 16 For the System Locality Information Table, the table ID
is the manufacturer model ID.

OEM Revision 4 24 OEM revision of System Locality Information Table for
supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For the
DSDT, RSDT, SSDT, and PSDT tables, thisisthe ID
for the ASL Compiler.

Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe revision for
the ASL Compiler.

Number of System 8 36 4
Localities

Entry[0][Q] 1 44 10
Entry[0][1] 1 45 15
Entry[0][2] 1 46 20
Entry[0][3] 1 47 18
Entry[1][0] 1 48 15
Entry[1][1] 1 49 10
Entry[1][2] 1 50 16
Entry[1][3] 1 51 24
Entry[2][0] 1 52 20
Entry[2][1] 1 53 16
Entry[2][2] 1 54 10
Entry[2][3] 1 55 12
Entry[3][0] 1 56 18
Entry[3][1] 1 57 24
Entry[3][2] 1 58 12
Entry[3][3] 1 59 10

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 239

If anew node, “Node 4", is added, then Table 6-17 represents the updated system’s NUMA relative
distances of proximity domains.

Table6-17 Example Relative Distances Between Proximity Domains - 5 Node

Proximity 0 1 2 3 4
Domain

0 10 15 20 18 17
1 15 10 16 24 21
2 20 16 10 12 14
3 18 24 12 10 23
4 17 21 14 23 10

The new node’s _SLI object would evaluate to a buffer containing [17,21,14,23,10,17,21,14,23,10].

Note: some systems support interleave memory across the nodes. The SLIT representation of these systems
isimplementation specific.

6.2.15 SRS (Set Resource Settings)

This optional control method takes one byte stream argument that specifies a new resource allocation for a
device. The resource descriptorsin the byte stream argument must be specified exactly aslisted in the
_CRS byte stream — meaning that the identical resource descriptors must appear in the identical order,
resulting in a buffer of exactly the same length. Optimizations such as changing an IRQ descriptor to an
IRQNoOFlags descriptor (or vice-versa) must not be performed. Similarly, changing StartDependentFn to
StartDependentFnNoPri is not allowed. A _CRS abject can be used as atemplate to ensure that the
descriptors are in the correct format. For more information, see the _CRS abject definition.

The settings must take effect before the SRS control method returns.

This method must not reference any operation regions that have not been declared available by a_REG
method.

If the device isdisabled, SRS enables the device at the specified resources. _SRSis not used to disable a
device; usethe DIS control method instead.

Arguments: (1)

Arg0 — A Buffer containing a Resource Descriptor byte stream

Return Value:
None

6.3 Device Insertion, Removal, and Status Objects

The objects defined in this section provide mechanisms for handling dynamic insertion and removal of
devices and for determining device and notification processing status.

Deviceinsertion and removal objects are also used for docking and undocking mobile platforms to and
from a peripheral expansion dock. These objects give information about whether or not devices are present,
which devices are physically in the same device (independent of which bus the deviceslive on), and
methods for controlling g ection or interlock mechanisms.

The system is more stable when removabl e devices have a software-controlled, VCR-style gjection
mechanism instead of a“ surprise-styl€” ejection mechanism. In this system, the gject button for a device
does not immediately remove the device, but simply signals the operating system. OSPM then shuts down
the device, closes open files, unloads the driver, and sends a command to the hardware to €ject the device.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

240 Advanced Configuration and Power Interface Specification

In ACPI, the sequence of events for dynamically inserting a device follows the process below. Notice that
this process supports hot, warm, and cold insertion of devices.

1. If thedeviceis physically inserted while the computer isin the working state (in other words, hot
insertion), the hardware generates a general-purpose event.

2. The control method servicing the event uses the Notify(device,0) command to inform OSPM of the bus
that the new device is on or the device object for the new device. If the Notify command pointsto the
device object for the new device, the control method must have changed the device's status returned by
_STA toindicate that the device is now present. The performance of this process can be optimized by
having the object of the Notify as close as possible, in the namespace hierarchy, to where the new
device resides. The Notify command can also be used from the _WAK control method (for more
information about _ WAK, see section 7.3.7 “_WAK (System Wake)”) to indicate device changes that
may have occurred while the computer was sleeping. For more information about the Notify command,
see section 5.6.3 “Device Object Notification.”

3. OSPM usestheidentification and configuration objects to identify, configure, and load a device driver
for the new device and any devices found below the device in the hierarchy.

4. |Ifthedevice hasa_LCK control method, OSPM may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be awhole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. OSPM will then load and configure all
devicesit found below that bridge. The control method can also point to several different devicesin the
hierarchy if the new devices do not all live under the same bus. (in other words, more than one bus goes
through the connector).

For removing devices, ACPI supports both hot removal (systemisin the SO state), and warm removal
(systemisin asleep state: S1-34). Thisis done using the _EJx control methods. Devices that can be gjected
include an _EJx control method for each sleeping state the device supports (a maximum of 2 _EJx objects
can be listed). For example, hot removal devices would supply an _EJO; warm removal devices would use
one of _EJ1-EJA. These control methods are used to signal the hardware when an gject isto occur.

The sequence of events for dynamically removing a device goes as follows:

1. Thegect button is pressed and generates a general -purpose event. (If the system was in a sleeping
dtate, it should wake the computer).

2. The control method for the event uses the Notify(device, 3) command to inform OSPM which specific

device the user has requested to g ect. Notify does not need to be called for every device that may be

gjected, but for the top-level device. Any child devicesin the hierarchy or any €jection-dependent
devices on this device (as described by _EJD, below) are automatically removed.

The OS shuts down and unloads devices that will be removed.

If the device hasa L CK control method, OSPM runs this control method to unlock the device.

5. The OSlooksto see what _EJx control methods are present for the device. If the removal event will
cause the system to switch to battery power (in other words, an undock) and the battery is low, dead, or
not present, OSPM uses the lowest supported seep state EJx listed; otherwise it uses the highest state
_EJx. Having made this decision, OSPM runs the appropriate _EJx control method to prepare the
hardware for gject.

6. Warmremoval requiresthat the system be put in a leep state. If the removal will be awarm removal,
OSPM puts the system in the appropriate Sx state. If the removal will be a hot removal, OSPM skipsto
step 8, below.

7. For warm removal, the system is put in a deep state. Hardware then uses any motors, and so on, to
gject the device. Immediately after ejection, the hardware transitions the computer to SO. If the system
was sl eeping when the gject notification came in, the OS returns the computer to a sleeping state
consistent with the user’ s wake settings.

8. OSPM calls_STA to determine if the gject successfully occurred. (In this case, control methods do not
need to use the Notify(device,3) command to tell OSPM of the changein _STA) If there were any
mechanical failures, _STA returns 3: device present and not functioning, and OSPM informs the user
of the problem.

A w

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 241

Note: This mechanism is the same for removing a single device and for removing several devices, asin an
undock.

ACPI does not disallow surprise-style removal of devices; however, thistype of removal is not
recommended because system and data integrity cannot be guaranteed when a surprise-style removal
occurs. Because the OS is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal, a general-purpose
event must be raised. Its associated control method must use the Notify command to indicate which bus the
device was removed from.

The device insertion and removal objects are listed in Table 6-18.

Table 6-18 Device Insertion, Removal, and Status Objects

Object Description

_EDL Object that evaluates to a package of namespace references of device objects that depend on
the device containing _EDL.

_EID Object that evaluates to the name of a device object on which a device depends. Whenever the
named device is gjected, the dependent device must receive an gjection notification.

_EX Control method that g ects a device.

_LCK Control method that locks or unlocks adevice.

_OsT Control method invoked by OSPM to convey processing status to the platform.

_RMV Object that indicates that the given device isremovable.

STA Control method that returns a device' s status.

6.3.1 _EDL (Eject Device List)

This object evaluates to a package of namespace references containing the names of device objects that
depend on the device under which the EDL object is declared. Thisis primarily used to support docking
stations. Before the device under which the EDL object is declared may be gjected, OSPM prepares the
deviceslisted inthe EDL object for physical removal.

Arguments:
None

Return Value:
A variable-length Package containing a list of namespace references

Before OSPM egjects adevice viathe device’s EJx methods, all dependent devices listed in the package
returned by EDL are prepared for removal. Notice that _EJx methods under the dependent devices are not
executed.

When describing a platform that includes a docking station, an _EDL object is declared under the docking
station device. For example, if amaobile system can attach to two different types of docking stations, EDL
is declared under both docking station devices and eval uates to the packaged list of devices that must be
gjected when the system is gjected from the docking station.

An ACPI-compliant OS evaluatesthe EDL method just prior to g ecting the device.

6.3.2 _EJD (Ejection Dependent Device)

This object is used to specify the name of a device on which the device, under which this object is declared,
is dependent. This object is primarily used to support docking stations. Before the device indicated by
_EJD isejected, OSPM will prepare the dependent device (in other words, the device under which this
object is declared) for removal.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

242 Advanced Configuration and Power Interface Specification

Arguments:
None

Return Value:
A String containing the device name

_EJD isevaluated once when the ACPI table loads. The EJx methods of the device indicated by _EJID will
be used to gect all the dependent devices. A device' s dependents will be g ected when the device itself is
gjected.

Note: OSPM will not execute a dependent device’'s _EJx methods when the device indicated by EJD is
gjected.

When describing a platform that includes a docking station, usually more than one EJD object will be
needed. For example, if a dock attaches both a PCI device and an ACPI-configured device to a mobile
system, then both the PCI device description package and the ACPI-configured device description package
must include an _EJD object that eval uates to the name of the docking station (the name specified in an
_ADRor HID object in the docking station’s description package). Thus, when the docking connector
signals an gject request, OSPM first attempts to disable and unload the drivers for both the PCI and ACPI
configured devices.

Note: An ACPI 1.0 OS evaluates the _EJD methods only once during the table load process. This greatly
restricts a table designer’ s freedom to describe dynamic dependencies such as those created in scenarios
with multiple docking stations. Thisrestriction isillustrated in the example below; the _EJD information
supplied viaand ACPI 1.0-compatible namespace omits the IDE2 device from DOCK2'slist of gjection
dependencies. Starting in ACPI 2.0, OSPM is presented with a more in-depth view of the gjection
dependenciesin a system by use of the EDL methods.

Example

Anexampleuseof EJD and EDL isasfollows:
Scope(_SB. PCI 0) {

Devi ce(DOCK1) { /1 Pass through dock — DOCK1l

Narme(_ADR, .)

Met hod(_EJO, 0) {.}

Met hod(_DCK, 1) {.}

Nare(_BDN, ..

Met hod(_STA, 0) {OxF}

Name(_EDL, Package() { // DOCKl1 has two dependent devices — |IDE2 and CB2
\ _SB. PCI 0. | DE2,
\ _SB. PCI 0. CB2})

}
Devi ce(DOCK2) { /1 Pass through dock — DOCK2
Narme(_ADR, .)
Met hod(_EJO, 0) {.}
Met hod(_DCK, 1) {.}
Nare(_BDN, ..
Met hod(_STA, 0) {0x0}
Name(_EDL, Package() { // DOCK2 has one dependent device — |DE2
\ _SB. PCI 0. | DE2})

}

Devi ce(1 DE1) { /1 1DE Drivel not dependent on the dock
Narme(_ADR, .)
}

Devi ce(1 DE2) { /1 1DE Drive2
Narme(_ADR, .)
Narme(_EJD, "\\ _SB. PCl 0. DOCK1") // Dependent on DOCK1l

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 243

Devi ce(CB2) ({ /1 CardBus Controller
Name(_ADR, ..
Nanme(_EJD, "\\ _SB. PCI 0. DOCK1") // Dependent on DOCK1

}
} /1 end _SB.PCIO

6.3.3 _EJx (Eject)

These control methods are optional and are supplied for devices that support a software-controlled VCR-
style gjection mechanism or that require an action be performed such asisolation of power/data lines before
the device can be removed from the system. To support warm (system isin asleep state) and hot (systemis
in SO) removal, an _EJx control method is listed for each deep state from which the device supports
removal, where x is the sleeping state supported. For example, _EJO indicates the device supports hot
removal; EJ1-EJ4 indicate the device supports warm removal.

Arguments: (1)

Arg0—An Integer containing a device gection control
0 — Cancel amark for gjection request (EJO will never be called with this value)
1 —Hot gject or mark for gjection

Return Value:
None

For hot removal, the device must be immediately jected when OSPM callsthe _EJO control method. The
_EJO control method does not return until gection is complete. After calling _EJO, OSPM verifies the
device no longer existsto determineif the gect succeeded. For _HID devices, OSPM evaluatesthe STA
method. For _ADR devices, OSPM checks with the bus driver for that device.

For warm removal, the EJ1— EJ4 control methods do not cause the device to be immediately gjected.

Instead, they set proprietary registersto prepare the hardware to gject when the system goesinto the given
deep state. The hardware ejects the device only after OSPM has put the system in a sleep state by writing
tothe SLP_EN register. After the system resumes, OSPM calls _STA to determine if the gject succeeded.

A device object may have multiple _EJx control methods. Firgt, it lists an EJx control method for the
preferred sleeping state to gject the device. Optionally, the device may list an EJ4 control method to be
used when the system has no power (for example, no battery) after the g ect. For example, a hot-docking
notebook might list _EJO and _E.

6.3.4 _LCK (Lock)

This control method is optional and is required only for a device that supports a software-controlled locking
mechanism. When the OS invokes this control method, the associated device is to be locked or unlocked
based upon the value of the argument that is passed. On alock regquest, the control method must not
complete until the device is completely locked.

Arguments: (1)

Arg0— AnInteger containing a device lock control
0 — Unlock the device
1 —Lock the device

Return Value:
None

When describing a platform, devices use either a_L CK control method or an _EJx control method for a
device.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

244 Advanced Configuration and Power Interface Specification

6.3.5 _OST (OSPM Status Indication)

Thisobject is an optional control method that isinvoked by OSPM to indicate processing status to the
platform. During device gjection, device hot add, or other event processing, OSPM may need to perform
specific handshaking with the platform. OSPM may also need to indicate to the platform itsinability to
complete arequested operation; for example, when a user presses an gection button for adevicethat is
currently in use or is otherwise currently incapable of being g ected. In this case, the processing of the
ACPI Eject Request notification by OSPM fails. OSPM may indicate this failure to the platform through
the invocation of the _OST control method. As aresult of the status notification indicating €jection failure,
the platform may take certain action including reissuing the notification or perhaps turning on an
appropriate indicator light to signal the failure to the user.

Arguments: (3)

Arg0— An Integer containing the source event
Argl —AnInteger containing the status code
Arg2 — A Buffer containing status information

Return Value:
None

Argument | nfor mation:

Arg0 — source_event: DWor dConst

If the value of source_event is <= OXFF, this argument is the ACPI notification value whose processing
generated the status indication. Thisisthe value that was passed into the Notify operator.

If the value of source _event is 0x100 or greater then the OSPM status indication is aresult of an OSPM
action asindicated in Table 6-19. For example, avalue of 0x103 will be passed into _ OST for this
argument upon the failure of a user interface invoked device gection.

If OSPM is unable to identify the originating notification value, OSPM invokes OST with avalue that
contains all bits set (ones) for this parameter.

Argl — Status Code: DWor dConst . OSPM indicates a notification value specific status. See Tables 6-20, 6-
21, and 6-22 for status code descriptions.

Arg2 — A buffer containing detailed OSPM-specific information about the status indication. This argument
may be null.

Table6-19 _OST Source Event Codes

Source Event Code | Description

0-OxFF Reserved for Notification Values
0x100-0x102 Reserved

0x103 Ejection Processing
0x104-0x1FF Reserved

0x200 Insertion Processing
0x201-OxFFFFFFFF | Reserved

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 245

Table6-20 General Processing Status Codes

Status Code Description

0 Success

1 Non-specific failure

2 Unrecognized Notify Code
3-0x7F Reserved

0x80-OXFFFFFFFF

Notification value specific status codes

Table6-21 Ejection Request / Ejection Processing (Sour ce Events. 0x03 and 0x103) Status Codes

Status Code Description

0x80 Device gjection not supported by OSPM

0x81 Devicein use by application

0x82 Device Busy

0x83 Ejection dependency is busy or not supported for gection by OSPM
0x84 Ejection isin progress (pending)

0x85-OXFFFFFFFF

Reserved

Table6-22 Insertion Processing (Sour ce Event: 0x200) Status Codes

Status Code Description
0x80 Deviceinsertion in progress (pending)
0x81 Device driver load failure
0x82 Device insertion not supported by OSPM
0x83-0x8F Reserved
0x90-0x9F Insertion failure — Resources Unavailable as described by the following bit
encodings:
Bit[3] Bus Numbers
Bit[2] Interrupts
Bit[1] I/0
Bit[O] Memory
OxAO-OXFFFFFFFF | Reserved

It is possible for the platform to issue multiple notifications to OSPM and for OSPM to process the
notifications asynchronoudly. As such, OSPM may invoke _OST for notifications independent of the order
the notification are conveyed by the platform or by software to OSPM.

The figure below provides and example event flow of device gection on a platform employing the OST

object.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

246 Advanced Configuration and Power Interface Specification

User interacts with
OSPM to request
device ejection

_OST(0x103,84,™)

O lales »| Ejection Progress

Platform blinks

User Presses
Hardware Eject
Button

Platform generates GPE/SCI

OSPM evaluation of GPE
Status method generates

A

Light

OSPM Processes
Ejection Request

Application connections to device closed.

OS Ejection
Successful?

Yes

Evaluate _EJx

OSPM evaluates

Notify(device,3(eject))

Platform turns off

Ejection Progress
7OST(0>;1r03,81,) t—————————»{ Light and turns on m
Ejection Failure

_OST(0x03,81,™)

Light

Y

OSPM places

x=0in_EJx? >——No—» system into sleep
state

Platform wakeup |

Platform ejection
occurs

occurs

7

Platform turns off
Ejection Progress Done
Light

Figure6-5 Device Ejection Flow Example Using _OST

NOTE: To maintain compatibility with OSPM implementations of previous revisions of the ACPI
specification, the platform must not rely on OSPM’ s evaluation of the _OST object for proper platform

operation.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration

Example ASL for _OST usage:
External (_SB. PCl 4, DeviceQbj)

Scope(\ _SB. PCl 4) {
Oper ati onRegi on(LED1, System O, 0x10C0, 0x20)
Fi el d(LED1, AnyAcc, NoLock, Preserve)
{ /1 LED controls

SOLE, 1, /1 Slot O Ejection Progress LED
SOLF, 1, // Slot O Ejection Failure LED
S1LE, 1, /1 Slot 1 Ejection Progress LED
S1LF, 1, // Slot 1 Ejection Failure LED
S2LE, 1, /1 Slot 2 Ejection Progress LED
S2LF, 1, // Slot 2 Ejection Failure LED
S3LE, 1, /1 Slot 3 Ejection Progress LED
S3LF, 1 /1 Slot 3 Ejection Failure LED
}
Devi ce(SLT3) { /1 hot plug device
Nare(_ADR, 0x000C0003)
Met hod(_OST, 3, Serialized) { // OS calls _OST with notify code 3 or 0x103
/1 and status codes 0x80-0x83
/1 to indicate a hot renove request failure.
/1 Status code 0x84 indicates an ejection
/'l request pending.
| f (LEqual (ArgO0, Ones)) /1 Unspecified event
/'l Performgeneric event processing here
}
Swi t ch(And(Ar g0, OxFF)) /1 Mask to retain | ow byte

Case(0x03) /1 Ejection request
Swi t ch(Argl)
{
Case(Package(){0x80, 0x81, 0x82, 0x83})
{

/! Ejection Failure for sone reason
Store(Zero, ""S3LE) /1 Turn off Ejection Progress LED

St ore(One, ""S3LF) // Turn on Ejection Failure LED
}
Case(0x84) /'l Ej ect request pending
St ore(One, ""S3LE) // Turn on Ej ection Request LED
St ore(Zero, ""S3LF) /1 Turn off E ection Failure LED
}
}
}
}
} /1 end _OST
Met hod(_EJO, 1) /1 Successful ejection sequence
Store(Zero, ""S3LE) /1 Turn off Ejection Progress LED

}
} /1 end SLT3
} /1 end scope _SB.PCl 4

Scope (_GPE)
Met hod(_E13)

Store(One, _SB. PCl 4. S3LE) /1 Turn on ejection request LED
Notify(_SB.PCl 4. SLT3, 3) /1 Ejection request driven from GPE13

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

247

248 Advanced Configuration and Power Interface Specification

6.3.6 _RMV (Remove)

The optional _RMV object indicates to OSPM whether the device can be removed while the system isin
the working state and does not require any ACPI system firmware actions to be performed for the deviceto
be safely removed from the system (in other words, any device that only supports surprise-style removal).
Any such removable device that does not have L CK or _EJx control methods must havean RMYV object.
Thisallows OSPM to indicate to the user that the device can be removed and to provide away for shutting
down the device before removing it. OSPM will transition the device into D3 before telling the user it is
safe to remove the device.

This method is reevaluated after a device-check notification.

Arguments:
None

Return Value:
An Integer containing the device removal status
0 — The device cannot be removed
1 —The device can be removed

Note: Operating Systems implementing ACPI 1.0 interpret the presence of this object to mean that the
device isremovable.

6.3.7 _STA (Status)

This object returns the current status of a device, which can be one of the following: enabled, disabled, or
removed.

OSPM evauatesthe STA object before it evaluates adevice _INI method. The return values of the
Present and Functioning bits determines whether _INI should be evaluated and whether children of the
device should be enumerated and initialized. See section 6.5.1, “_INI (Init)”.

If adevice object (including the processor object) does not have an _STA object, then OSPM assumes that
the device is present, enabled, shown in the Ul, and functioning.

This method must not reference any operation regions that have not been declared available by a_REG
method.

Arguments:
None
Return Value:
An Integer containing a device status bitmap:
Bit0— Set if the deviceis present.
Bitl-— Set if the deviceis enabled and decoding its resources.
Bit2 - Set if the device should be shown in the Ul.
Bit3— Set if the deviceis functioning properly (cleared if device failed its diagnostics).
Bit4-— Set if the battery is present.

Bits5-31 - Reserved (must be cleared).

Return Value I nformation

If bit 0 iscleared, then bit 1 must also be cleared (in other words, a device that is not present cannot be
enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit
0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 249

If adeviceis present in the machine, but should not be displayed in OSPM user interface, bit 2 is cleared.
For example, a notebook could have joystick hardware (thus it is present and decoding its resources), but

the connector for plugging in the joystick requires a port replicator. If the port replicator isnot plugged in,
the joystick should not appear in the Ul, so bit 2 is cleared.

_STA may return bit O clear (not present) with bit 3 set (device isfunctional). This caseisused to indicate a
valid device for which no device driver should be loaded (for example, abridge device.) Children of this
device may be present and valid. OSPM should continue enumeration below a device whose _STA returns
this bit combination.

If adevice object (including the processor object) does not have an _STA object, then OSPM assumes that
all of the above bits are set (i.e., the device is present, enabled, shown in the Ul, and functioning).
6.4 Resource Data Types for ACPI
The CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.
6.4.1 ASL Macros for Resource Descriptors
ASL includes some macros for creating resource descriptors. The ASL syntax for these macros is defined
in section 18.5, “ASL Operator Reference”, along with the other ASL operators.
6.4.2 Small Resource Data Type
A small resource data type may be 2 to 8 bytes in size and adheres to the following format:
Table6-23 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit[7] Tag Bitg6:3] Tag Bits[2:0]
Type-0 (Small item) Small item name Length—n bytes

Byteslton Data bytes (Length 0 —7)

The following small information items are currently defined for Plug and Play devices:
Table 6-24 Small Resource Items

Small Item Name Value
Reserved 0x00-0x03
IRQ Format Descriptor 0x04
DMA Format Descriptor 0x05

Start Dependent Functions Descriptor 0x06

End Dependent Functions Descriptor 0x07

I/O Port Descriptor 0x08
Fixed Location 1/O Port Descriptor 0x09
Reserved 0x0A—0x0D
Vendor Defined Descriptor Ox0E

End Tag Descriptor OxOF

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

250 Advanced Configuration and Power Interface Specification

6.4.2.1 IRQ Descriptor
TypeO, Small Item Name Ox4, Length =2 or 3

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so atwo-byte field is used. This structure is repeated for each separate interrupt required.

Table6-25 IRQ Descriptor Definition

Offset | Field Name

Byte 0 | Value = 0x22 or 0x23 (0010001nB) — Type = 0, Small item name = Ox4, Length=2or 3

Bytel | IRQ mask bitg7:0], INT
Bit[0] represents IRQO, bit[1] isIRQL, and so on.

Byte2 | IRQ mask bitg15:8], INT
Bit[O] represents IRQS, hit[1] is IRQ9, and so on.

Byte 3 | IRQ Information. Each bit, when set, indicates this device is capable of driving a certain type of
interrupt. (Optional—if not included then assume edge sensitive, high true interrupts.) These bits
can be used both for reporting and setting IRQ resources.

Note: Thisdescriptor is meant for describing interrupts that are connected to PIC-compatible
interrupt controllers, which can only be programmed for Active-High-Edge-Triggered or Active-
Low-Level-Triggered interrupts. Any other combination isinvalid. The Extended Interrupt
Descriptor can be used to describe other combinations.
Bit[7:5] Reserved (must be 0)
Bit[4] Interrupt is sharable, SHR
Bit[3] Interrupt Polarity, LL

0 Active-High—Thisinterrupt is sampled when the signal is high, or true

1 Active-Low —Thisinterrupt is sampled when the signal islow, or false.
Bit[2:1] Ignored
Bit[0Q] Interrupt Mode, HE

0 Level-Triggered — Interrupt istriggered in response to signal in alow state.

1 Edge-Triggered — Interrupt istriggered in response to achangein signal state

from low to high.

Note: Low true, level sensitive interrupts may be electrically shared, but the process of how this might
work is beyond the scope of this specification.

Note: If byte 3 is not included, High true, edge sensitive, non-shareable is assumed.

See section 18.5.57, “IRQ (Interrupt Resource Descriptor Macro),” and section 18.5.58, “IRQNoFlags
(Interrupt Resource Descriptor Macro),” for adescription of the ASL macros that create an IRQ descriptor.

6.4.2.2 DMA Descriptor

Type 0, Small Item Name Ox5, Length =2

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table6-26 DMA Descriptor Definition

Offset Field Name

Byte 0 Value = 0x2A (00101010B) — Type = 0, Small item name = Ox5, Length = 2

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 251

Offset Field Name

Byte 1 DMA channel mask bitg7:0] (channels0—7), DMA
Bit[Q] ischannel 0, etc.

Byte 2 Bit[7] Reserved (must be 0)
Bitg6:5] DMA channel speed supported, TYP
00 Indicates compatibility mode
01 Indicates Type A DMA asdescribed in the EISA
10 Indicates Type B DMA
11 Indicates Type F
Bitg4:3] Ignored
Bit[2] Logical device bus master status, BM
0 Logical deviceisnot abus master
1 Logical deviceisabus master
Bitg1:0] DMA transfer type preference, _SIZ
00 8-hit only
01 8- and 16-bit
10 16-bit only
11 Reserved

See section 18.5.30, “DMA (DMA Resource Descriptor Macro),” for adescription of the ASL macro that
creates a DMA descriptor.

6.4.2.3 Start Dependent Functions Descriptor
Type 0, Small Item Name 0x6, Length=0o0r 1

Each logical device requires a set of resources. This set of resources may have interdependencies that need
to be expressed to allow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to express these interdependencies. The data structure definitions for
dependent functions are shown here. For a detailed description of the use of dependent functions refer to
the next section.

Table 6-27 Start Dependent Functions Descriptor Definition

Offset | Field Name

Byte 0 | Value= 0x30 or 0x31 (0011000nB) — Type = 0, small item name = 0x6, Length=0o0r 1

Start Dependent Function fields may be of length O or 1 bytes. The extra byte is optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority isaranking of configurations for compatibility with legacy operating systems. Thisis
the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM 1 is IRQ4, 1/0O 3F8-3FF. The performance/robustness performanceis a
ranking of configurations for performance and robustness reasons. For example, a device may have a high-
performance, bus mastering configuration that may not be supported by legacy operating systems. The bus-
mastering configuration would have the highest performance/robustness priority whileits polled 1/O mode
might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is‘acceptable’. Thisbyteis
defined as:

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

252 Advanced Configuration and Power Interface Specification

Table 6-28 Start Dependent Function Priority Byte Definition

Bits Definition

1:0 Compatibility priority. Acceptable values are:

0 Good configuration: Highest Priority and preferred configuration

1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal

3 Reserved

3:2 Performance/robustness. Acceptable values are:

0 Good configuration: Highest Priority and preferred configuration

1 Acceptable configuration: Lower Priority but acceptable configuration
2 Sub-optimal configuration: Functional configuration but not optimal

3 Reserved

74 Reserved (must be 0)

Notice that if multiple Dependent Functions have the same priority, they are further prioritized by the order
in which they appear in the resource data structure. The Dependent Function that appears earliest (nearest
the beginning) in the structure has the highest priority, and so on.

See section 18.5.111, “ StartDependentFn (Start Dependent Function Resource Descriptor Macro),” for a
description of the ASL macro that creates a Start Dependent Function descriptor.

6.4.2.4 End Dependent Functions Descriptor

Type 0, Small Item Name Ox7, Length =0

Only one End Dependent Function item is allowed per logical device. This enforces the fact that Dependent
Functions cannot be nested.

Table 6-29 End Dependent Functions Descriptor Definition

Offset | Field Name

Byte 0 | Value= 0x38 (00111000B) — Type = 0, Small item name = 0x7, Length =0

See section 18.5.37, “EndDependentFn (End Dependent Function Resource Descriptor Macro,” for a
description of the ASL macro that creates an End Dependent Functions descriptor.

6.4.2.5 1/O Port Descriptor
Type0, Small Item Name 0x8, Length =7

There are two types of descriptorsfor 1/0 ranges. The first descriptor isafull function descriptor for
programmable devices. The second descriptor isaminimal descriptor for old ISA cards with fixed 1/0
requirements that use a 10-bit I1SA address decode. The first type descriptor can also be used to describe
fixed 1/0 requirements for I1SA cards that require a 16-bit address decode. Thisis accomplished by setting
the range minimum base address and range maximum base address to the same fixed 1/0 value.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 253

Table6-30 1/0O Port Descriptor Definition

Offset |Field Name Definition
Byte 0 |I/O Port Descriptor Value = 0x47 (01000111B) —
Type=0, Small item name = 0x8, Length=7
Byte 1 Information BItS[?l] Reserved and must be 0
Bit[0] (_DEC)
1 Thelogical device decodes 16-hit addresses
0 Thelogica device only decodes address bitg9:0]
Byte2 [Range minimum base Address bitg[7:0] of the minimum base I/O address that the card may
address, MIN hitg7:0] be configured for.
Byte 3 |Range minimum base Address bitg[15:8] of the minimum base I/O address that the card may
address, MIN hitg15:8] |be configured for.
Byte4 |Range maximum base Address bitg[7:0] of the maximum base 1/0O address that the card may
address, _MAX bitg7:0] be configured for.
Byte5 |Range maximum base Address bitg[15:8] of the maximum base /O address that the card may
address, MAX hitg15:8] |be configured for.
Byte6 |Baseaignment, ALN Alignment for minimum base address, increment in 1-byte blocks.
Byte7 [Rangelength, LEN The number of contiguous I/O ports requested.

See section 18.5.56, “10 (10 Resource Descriptor Macro,” for a description of the ASL macro that creates
an 1/O Port descriptor.

6.4.2.6 Fixed Location I/O Port Descriptor
Type0, Small Item Name 0x9, Length =3
This descriptor is used to describe 10-bit I/O locations.

Table6-31 Fixed-Location I/O Port Descriptor Definition

Offset [Field Name Definition

Byte 0 |Fixed Location |/O Port |Value = 0x4B (01001011B) —
Descriptor Type =0, Small item name = 0x9, Length=3

Byte1 |Range base address, Address bitg 7:0] of the base I/O address that the card may be configured
_BASitg7:0] for. This descriptor assumes a 10-bit | SA address decode.

Byte 2 |Range base address, Address bitg9:8] of the base I/O address that the card may be configured
_BAShitq9:8] for. This descriptor assumes a 10-bit | SA address decode.

Byte3 |Rangelength, LEN The number of contiguous /O ports requested.

See section 18.5.47, “Fixedl O (Fixed 1/O Resource Descriptor Macro,” for a description of the ASL macro
that creates a Fixed 1/O Port descriptor.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

254 Advanced Configuration and Power Interface Specification

6.4.2.7 Vendor-Defined Descriptor
TypeO, Small Item NameOxE, Length=1to7

The vendor defined resource data type is for vendor use.

Table6-32 Vendor-Defined Resour ce Descriptor Definition

Offset Field Name
Byte 0 Vaue = 0x71 — 0x77 (01110nnnB) — Type = 0, small item name = OxE, Length = 1-7
Bytelto7 Vendor defined

See VendorShort (page 555) for a description of the ASL macro that creates a short vendor-defined
resource descriptor.

6.4.2.8 End Tag
TypeO, Small Item Name OxF, Length =1

The End tag identifies an end of resource data.

Note: If the checksum field is zero, the resource datais treated as if the checksum operation succeeded.
Configuration proceeds normally.

Table 6-33 End Tag Definition

Offset Field Name
Byte 0 Value = 0x79 (01111001B) — Type = 0, Small item name = OxF, Length=1
Byte 1 Checksum covering all resource data after the serial identifier. This checksum is generated

such that adding it to the sum of all the data bytes will produce a zero sum.

The End Tag is automatically generated by the ASL compiler at the end of the Resour ceTemplate

statement.

6.4.3 Large Resource Data Type

To alow for larger amounts of datato be included in the configuration data structure the large format is
shown below. Thisincludes a 16-bit length field allowing up to 64 KB of data.

Table 6-34 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte O Value = IxxxxxxxB — Type = 1 (Large item), Large item name = xxXxxxxxB
Byte 1 Length of dataitems bitg7:0]

Byte 2 Length of dataitems bitg15:8]

Bytes 3 to Actual dataitems

(Length + 2)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 255

The following large information items are currently defined for Plug and Play 1SA devices:

Table6-35 LargeResourceltems

Large Iltem Name Value
Reserved 0x00
24-bit Memory Range Descriptor 0x01
Generic Register Descriptor 0x02
Reserved 0x03
Vendor Defined Descriptor 0x04
32-bit Memory Range Descriptor 0x05
32-bit Fixed Location Memory Range Descriptor 0x06
DWORD Address Space Descriptor 0x07
WORD Address Space Descriptor 0x08
Extended IRQ Descriptor 0x09
QWORD Address Space Descriptor Ox0A
Extended Address Space Descriptor 0x0B
Reserved 0x0C — Ox7F

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

256 Advanced Configuration and Power Interface Specification

6.4.3.1 24-Bit Memory Range Descriptor

Type 1, Large ltem Name Ox1

The 24-bit memory range descriptor describes adevice's memory range resources within a 24-bit address

space.
Table6-36 24-bit Memory Range Descriptor Definition
Offset | Field Name, ASL Field Definition
Name
Byte 0 [24-bit Memory Range Value = 0x81 (10000001B) — Type = 1, Large item name = 0x01
Descriptor
Bytel [Length, bit§7:0] Value = 0x09 (9)
Byte2 [Length, bit§15:8] Value = 0x00
Byte3 [Information Thisfield provides extrainformation about this memory.
Bit[7:1] Ignored
Bit[O] Write status, RW
1 writeable (read/write)
0 non-writeable (read-only)
Byte4 | Range minimum base Address bitg15:8] of the minimum base memory address for
address, MIN, bitg[7:0] which the card may be configured.
Byte5 [Range minimum base Address bitg[23:16] of the minimum base memory address for
address, _MIN, bitg[15:8] which the card may be configured
Byte6 | Range maximum base Address bitg[15:8] of the maximum base memory address for
address, MAX, bitg[7:0] which the card may be configured.
Byte7 | Range maximum base Address bitg[23:16] of the maximum base memory address for
address, MAX, bitg[15:8] | which the card may be configured
Byte8 ([Basealignment, ALN, Thisfield contains the lower eight bits of the base alignment.
bitg[7:0] The base alignment provides the increment for the minimum
base address. (0x0000 = 64 KB)
Byte9 [Basealignment, ALN, Thisfield contains the upper eight bits of the base alignment.
bitg[15:8] The base alignment provides the increment for the minimum
base address. (0x0000 = 64 KB)
Byte 10 [Rangelength, LEN, Thisfield contains the lower eight bits of the memory range
bitg[7:0] length. The range length provides the length of the memory
range in 256 byte blocks.
Byte 11 | Rangelength, LEN, Thisfield contains the upper eight bits of the memory range
bitg[15:8] length. The range length field provides the length of the memory
range in 256 byte blocks.
Notes:

Address bits [7:0] of memory base addresses are assumed to be 0.

A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

24-bit Memory Range descriptors are used for legacy devices.
Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 18.5.72, “Memory24 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 24-bit Memory descriptor.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 257

6.4.3.2 Vendor-Defined Descriptor
Type 1, Large ltem Name Ox4
The vendor defined resource data type is for vendor use.
Table 6-37 Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor Defined Descriptor Value = 0x84 (10000100B) — Type = 1, Large item name
=0x04

Byte 1 Length, bitg7:0] Lower eight bits of datalength (UUID and vendor data)

Byte 2 Length, bitg15:8] Upper eight bits of datalength (UUID and vendor data)

Byte 3 UUID specific descriptor sub type |UUID specific descriptor sub type value

Byte4-19 |(UUID UUID Vaue

Byte 20- Vendor Defined Data Vendor defined data bytes

(Length+20)

ACPI 3.0 defines the UUID specific descriptor subtype field and the UUID field to address potential
collision of the use of this descriptor. It is strongly recommended that al newly defined vendor descriptors
use these fields prior to Vendor Defined Data.

See VendorL ong (page 555) for a description of the ASL macro that creates along vendor-defined resource
descriptor.
6.4.3.3 32-Bit Memory Range Descriptor
Type 1, Large ltem Name Ox5
This memory range descriptor describes adevice's memory resources within a 32-bit address space.
Table 6-38 32-Bit Memory Range Descriptor Definition

Offset |Field Name Definition

Byte 0 |32-bit Memory Range Descriptor |Vaue = 0x85 (10000101B) — Type = 1, Large item name =
0x05

Byte1l |Length, bitg7:0] Value = 0x11 (17)

Byte2 |Length, bit§15:8] Value = 0x00

Byte 3 |Information Thisfield provides extrainformation about this memory.

Bit[7:1] Ignored

Bit[0Q] Write status, RW
1 writeable (read/write)
0 non-writeable (read-only)

Byte4 |Range minimum base address, Address bitg[7:0] of the minimum base memory address for
_MIN, bitg7:0] which the card may be configured.

Byte5 |Range minimum base address, Address bitg15:8] of the minimum base memory address for
_MIN, bitg15:8] which the card may be configured.

Byte 6 |Range minimum base address, Address bitg[23:16] of the minimum base memory address for
_MIN, bitg[23:16] which the card may be configured.

Byte 7 |Range minimum base address, Address bitg[31:24] of the minimum base memory address for
_MIN, bitg[31:24] which the card may be configured.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

258 Advanced Configuration and Power Interface Specification

Offset |Field Name Definition
Byte 8 |Range maximum base address, Address bitg[7:0] of the maximum base memory address for
_MAX, hitg7:0] which the card may be configured.
Byte9 |Range maximum base address, Address bitg[15:8] of the maximum base memory address for
_MAX, bitq15:8] which the card may be configured.
Byte 10 |Range maximum base address, Address bitg[23:16] of the maximum base memory address for
_MAX, hitg23:16] which the card may be configured.
Byte 11 |Range maximum base address, Address bitg[31:24] of the maximum base memory address for
_MAX, hitg31:24] which the card may be configured.
Thisfield contains Bitg 7:0] of the base alignment. The base
Byte 12 |Base alignment, _ALN bitg[7:0] |alignment provides the increment for the minimum base
address.
Thisfield contains Bitg15:8] of the base alignment. The base
Byte 13 |Base alignment, _ALN bitg[15:8] |alignment provides the increment for the minimum base
address.
Thisfield contains Bitg[23:16] of the base alignment. The
Byte 14 |Base alignment, _ALN bitg[23:16] [base alignment provides the increment for the minimum base
address.
Thisfield contains Bitg31:24] of the base alignment. The
Byte 15 |Base alignment, _ALN bitg[31:24] [base alignment provides the increment for the minimum base
address.
Thisfield contains Bitg 7:0] of the memory range length. The
Byte 16 |Range length, LEN bitg[7:0] range length provides the length of the memory rangein 1-
byte blocks.
Thisfield contains Bitg15:8] of the memory range length.
Byte 17 |Range length, LEN bhitg15:8] The range length provides the length of the memory rangein
1-byte blocks.
Thisfield contains Bitg[23:16] of the memory range length.
Byte 18 |Rangelength, LEN bitg23:16] |The range length provides the length of the memory rangein
1-byte blocks.
Thisfield contains Bitg31:24] of the memory range length.
Byte 19 |Rangelength, LEN hit§31:24] [The range length provides the length of the memory rangein

1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 18.5.73, “Memory32 (Memory Resource Descriptor Macro),” for a description of the ASL
macro that creates a 32-bit Memory descriptor.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 259

6.4.3.4 32-Bit Fixed Memory Range Descriptor

Type 1, Large ltem Name 0x6

This memory range descriptor describes adevice's memory resources within a 32-bit address space.

Table 6-39 32-bit Fixed-Location Memory Range Descriptor Definition

Offset |Field Name Definition

Byte 0 |32-hit Fixed Memory Value = 0x86 (10000110B) — Type = 1, Large item name = 0x06
Range Descriptor

Bytel |Length, bitg7:0] Value = 0x09 (9)

Byte2 |Length, bitg15:8] Value = 0x00

Byte 3 |Information Thisfield provides extrainformation about this memory.

Bit[7:1] Ignored
Bit[O] Write status, RW
1 writeable (read/write)
0 non-writeable (read-only))

Byte4 |Range base address, Address bitg7:0] of the base memory address for which the card may
_BASitg7:0] be configured.

Byte5 |Range base address, Address bitg15:8] of the base memory address for which the card may
_BASbitg15:8] be configured.

Byte 6 |Range base address, Address bitg[23:16] of the base memory address for which the card
_BAShitg23:16] may be configured.

Byte 7 |Range base address, Address bitg[31:24] of the base memory address for which the card
_BASbitg31:24] may be configured.

Byte8 |Rangelength, LEN Thisfield contains Bitg 7:0] of the memory range length. The range
bitg7:0] length provides the length of the memory range in 1-byte blocks.

Byte9 |Rangelength, LEN Thisfield contains Bitg15:8] of the memory range length. The range
bitg15:8] length provides the length of the memory range in 1-byte blocks.

Byte 10 |Rangelength, LEN Thisfield contains Bitg[23:16] of the memory range length. The range
bitg23:16] length provides the length of the memory range in 1-byte blocks.

Byte 11 |Rangelength, LEN Thisfield contains Bitg31:24] of the memory range length. The range
bitg31:24] length provides the length of the memory range in 1-byte blocks.

Note: Mixing of 24-bit and 32-bit memory descriptors on the same device is not allowed.

See section 18.5.74, “Memory32Fixed (Memory Resource Descriptor),” for adescription of the ASL macro
that creates a 32-bit Fixed Memory descriptor.

6.4.3.5 Address Space Resource Descriptors

The QWORD, DWORD, WORD, and Extended Address Space Descriptors are general-purpose structures
for describing a variety of types of resources. These resources also include support for advanced server
architectures (such as multiple root buses), and resource types found on some RISC processors. These
descriptors can describe various kinds of resources. The following table defines the valid combination of
each field and how they should be interpreted.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

260 Advanced Configuration and Power Interface Specification

Table6-40 Valid combination of Address Space Descriptorsfields

_LEN

MIF | _MAF

Definition

o

o

o

[

o

R|O|O

o

Variable size, variable location resource descriptor for _PRS.

If _MIFisset, MIN must be amultiple of (GRA+1). If _MAF isset, MAX must
be (amultiple of (GRA+1))-1.

OS can pick the resource range that satisfies following conditions:

e If MIFisnot set, start addressis a multiple of (GRA+1) and greater or
equal to _MIN. Otherwise, start addressis_MIN.

e If MAFisnot set, end addressis (amultiple of (GRA+1))-1 and less or
equal to _MAX. Otherwise, end addressis_ MAX.

(Invalid combination)

Fixed size, variable location resource descriptor for _PRS.

_LEN must be amultiple of (GRA+1).

OS can pick the resource range that satisfies following conditions:
e Start addressisamultiple of (GRA+1) and greater or equal to _MIN.
e Endaddressis (start address+ LEN-1) and less or equal to_ MAX.

>0

(Invalid combination)

>0

(Invalid combination)

>0

Fixed size, fixed location resource descriptor.
_GRA must be0and _LEN must be (MAX - _MIN +1).

6.4.3.5.1 QWord Address Space Descriptor
Type 1, Large ltem Name OxA

The QWORD address space descriptor is used to report resource usage in a 64-bit address space (like
memory and 1/0O).

Table6-41 QWORD Address Space Descriptor Definition

Offset Field Name Definition
Byte 0 QWORD Address Space Value = 0x8A (10001010B) — Type = 1, Large item name = Ox0A
Descriptor
Byte 1 Length, bitg7:0] Variable length, minimum value = 0x2B (43)
Byte 2 Length, bitg15:8] Variable length, minimum value = 0x00
Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are;
0 Memory range
1 I/0 range
2 Bus number range
3-191 Reserved

192-255 Hardware Vendor Defined

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 261

Offset Field Name Definition
Byte 4 Genera Flags Flags that are common to all resource types:
Bitg7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, MAF:
1 The specified maximum addressis fixed
0 The specified maximum addressis not fixed
and can be changed
Bit[2] Min Address Fixed, MIF:
1 The specified minimum addressis fixed
0 The specified minimum addressis not fixed
and can be changed
Bit[1] Decode Type, DEC:
1 Thisbridge subtractively decodes this address
(top level bridges only)
0 Thisbridge positively decodes this address
Bit[O] Ignored
Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flagsin this field depends on the value of the Resource Type field
(see above).
Byte 6 Address space granularity, A set bit in this mask means that this bit is decoded. All bits less
_GRA hitq7:0] significant than the most significant set bit must be set. That is, the
value of the full Address Space Granularity field (all 64 bits) must
be a number (2"-1).
Byte 7 Address space granularity,
_GRA bitg15:8]
Byte 8 Address space granularity,
_GRA hitg[23:16]
Byte 9 Address space granularity,
_GRA hitg31:24]
Byte 10 Address space granularity,
_GRA hitg39:32]
Byte 11 Address space granularity,
_GRA bitg47:40]
Byte 12 Address space granularity,
_GRA hitg55:48]
Byte 13 Address space granularity,
_GRA hitg63:56]
Byte 14 Address range minimum, For bridges that translate addresses, thisis the address space on the
_MIN bitg[7:Q] secondary side of the bridge.
Byte 15 Address range minimum,
_MIN bitg[15:8]
Byte 16 Address range minimum,
_MIN bitg[23:16]
Byte 17 Address range minimum,
_MIN bitg[31:24]
Byte 18 Address range minimum,

_MIN bitg39:32]

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

262 Advanced Configuration and Power Interface Specification

Offset Field Name Definition
Byte 19 Address range minimum,
_MIN bitg[47:40]
Byte 20 Address range minimum,
_MIN bitg[55:48]
Byte 21 Address range minimum,
_MIN bitg[63:56]
Byte 22 Address range maximum, For bridges that translate addresses, thisis the address space on the
_MAX bitg7:0] secondary side of the bridge.
Byte 23 Address range maximum,
_MAX bitg[15:8]
Byte 24 Address range maximum,
_MAX bitg[23:16]
Byte 25 Address range maximum,
_MAX bitg31:24]
Byte 26 Address range maximum, For bridges that trand ate addresses, thisis the address space on the
_MAX bitg39:32] secondary side of the bridge.
Byte 27 Address range maximum,
_MAX bitg47:40]
Byte 28 Address range maximum,
_MAX bitg[55:48]
Byte 29 Address range maximum,
_MAX bitg[63:56]
Byte 30 Address Trand ation offset, For bridges that translate addresses across the bridge, thisis the
_TRA bitg[7:0] offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list
0 for all Address Trandation offset bits.
Byte 31 Address Trand ation offset,
_TRA bitg[15:8]
Byte 32 Address Trand ation offset,
_TRA hitg23:16]
Byte 33 Address Trand ation offset,
_TRA hitg31:24]
Byte 34 Address Trand ation offset,
_TRA hitg39:32]
Byte 35 Address Tranglation offset,
_TRA bitg47:40]
Byte 36 Address Trand ation offset,
_TRA hitg55:48]
Byte 37 Address Trand ation offset,
_TRA hitg63:56]
Byte 38 Addresslength, LEN
bitg[7:0]
Byte 39 Addresslength, LEN,

bits[15:8]

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 263

Offset Field Name Definition

Byte 40 Addresslength, LEN

bits[23:16]

Byte 41 Addresslength, LEN

bitg[31:24]

Byte 42 Addresslength, LEN

bits[39:32]

Byte 43 Addresslength, LEN

bits[47:40]

Byte 44 Addresslength, LEN

bitg[55:48]

Byte 45 Addresslength, LEN

bits[63:56]

Byte 46 Resource Source | ndex (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes

its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global poal. If not present, the device consumes this resource from
its hierarchical parent.

See QWordl O (page 538), QWordMemory (page 539) and ASL_QWordAddressSpace for a description of
the ASL macros that creates a QWORD Address Space descriptor.

6.4.3.5.2 DWord Address Space Descriptor
Type 1, Large ltem Name Ox7

The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like
memory and 1/0O).

Table 6-42 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Space Value = 0x87 (10000111B) — Type = 1, Large item name = 0x07
Descriptor

Byte 1 Length, bitg7:0] Variable: Vaue = 23 (minimum)

Byte 2 Length, bitg15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined

values are:

0 Memory range
1 I/O range
2 Bus number range

3-191 Reserved
192-255 Hardware Vendor Defined

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

264 Advanced Configuration and Power Interface Specification

Offset Field Name Definition
Byte 4 General Flags Flags that are common to all resource types:
Bitg7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, MAF:
1 The specified maximum addressis fixed
0 The specified maximum addressis not fixed
and can be changed
Bit[2] Min Address Fixed,_MIF:
1 The specified minimum addressis fixed
0 The specified minimum addressis not fixed
and can be changed
Bit[1] Decode Type, DEC:
1 Thisbridge subtractively decodes this address
(top level bridges only)
0 Thisbridge positively decodes this address
Bit[O] Ignored
Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flagsin this field depends on the value of the Resource Type field
(see above).
Byte 6 Address space granularity, A set bit in this mask means that this bit is decoded. All bits less
_GRA bitg7:0] significant than the most significant set bit must be set. (in other
words, the value of the full Address Space Granularity field (all 32
bits) must be a number (2"-1).
Byte 7 Address space granularity,
_GRA bitg[15:8]
Byte 8 Address space granularity,
_GRA bits[23:16]
Byte 9 Address space granularity,
_GRA bits[31:24]
Byte10 | Addressrange minimum, For bridges that trandlate addresses, thisis the address space on the
_MIN bits[7:0] secondary side of the bridge.
Byte 11 Address range minimum,
_MIN bits[15:8]
Byte 12 Address range minimum,
_MIN bits[23:16]
Byte 13 Address range minimum,
_MIN bits[31:24]
Byte 14 Address range maximum, For bridges that trand ate addresses, thisis the address space on the
_MAX bits[7:0] secondary side of the bridge.
Byte 15 Address range maximum,
_MAX bits[15:8]
Byte 16 Address range maximum,
_MAX bits[23:16]
Byte 17 Address range maximum,

_MAX bits[31:24]

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 265

Offset Field Name Definition
Byte 18 Address Translation offset, For bridges that translate addresses across the bridge, thisis the
_TRADbits[7:0] offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must
list O for al Address Trandation offset bits.
Byte 19 Address Trand ation offset,
_TRA bits[15:8]

Byte 20 Address Tranglation offset,
_TRA hits[23:16]

Byte21 | Address Trandation offset,
_TRA hits[31:24]

Byte 22 Address Length, _LEN, bits
[7:0]

Byte 23 Address Length, LEN, bits
[15:8]

Byte 24 Address Length, _LEN, bits
[23:16]

Byte 25 Address Length, _LEN, bits
[31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is present.
Thisfield gives an index to the specific resource descriptor that
this device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes

its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool.

If not present, the device consumes this resource from its
hierarchical parent.

See DWordl O (page 497), DWordMemory (page 499) and ASL_DWordAddressSpace for a description of
the ASL macro that createsa DWORD Address Space descriptor

6.4.3.5.3 Word Address Space Descriptor
Type 1, Large ltem Name Ox8

The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and 1/O).

Note: This descriptor is exactly the same as the DWORD descriptor specified in Table 6-29; the only
difference isthat the addressfields are 16 bits wide rather than 32 bits wide.

Table 6-43 WORD Address Space Descriptor Definition

Offset Field Name Definition

Byte O WORD Address Space Value = 0x88 (10001000B) — Type = 1, Large item name = 0x08
Descriptor

Byte 1 Length, bitg7:0] Variable length, minimum value = 0xOD (13)

Byte 2 Length, bitg15:8] Variable length, minimum value = 0x00

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

266 Advanced Configuration and Power Interface Specification

Offset Field Name Definition
Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are;
0 Memory range
1 1/0O range
2 Bus number range
3-191 Reserved
192-255 Hardware Vendor Defined
Byte 4 General Flags Flags that are common to all resource types:
Bitg7:4] Reserved (must be Q)
Bit[3] Max Address Fixed, MAF:
1 The specified maximum addressis fixed
0 The specified maximum addressis not fixed
and can be changed
Bit[2] Min Address Fixed,_ MIF:
1 The specified minimum addressis fixed
0 The specified minimum addressis not fixed
and can be changed
Bit[1] Decode Type, _DEC:
1 Thisbridge subtractively decodes this address
(top level bridges only)
0 Thisbridge positively decodes this address
Bit[Q] Ignored
Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flagsin thisfield depends on the value of the Resource Type field
(see above).
Byte 6 Address space granularity, A set bit in this mask means that this bit is decoded. All bits less
_GRA hitg7:0] significant than the most significant set bit must be set. (In other
words, the value of the full Address Space Granularity field (all 16
bits) must be a number (2"-1).
Byte 7 Address space granularity,
_GRA bitg15:8]
Byte 8 Address range minimum, For bridges that trand ate addresses, thisis the address space on the
_MIN, bits[7:0] secondary side of the bridge.
Byte 9 Address range minimum,
_MIN, bits[15:8]
Byte10 | Address range maximum, For bridges that trandlate addresses, thisis the address space on the
_MAX, bits[7:0] secondary side of the bridge.
Byte11l | Addressrange maximum,
_MAX, bits[15:8]
Byte12 | Address Trandation offset, For bridges that trand ate addresses across the bridge, thisis the
_TRA, bits[7:0] offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must
list O for all Address Trandlation offset bits.
Byte 13 | Address Tranglation offset,
_TRA, bits[15:8]
Byte 14 | AddressLength, LEN, bits

[7:Q]

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 267

Offset Field Name Definition
Byte15 | AddressLength, LEN, bits
[15:8]

Byte 16 | Resource Source Index (Optional) Only present if Resource Source (below) is present. This
field gives an index to the specific resource descriptor that this
device consumes from in the current resource template for the
device object pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this descriptor consumes

its resources from the resources produced by the named device
object. If not present, the device consumes its resources out of a
global pool. If not present, the device consumes this resource from
its hierarchical parent.

See WordI O (page 557), WordBusNumber (page 556) and ASL_WordAddressSpace for a description of
the ASL macros that create a Word address descriptor.

6.4.3.5.4 Extended Address Space Descriptor

Type 1, Largeltem Name OxB

The Extended Address Space descriptor is used to report resource usage in the address space (like memory
and 1/O).

Table 6-44 Extended Address Space Descriptor Definition

Offset Field Name Definition
Byte O Extended Address Space Value = 0x8B (10001011B) — Type = 1, Large item name = 0x0B
Descriptor
Byte 1 Length, bitg7:0] Value = 0x35 (53)
Byte 2 Length, bitg15:8] Value = 0x00
Byte 3 Resource Type Indicates which type of resource this descriptor describes. Defined
values are;
0 Memory range
1 I/0O range
2 Bus number range

3-191 Reserved
192-255 Hardware Vendor Defined

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

268 Advanced Configuration and Power Interface Specification

Offset Field Name Definition
Byte 4 General Flags Flags that are common to all resource types:
Bitg7:4] Reserved (must be 0)
Bit[3] Max Address Fixed, MAF:
1 The specified maximum addressis fixed
0 The specified maximum addressis not fixed
and can be changed
Bit[2] Min Address Fixed, MIF:
1 The specified minimum addressis fixed
0 The specified minimum addressis not fixed
and can be changed
Bit[1] Decode Type, DEC:
1 Thisbridge subtractively decodes this address
(top level bridges only)
0 Thisbridge positively decodes this address
Bit[0Q] Consumer/Producer:
1-This device consumes this resource
0-This device produces and consumes this resource
Byte 5 Type Specific Flags Flags that are specific to each resource type. The meaning of the
flagsin this field depends on the value of the Resource Type field
(see above). For the Memory Resource Type, the definitionis
defined in section 6.4.3.5.5. For other Resource Types, refer to the
existing definitions for the Address Space Descriptors.
Byte 6 Revision ID Indicates the revision of the Extended Address Space descriptor.
For ACPI 3.0, thisvalueis 1.
Byte 7 Reserved 0
Byte 8 Address space granularity, A set bit in this mask means that this bit is decoded. All bits less
_GRA hitg7:0] significant than the most significant set bit must be set. That is, the
value of the full Address Space Granularity field (all 64 bits) must
be anumber (2"-1).
Byte 9 Address space granularity,
_GRA hitg[15:8]
Byte 10 | Address space granularity,
_GRA hitg[23:16]
Byte1l | Address space granularity,
_GRA hitg31:24]
Byte12 | Address space granularity,
_GRA hitg39:32]
Byte 13 | Address space granularity,
_GRA hitg47:40]
Byte 14 | Address space granularity,
_GRA hitg55:48]
Byte15 | Address space granularity,
_GRA hitg63:56]
Byte16 | Addressrange minimum, For bridges that trand ate addresses, thisis the address space on the

_MIN bitg7:0]

secondary side of the bridge.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 269

Table6-44 Extended Address Space Descriptor Definition (continued)

Offset Field Name Definition
Byte17 | Addressrange minimum,
_MIN bitg[15:8]
Byte18 | Addressrange minimum,
_MIN bitg[23:16]
Byte 19 Address range minimum,
_MIN bitg[31:24]
Byte 20 Address range minimum,
_MIN bitg[39:32]
Byte 21 Address range minimum,
_MIN bitg[47:40]
Byte 22 Address range minimum,
_MIN bitg[55:48]
Byte23 | Addressrange minimum,
_MIN bitg[63:56]
Byte 24 Address range maximum, For bridges that trand ate addresses, thisis the address space on the
_MAX bitg[7:0] secondary side of the bridge.
Byte25 | Addressrange maximum,
_MAX bitg[15:8]
Byte26 | Addressrange maximum,
_MAX bitg[23:16]
Byte 27 Address range maximum,
_MAX bitg31:24]
Byte 28 Address range maximum, For bridges that trand ate addresses, thisis the address space on the
_MAX bitg[39:32] secondary side of the bridge.
Byte29 | Addressrange maximum,
_MAX bitg47:40]
Byte 30 Address range maximum,
_MAX bitg55:48]
Byte 31 Address range maximum,
_MAX bitg[63:56]
Byte 32 Address Trand ation offset, For bridges that trand ate addresses across the bridge, thisis the
_TRA bitg[7:0] offset that must be added to the address on the secondary side to
obtain the address on the primary side. Non-bridge devices must list
0 for all Address Trandation offset bits.
Byte 33 Address Trand ation offset,
_TRA bitg[15:8]
Byte 34 | Address Trandation offset,
_TRA hitg23:16]
Byte 35 Address Trand ation offset,

_TRA bitg31:24]

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

270 Advanced Configuration and Power Interface Specification

Table6-44 Extended Address Space Descriptor Definition (continued)

Offset Field Name Definition
Byte36 | Address Trandation offset, TRA
bitg[39:32]
Byte37 | Address Trandation offset, TRA
bitg[47:40]
Byte38 | Address Trandation offset, TRA
bitg[55:48]
Byte39 | Address Trandation offset, TRA
bitg[63:56]
Byte40 | Addresslength, LEN bhitg7:0]
Byte4l | Addresslength, LEN, bitg[15:8]
Byte42 | Addresslength, LEN bitg23:16]
Byte43 | Addresslength, LEN bitg31:24]
Byte44 | Addresslength, LEN bitg39:32]
Byte45 | Addresslength, LEN bitg47:40]
Byte46 | Addresslength, LEN bitg55:48]
Byte47 | Addresslength, LEN bitg63:56]
Byte48 | Type Specific Attribute, ATT Attributes that are specific to each resource type. The
bitg 7:0] meaning of the attributesin this field depends on the value of
the Resource Type field (see above). For the Memory
Resource Type, the definition is defined section <ref>. For
other Resource Types, thisfield isreserved to 0.
Byte49 | Type Specific Attribute, ATT
bitg15:8]
Byte 50 | Type Specific Attribute, ATT
bits[23:16]
Byte51 | Type Specific Attribute, ATT
bitg[31:24]
Byte52 | Type Specific Attribute, ATT
bits[39:32]
Byte53 | Type Specific Attribute, ATT
bits[47:40]
Byte54 | Type Specific Attribute, ATT
bitg[55:48]
Byte55 | Type Specific Attribute, ATT

bits[63:56]

See section 18.5.41, “ExtendedSpace (Extended Address Space Resource Descriptor Macro),” for a
description of the ASL macro that creates an Extended Address Space descriptor.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 271

6.4.3.5.4.1 Type Specific Attributes

The meaning of the Type Specific Attributes field of the Extended Address Space Descriptor depends on
the value of the Resource Type field in the descriptor. When Resource Type = 0 (memory resource), the
Type Specific Attributes field values are defined as follows:

/1l These attributes can be "ORed" together as needed.

#defi ne ACPI _MEMORY_UC 0x0000000000000001
#defi ne ACPI _MEMORY_WC 0x0000000000000002
#defi ne ACPI _MEMORY_WI' 0x0000000000000004
#defi ne ACPI _MEMORY_WB 0x0000000000000008
#defi ne ACPI _MEMORY_UCE 0x0000000000000010
#defi ne ACPI _MEMORY_NV 0x0000000000008000

ACPI_MEMORY_UC — Memory cacheability attribute. The memory region supports being configured as
not cacheable.

ACPI_MEMORY_WC — Memory cacheability attribute. The memory region supports being configured
as write combining.

ACPI_MEMORY_WT — Memory cacheability attribute. The memory region supports being configured
as cacheable with a "write through "policy. Writes that hit in the cache will also be written to main
memory.

ACPI_MEMORY_WB — Memory cacheability attribute. The memory region supports being configured
as cacheable with a"write back "policy. Reads and writes that hit in the cache do not propagate to main
memory. Dirty datais written back to main memory when a new cache line is allocated.

ACPI_MEMORY_UCE — Memory cacheability attribute. The memory region supports being configured
as not cacheable, exported, and supports the "fetch and add " semaphore mechanism.

ACPI_MEMORY _NV — Memory non-volatile attribute. The memory region is non-volatile. Use of
memory with this attribute is subject to characterization.

Note: These bits are defined so as to match the UEFI definition when applicable.

6.4.3.5.5 Resource Type Specific Flags

The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends on the
value of the Resource Type field in the descriptor. The flags for each resource type are defined in the
following tables:

Table 6-45 Memory Resour ce Flag (Resour ce Type = 0) Definitions

Bits M eaning

Bitq[7:6] Reserved (must be 0)

Bit[5] Memory to I/O Trandation, _TTP

1 TypeTrandation: Thisresource, which is memory on the secondary side of the
bridge, is1/0 on the primary side of the bridge.

0 TypeStatic: This resource, which is memory on the secondary side of the bridge, is
also memory on the primary side of the bridge.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

272 Advanced Configuration and Power Interface Specification

Bits

M eaning

Bits[4:3]

Memory attributes, MTP. These bits are only defined if this memory resource describes
system RAM. For a definition of the labels described here, see section 15, “ System Address
Map Interfaces.”

0 AddressRangeMemory

1 AddressRangeReserved

2 AddressRangeACPI

3 AddressRangeNVS

Bitg[2:1]

Memory attributes, MEM

0 Thememory is non-cacheable.

1 Thememory is cacheable.

2 Thememory is cacheable and supports write combining.

3 Thememory is cacheable and prefetchable.
(Notice: OSPM ignoresthis field in the Extended address space descriptor. Instead it uses
the Type Specific Attributes field to determine memory attributes)

Bit[0]

Write status, RW
1 Thismemory range isread-write.
0 Thismemory rangeisread-only.

Table 6-46 1/0 Resource Flag (Resource Type = 1) Definitions

Bits

M eaning

Bitg[7:6]

Reserved (must be 0)

Bit[5]

Sparse Trandation, _TRS. This bit isonly meaningful if Bit[4] is set.

1 SparseTrandation: The primary-side memory address of any specific 1/0 port within
the secondary-side range can be found using the following function.

address = (((port & OxFFFc) << 10) || (port & OxFFF)) + _TRA

In the address used to access the 1/0 port, bitg11:2] must be identical to
bitg[21:12], this gives four bytes of 1/O ports on each 4 KB page.

0 DenseTrandation: The primary-side memory address of any specific I/O port within
the secondary-side range can be found using the following function.

address = port + _TRA

Bit[4]

I/0 to Memory Trandation, TTP

1 TypeTrandation: Thisresource, which is|/O on the secondary side of the bridge, is
memory on the primary side of the bridge.

0 TypeStatic: Thisresource, which is|/O on the secondary side of the bridge, isalso I/0
on the primary side of the bridge.

Bit[3:2]

Reserved (must be 0)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 273

Bits M eaning

Bit[1:0] | _RNG
3 Memory window covers the entire range

2 ISARangesOnly. Thisflag isfor bridges on systems with multiple bridges. Setting this
bit means the memory window specified in this descriptor is limited to the ISA 1/O
addresses that fall within the specified window. The | SA 1/0 ranges are: n000-nOFF,
n400-n4FF, nB00-n8FF, nCO0-nCFF. This bit can only be set for bridges entirely
configured through ACPI namespace.

1 NonlSARangesOnly. Thisflagisfor bridges on systems with multiple bridges. Setting
this bit means the memory window specified in this descriptor is limited to the non-
ISA 1/O addresses that fall within the specified window. The non-I1SA 1/O ranges are:
n100-n3FF, n500-n7FF, n900-nBFF, nDOO-nFFF. This bit can only be set for bridges
entirely configured through ACPI namespace.

0 Reserved

Table 6-47 BusNumber Range Resour ce Flag (Resour ce Type = 2) Definitions

Bits M eaning

Bit[7:0] | Reserved (must be 0)

6.4.3.6 Extended Interrupt Descriptor
Type 1, Large Item Name 0x9

The Extended Interrupt Descriptor is necessary to describe interrupt settings and possibilities for systems
that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor alows vendorsto list an array of possible interrupt
numbers, any one of which can be used.

Table 6-48 Extended Interrupt Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Interrupt | Value = 0x89 (10001001B) — Type = 1, Large item name = 0x09
Descriptor

Byte 1 Length, bitg7:0] Variable length, minimum value = 0x06

Byte 2 Length, bitg§15:8] | Variable length, minimum value = 0x00

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

274 Advanced Configuration and Power Interface Specification

Offset Field Name

Definition

Byte 3 Interrupt Vector
Flags

Interrupt VVector Information.

Bit[7:4] Reserved (must be 0)

Bit[3] Interrupt is shareable, SHR
Bit[2] Interrupt Polarity, LL

0 Active-High: Thisinterrupt is sasmpled when the signal
ishigh, or true.

1 Active-Low: Thisinterrupt is sampled when the signal is
low, or false.

Bit[1] Interrupt Mode, HE

0 Level-Triggered: Interrupt istriggered in response to the
signal being in either a high or low state.

1 Edge-Triggered: Thisinterrupt istriggered in response
to achangein signal state, either high to low or low to
high.

Bit[Q] Consumer/Producer:
1 Thisdevice consumes this resource
0 Thisdevice produces and consumes this resource

Byte 4 Interrupt table

Indicates the number of interrupt numbers that follow. When this

length descriptor is returned from _CRS, or when OSPM passes this descriptor
to SRS, thisfield must be set to 1.
Byte Interrupt Number, | Interrupt number
4n+5 _INT bits[7:0]
Byte Interrupt Number,
4n+6 _INT bits[15:8]
Byte Interrupt Number,
an+7 _INT bits[23:16]
Byte Interrupt Number,
4n+8 _INT bits[31:24]

Additional interrupt numbers

Byte x Resource Source
Index

(Optional) Only present if Resource Source (below) is present. Thisfield
gives an index to the specific resource descriptor that this device
consumes from in the current resource template for the device object
pointed to in Resource Source.

String Resource Source

(Optional) If present, the device that uses this descriptor consumes its
resources from the resources produces by the named device object. If not
present, the device consumes its resources out of a global pool.

If not present, the device consumes this resource from its hierarchical
parent.

Note: Low true, level sensitive interrupts may be electrically shared, the process of how this might work is
beyond the scope of this specification.

If the OSisrunning using the 8259 interrupt model, only interrupt number values of 0-15 will be used, and
interrupt numbers greater than 15 will be ignored.

See Interrupt (page 518) for a description of the ASL macro that creates an Extended Interrupt descriptor.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 275

6.4.3.7 Generic Register Descriptor

Type 1, Large Item Name 0x2

The generic register descriptor describes the location of a fixed width register within any of the ACPI-
defined address spaces.

Table6-49 Generic Register Descriptor Definition

Offset |Field Name, ASL Field Name Definition
Byte 0 |Generic Register Descriptor Value = 0x82 (10000010B)
Type =1, Large item name = 0x02
Bytel |Length, bitg[7:0] Value = 0x0C (12)
Byte2 |Length, bitg[15:8] Value = 0x00
Byte3 [Address SpacelD, AS The address space where the data structure or register
exigts. Defined values are;
0x00 System Memory
0x01 Systeml/O
0x02 PCI Configuration Space
0x03 Embedded Controller
0x04 SMBus
Ox7F Functional Fixed Hardware
Byte4 |[Register Bit Width, RBW Indicates the register width in bits.
Byte5 |[Register Bit Offset, RBO Indicates the offset to the start of the register in bits from
the Register Address.
Byte6 |AddressSize, ASZ Specifies access size.
0 - Undefined (legacy reasons)
1 - Byte access
2 - Word access
3 - Dword access
4 - QWord access
Byte7 |Register Address, ADR bitg7:0] Register Address
Byte8 |Register Address, ADR bitg[15:8]
Byte9 |[Register Address, ADR bitg[23:16]
Byte 10 |Register Address, _ADR bitg[31:24]
Byte 11 |Register Address, ADR bitg[39:32]
Byte 12 |Register Address, _ADR bitg[47:40]
Byte 13 |Register Address, _ADR bitg[55:48]
Byte 14 |Register Address, _ADR bitg[63:56]

See Register (page 542) for adescription of the ASL macro that creates a Generic Register resource
descriptor.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

276 Advanced Configuration and Power Interface Specification

6.5 Other Objects and Control Methods
Table6-50 Other Objectsand M ethods

Object Description

_INI Device initialization method that is run shortly after ACPI has been enabled.
_DCK Indicates that the device is a docking station.

_BDN Correlates a docking station between ACPI and legacy interfaces.

_REG Notifies AML code of a changein the availability of an operation region.
_BBN PCI bus number set up by the BIOS.

_SEG Indicates a bus segment location.

_GLK Indicates the Global Lock must be acquired when accessing a device.

6.5.1 _INI (Init)

_INI'isadevice initialization object that performs device specific initialization. This control method is
located under a device object and is run only when OSPM |oads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the REG method. The
_REG method is described in section 6.5.4, “_REG (Region).” This control method isrun before _ADR,
_CID, _HID, _SUN, and _UID arerun.

Arguments:
None

Return Value:
None

Before evaluating the _INI object, OSPM evaluatesthe STA object for the device. If the STA object
does not exist for the device, the device is assumed to be both present and functional. If the STA method
indicates that the device is present, OSPM will evaluate the _INI for the device (if the INI method exists)
and will examine each of the children of the device for _INI methods. If the _STA method indicates that
the device is not present and is not functional, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the STA object evaluation indicates that the deviceis not
present but is functional, OSPM will not evaluate the _INI object, but will examine each of the children of
the device for _INI objects (see the description of _STA for the explanation of this special case.) If the
device becomes present after the table has already been loaded, OSPM will not evaluate the _INI method,
nor examine the children for _INI methods.

The OSPM performed _INI object actions based upon the _STA Present and Functional bits are
summarized in the table below.

Table6-51 OSPM _INI Object Actions

_STA Present Bit | _STA Functional Bit | Actions
0 0 Do not run _INI, do not examine device children
0 1 Do not run _INI, examine device children
1 0 Run _INI, examine device children
1 1 Run _INI, examine device children

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 277

The _INI control method is generally used to switch devices out of alegacy operating mode. For example,
BI1OSes often configure CardBus controllersin alegacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an _INI object under the\ SB
namespace, if present, at the beginning of namespace initialization.

6.5.2 _DCK (Dock)

This control method islocated in the device object that represents the docking station (that is, the device
object with al the EJx control methods for the docking station). The presence of DCK indicates to the
OS that the device isreally a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an OS to prepare for docking
before the bus is activated and devices appear on the bus.

Arguments: (1)

Arg0—An Integer containing a docking action code
0 — Undock (isolate from connector)
1 —Dock (remove isolation from connector)

Return Value:
An Integer containing the docking status code
1 — Successful
0 —Failed
Note: When DCK is called with 0, OSPM will ignore the return value. The _STA object that follows the
_EJx control method will notify whether or not the portable has been g ected.

6.5.3 _BDN (BIOS Dock Name)

_BDN isused to correlate a docking station reported via ACPI and the same docking station reported via
legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

Arguments:
None

Return Value:
An Integer that containsthe EISA Dock ID

_BDN must appear under a device object that represents the dock, that is, the device object with _Ejx
methods. This object must return a DWORD that is the EI SA-packed DockID returned by the Plug and
Play BIOS Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 _REG (Region)

The OSruns _REG control methods to inform AML code of a change in the availability of an operation
region. When an operation region handler is unavailable, AML cannot access data fields in that region.
(Operation region writes will be ignored and reads will return indeterminate data.).

Arguments: (2)
Arg0—An Integer containing the Operation Region address space |ID

Argl — AnInteger containing the handler connection code
0 — disconnect the handler
1 — connect the handler

Return Value:
None

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

278 Advanced Configuration and Power Interface Specification

Valid Operation Region address space IDs:

0- SystemMemory

1- SystemlO

2— PCI_Config

3- Embedded Controller
4— SMBus

5- CMOS

6— PCIBARTarget

7— IPMI

0x08-0x7F — Reserved
0x80-0xFF — OEM (custom) region space

Except for the cases shown below, control methods must assume all operation regions inaccessible until the
_REG(RegionSpace, 1) method is executed. Once REG has been executed for a particular operation
region, indicating that the operation region handler is ready, a control method can access fields in the
operation region. Conversely, control methods must not access fields in operation regions when _REG
method execution has not indicated that the operation region handler is ready.

For example, until the Embedded Controller driver is ready, the control methods cannot access the
Embedded Controller. Once OSPM has run _ REG(EmbeddedControl, 1), the control methods can then
access operation regions in Embedded Controller address space. Furthermore, if OSPM executes
_REG(EmbeddedControl, 0), control methods must stop accessing operation regions in the Embedded
Controller address space.

The exceptions for thisrule are:

1. OSPM must guarantee that the following operation regions must always be accessible:
e PCIl_Config operation regions on a PCI root bus containing a_BBN object.
e |/O operation regions.
e Memory operation regions when accessing memory returned by the System Address Map

reporting interfaces.

2. OSPM must make Embedded Controller operation regions, accessed via the Embedded
Controllers described in ECDT, available before executing any control method. These operation
regions may become inaccessible after OSPM runs _ REG(EmbeddedContral, 0).

Place _REG in the same scope as operation region declarations. The OS will run the _REG in a given scope
when the operation regions declared in that scope are available for use.

Example:
Scope(\ _SB. PCI 0) {
Oper ati onRegi on(OPR1, PCl _Config, ...)
Met hod(_REG 2) {...} /] OSPM executes this when PCl O operation regi on handl er

/1 status changes
Devi ce(PCl 1) {
Met hod(_REG 2) {...}
Devi ce(ETHO) {
Oper ati onRegi on(OPR2, PCl _Config, ...)
Met hod(_REG 2) {...}
}

}
Devi ce(| SA0) {
OperationRegion(OPR3, 1/0 ...)
Met hod(_REG 2) {...} // OSPM executes this when | SAO operation region handl er
/1 status changes

Devi ce(EQQ) {
Narme(_HI D, EI SAI D(" PNP0C09"))
Oper ati onRegi on(OPR4, EC, ...)
Met hod(_REG 2) {...} // OSPM executes this when EC operation region
/1 handl er status changes

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 279

When the PCIO0 operation region handler is ready, OSPM will run the REG method declared in PCIO
scope to indicate that PCl Config space operation region access is available within the PCI0 scope (in other
words, OPR1 access is allowed). When the | SAQ operation handler is ready, OSPM will runthe REG
method in the ISAQ scope to indicate that the 1/O space operation region access is available within that
scope (in other words, OPR3 accessis alowed). Finally, when the Embedded Controller operation region
handler is ready, OSPM will run the_REG method in the ECO scope to indicate that EC space operation
region access is available within the ECO scope (in other words, OPR4 access is allowed). It should be
noted that PCI Config Space Operation Regions are ready as soon the host controller or bridge controller
has been programmed with a bus number. PCI1's _REG method would not be run until the PCI-PCI bridge
has been properly configured. At the same time, the OS will aso run ETHO's _REG method sinceits PCI
Config Space would be also available. The OS will again run ETHO's _ REG method when the ETHO
deviceis started. Also, when the host controller or bridge controller is turned off or disabled, PCI Config
Space Operation Regions for child devices are no longer available. As such, ETHO's _ REG method will be
run when it is turned off and will again be run when PCI1 is turned off.

Note: The OSonly runs _REG methods that appear in the same scope as operation region declarations that
use the operation region type that has just been made available. For example, _REG in the EC device
would not be run when the PCI bus driver isloaded since the operation regions declared under EC do not
use any of the operation region types made available by the PCI driver (namely, config space, 1/0, and
memory).

6.5.5 BBN (Base Bus Number)

For multi-root PCI platforms, the BBN object evaluates to the PCI bus number that the BIOS assigns. This
is needed to access a PCl_Config operation region for the specific bus. The _BBN object islocated under a
PCI host bridge and must be unique for every host bridge within a segment since it is the PCI bus number.

Arguments:
None

Return Value:
An Integer that contains the PCl bus number

6.5.6 _SEG (Segment)

The optional _SEG object islocated under a PCl host bridge and evaluates to an integer that describes the
PCI Segment Group (see PCI Firmware Specification v3.0). If _SEG does not exist, OSPM assumes that al
PCI bus segments are in PCl Segment Group O.

Arguments:
None

Return Value:
An Integer that contains the PCl segment group

PCI Segment Group is purely a software concept managed by system firmware and used by OSPM. Itisa
logical collection of PCI buses (or bus segments). Thereis no tieto any physical entities. It isaway to
logically group the PCI bus segments and PCI Express Hierarchies. SEG isalevel higher than BBN.

PCI Segment Group supports more than 256 buses in a system by allowing the reuse of the PCI bus
numbers. Within each PCl Segment Group, the bus numbers for the PCI buses must be unique. PCI buses
in different PCl Segment Group are permitted to have the same bus number.

A PCI Segment Group contains one or more PCI host bridges.
The lower 16 bits of _SEG returned integer is the PCl Segment Group number. Other bits are reserved.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

280 Advanced Configuration and Power Interface Specification

6.5.6.1 Example

Device(NDO) { // this is a node O
Narme(_H D, “ACPI 0004")

/!l Returns the "Current Resources"

Nane(_CRS,
Resour ceTenpl ate() {

}

)
Devi ce(PCl 0) {
Nane(_H D, EI SAI D(“PNPOA03"))
Nanme(_ADR, 0x00000000)
Name(_SEG, 0) // The buses bel ow the host bridge belong to PCl segment 0O
Name(_BBN, 0)
b
Devi ce(PCl 1) {
i\.léme(_SEG 0) // The buses bel ow the host bridge belong to PCl segment 0O

Name(_BBN, 16)

}
Device(NDl) { // this is a node 1
Name(_HI D, “ACPI 0004")

/!l Returns the "Current Resources"

Nane(_CRS,
Resour ceTenpl ate() {

}

)
Devi ce(PCl 0) {
Nanme(_HI D, EI SAI D(“ PNPOA03"))
Nanme(_ADR, 0x00000000)
Name(_SEG, 1) // The buses bel ow the host bridge belong to PCl segment 1
Nare(_BBN, 0)
b
Devi ce(PCl 1) {
i\.léme(_SEG 1) // The buses bel ow the host bridge belong to PCl segment 1

Name(_BBN, 16)

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Device Configuration 281

6.5.7 _GLK (Global Lock)

This optional named object is located within the scope of a device object. This object returns a value that
indicates to any entity that accesses this device (in other words, OSPM or any device driver) whether the
Global Lock must be acquired when accessing the device. OS-based device accesses must be performed
while in acquisition of the Global Lock when potentially contentious accesses to device resources are
performed by non-OS code, such as System Management Mode (SMM)-based code in Intel architecture-
based systems. Default behavior: if _GLK is not present within the scope of a given device, then the Global
Lock is not required for that device.

Arguments:
None

Return Value:
An Integer that contains the Global Lock requirement code
0—The Global Lock is not required for this device
1-The Global lock isrequired for this device

An example of device resource contention is a device driver for an SMBus-based device contending with
SMM-based code for access to the Embedded Controller, SMB-HC, and SMBus target device. In this case,
the device driver must acquire and release the Global Lock when accessing the device to avoid resource
contention with SMM-based code that accesses any of the listed resources.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

282 Advanced Configuration and Power Interface Specification

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 283

7 Power and Performance Management

This section specifies the device power management objects and system power management objects.
OSPM uses these objects to manage the platform by achieving a desirable balance between performance
and energy conservation goals.

Device performance states (Px states) are power consumption and capability states within the active (DO)
device power state. Performance states allow OSPM to make tradeoffs between performance and energy
conservation. Device performance states have the greatest impact when the implementation is such that the
states invoke different device efficiency levels as opposed to alinear scaling of performance and energy
consumption. Since performance state transitions occur in the active device states, care must be taken to
ensure that performance state transitions do not adversely impact the system.

Device performance state objects, when necessary, are defined on a per device class basis as described in
the device class specifications (See Appendix A).

The system state indicator objects are also specified in this section.

7.1 Declaring a Power Resource Object

An ASL Power Resour ce statement is used to declare a Power Resour ce object. A Power Resource object
refers to a software-controllable power plane, clock plane, or other resource upon which an integrated
ACPI power-managed device might rely. Power resource objects can appear wherever is convenient in
namespace.

The syntax of a Power Resour ce statement is:
Power Resour ce (resourcename, systemlevel, resourceorder) {NamedL ist}

where the systemlevel parameter is a number and the resourceorder parameter isanumeric constant (a
WORD). For aformal definition of the Power Resour ce statement syntax, see section 18, “ACPI Source
Language Reference.”

Systemlevel isthe lowest power system sleep level OSPM must maintain to keep this power resource on (0
equates to SO, 1 equatesto S1, and so on).

Each power-managed ACPI device lists the resources it requires for its supported power levels. OSPM
multiplexes thisinformation from all devices and then enables and disables the required Power Resources
accordingly. The resourceorder field in the Power Resource object is a unique value per Power Resource,
and it provides the system with the order in which Power Resources must be enabled or disabled. Power
Resources are enabled from low values to high values and are disabled from high values to low values. The
operating software enables or disables all affected Power Resourcesin any one resourceorder level at a
time before moving on to the next ordered level. Putting Power Resourcesin different order levels provides
power sequencing and serialization where required.

A Power Resource can have named objects under its Namespace location. For a description of the ACPI-
defined named objects for a Power Resource, see section 7.2, “Device Power Management Objects.”

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

284 Advanced Configuration and Power Interface Specification

The following block of ASL sample code shows a use of Power Resour ce.

Power Resour ce(PI DE, 0, 0) {
Met hod(_STA) {

Return (Xor (4d O | DEI
}
Met hod(_ON) {
Store (One, G O | DEP)
Sl eep (10)
Store (One, G O IDER
Stall (10)
Store (Zero, G O 1DEl)
}
Met hod(_OFF) {
Store (One, GO | DEl)
Store (Zero, G O 1DER)
Store (Zero, G O |DEP)

}

One, Zero))

/1 inverse of isolation

assert power

wait 10ns

de- assert reset#
wai t 10us

de-assert isolation

assert isolation
assert reset#
de- assert power

7.1.1 Defined Child Objects for a Power Resource

Each power resource object isrequired to have the following control methods to alow basic control of each
power resource. As OSPM changes the state of device objects in the system, the power resources that are
needed will also change causing OSPM to turn power resources on and off. To determine the initial power
resource settingsthe STA method can be used.

Table7-1 Power Resource Child Objects

Object Description

_OFF Set the resource off.

_ON Set the resource on.

_STA Object that evaluates to the current on or off state of the Power Resource. 0-OFF, 1-ON
7.1.2 OFF

This power resource control method puts the power resource into the OFF state. The control method does
not complete until the power resourceis off. OSPM only turns on or off one resource at atime, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Return Value:

None

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 285

7.1.3 _ON

This power resource control method puts the power resource into the ON state. The control method does
not complete until the power resource is on. OSPM only turns on or off one resource at atime, so the AML
code can obtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF) method to
cause the proper sequencing delays between operations on power resources.

Arguments:
None

Return Value:
None

7.1.4 _STA (Status)

Returns the current ON or OFF status for the power resource.

Arguments:
None

Return Value:
An Integer containing the current power status of the device
0 — The power resource is currently off
1 —The power resourceis currently on

7.2 Device Power Management Objects

For a device that is power-managed using ACPI, a Definition Block contains one or more of the objects
found in the table below. Power management of a device is done using two different paradigms:

e Power Resource control

e Device-specific control

Power Resources are resources that could be shared amongst multiple devices. The operating software will
automatically handle control of these devices by determining which particular Power Resources need to be
in the ON state at any given time. This determination is made by considering the state of all devices
connected to a Power Resource.

By definition, adevice that is OFF does not have any power resource or system power state requirements.
Therefore, device objects do not list power resources for the OFF power state.

For OSPM to put the device in the D3 state, the following must occur:
e All Power Resources no longer referenced by any device in the system must be in the OFF state.
e |f present, the PS3 control method is executed to set the device into the D3 device state.

The only transition allowed from the D3 device state is to the DO device state.

For many devices the Power Resource control isall that is required; however, device objects may include
their own device-specific control method.

These two types of power management controls (through Power Resources and through specific devices)
can be applied in combination or individually as required.

For systems that do not control device power states through power plane management, but whose devices
support multiple D-states, more information is required by the OS to determine the S-state to D-state
mapping for the device. The ACPI BIOS can give this information to OSPM by way of the _SxD methods.
These methods tell OSPM for S-state “x”, the highest D-state supported by the deviceis“y.” OSPM is
allowed to pick alower D-state for a given S-state, but OSPM is not allowed to exceed the given D-state.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

286 Advanced Configuration and Power Interface Specification

Further rules that apply to device power management objects are;

e For agiven S-state, adevice cannot be in a higher D-state than its parent device.

o |f there existsan ACPI Object to turn on adevice (either through _PSx or _PRX objects), then a
corresponding object to turn the device off must also be declared and vice versa.

o |f thereexistsan ACPI Object that controls power (_PSx or _PRx, where x =0, 1, 2, or 3), then
methods to set the device into DO and D3 device states must be present.

o |f amixtureof _PSxand PRx methodsis declared for the device, then the device states supported
through _PSx methods must be identical to the device states supported through _PRx methods. ACPI
system firmware may enable device power state control exclusively through _PSx (or _PRx) method
declarations.

When controlling power to devices which must wake the system during a system sleeping state:

The device must declare its ability to wake the system by declaring either the PRW or _ PSW
object.

If _PROis present, then OSPM must choose a sleeping state which isless than or equal to the
dleeping state specified.

After OSPM hascaled PTS, it must call the device's PSW to enable wake.

OSPM must transition the device into a D-state which is greater than or equal that specified by the
device's _SxD abject, but less than or equal to that specified by the device’s _SxW object.

OSPM may transition the system to the specified sleep state.

Table 7-2 Device Power Management Child Objects

Object Description

_DsSw Control method that enables or disables the device's wake function for device-only wake.

PO Control method that puts the device in the DO device state (device fully on).

_PS1 Control method that puts the device in the D1 device state.

_Ps2 Control method that puts the device in the D2 device state.

_PSs3 Control method that puts the device in the D3 device state (device off).

_PSC Object that evaluates to the device's current power state.

_PRO Ok;j ect that evaluates to the device's power requirements in the DO device state (device fully
on).

_PR1 Object that evaluates to the device's power requirementsin the D1 device state. The only
devicesthat supply thislevel are those that can achieve the defined D1 device state according
to the related device class.

_PR2 Object that evaluates to the device's power requirements in the D2 device state. The only
devicesthat supply thislevel are those that can achieve the defined D2 device state according
to the related device class.

PR3 Object that evaluates to the device's power requirements in the D3hot device state.

_PRW Object that evaluates to the device's power requirements in order to wake the system from a
system deeping state.

_PSW Control method that enables or disables the device’' s wake function.

_IRC Object that signifies the device has a significant inrush current draw.

_S1D Highest D-state supported by the device in the S1 state

S2D Highest D-state supported by the device in the S2 state

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 287

Object Description

S3D Highest D-state supported by the device in the S3 state

4D Highest D-state supported by the device in the $4 state

_SOW Lowest D-state supported by the device in the SO state which can wake the device

_S1wW Lowest D-state supported by the device in the S1 state which can wake the system.

_S2W Lowest D-state supported by the device in the S2 state which can wake the system.

_S3W Lowest D-state supported by the device in the S3 state which can wake the system.

_SAW Lowest D-state supported by the device in the $4 state which can wake the system.

7.2.1 _DSW (Device Sleep Wake)

In addition to _PRW, this control method can be used to enable or disable the device's ability to wake a
dleeping system. This control method can only access Operation Regions that are either always available
while in a system working state or that are available when the Power Resources referenced by the PRW
object are all ON. For example, do not put a power plane control for a bus controller within configuration
space located behind the bus. The method should enable the device only for the last system state/device
state combination passed in by OSPM. OSPM will only pass in combinations allowed by the SxD and
_SXW objects.

The arguments provided to _DSW indicate the eventual Device State the device will be transitioned to and
the eventual system state that the system will be transitioned to. The target system state is allowed to be the
system working state (S0). The _DSW method will be run before the device is placed in the designated
state and also before the system is placed in the designated system state.

Compatibility Note: The PSW method is deprecated in ACPI 3.0. The _DSW method should be used
instead. OSPM will only usethe PSW method if OSPM does not support _DSW or if the _DSW method
is not present.

Arguments: (3)
Arg0 — An Integer that contains the device wake capability control

0 — Disable the device' s wake capahilities
1 — Enable the device' s wake capabilities
Argl — AnInteger that contains the target system state
0—The system will be in state SO
1 —The system will bein state S1
Arg2 — AnInteger that contatins the target device state
0 — The device will remain in state DO
1 —-The device will be placed in either state DO or D1
2 —The device will be placed in either state DO, D1, or D2
3 —The device will be placed in either state DO, D1, D2, or D3

Return Value:
None
7.2.2 _PSO (Power State 0)

This Control Method is used to put the specific device into its DO state. This Control Method can only
access Operation Regions that are either always available while in a system working state or that are
available when the Power Resources references by the _PRO object are al ON.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

288 Advanced Configuration and Power Interface Specification

Arguments:
None

Return Value:
None

7.2.3 _PS1 (Power State 1)

This control method is used to put the specific device into its D1 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the PR1 object are all ON.

Arguments:
None

Return Value:
None

7.2.4 _PS2 (Power State 2)

This control method is used to put the specific device into its D2 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the PR2 object are all ON.

Arguments:
None

Return Value:
None

7.2.5 _PS3 (Power State 3)

This control method is used to put the specific device into its D3hot or D3 state. This control method can
only access Operation Regions that are always available while in a system working state.

A device in the D3 state must no longer be using its resources (for example, its memory space and |1/O ports
are available to other devices).

Arguments:
None

Return Value:
None

7.2.6 _PSC (Power State Current)

This control method evaluates to the current device state. This control method is not required if the device
state can be inferred by the Power Resource settings. This would be the case when the device does not
requirea_PSO, PS1, PS2, or PS3 control method.

Arguments:
None

Return Value:
An Integer that contains a code for the current device state

The device state codes are shown in Table 7-3.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 289

Table7-3 _PSC Device State Codes

Return Value Device State
0 DO
1 D1
2 D2
3 D3

7.2.7 _PRO (Power Resources for DO)

This object evaluatesto alist of power resources that are dependent on this device. For OSPM to put the
devicein the DO device state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the PS0 control method is executed to set the device into the DO device state.

Arguments:
None

Return Value:
A variable-length Package containing alist of Referencesto power resources

This object returns a package as defined below:

Table 7-4 Power Resour ce Requirements Package

Element Object Description
1 object reference Reference to required Power Resource #0
N object reference Reference to required Power Resource #N

_PRO must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.8 _PR1 (Power Resources for D1)

This object evaluatesto alist of power resources that are dependent on this device. For OSPM to put the
devicein the D1 device state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS1 control method is executed to set the device into the D1 device state.

Arguments:
None

Return Value:
A variable-length Package containing alist of Refer encesto power resources

This object evaluates to a package as defined in Table 7-4.

_PR1 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

290 Advanced Configuration and Power Interface Specification

7.2.9 PR2 (Power Resources for D2)

This object evaluatesto alist of power resources that are dependent on this device. For OSPM to put the
devicein the D2 device state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the PS2 control method is executed to set the device into the D2 device state.

Arguments:
None

Return Value:
A variable-length Package containing alist of Referencesto power resources

_PR2 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.10 _PR3 (Power Resources for D3hot)

This object evaluatesto alist of power resources that are dependent on this device. For OSPM to put the
devicein the D3hot device state, the following must occur:
1. All Power Resources referenced by elements 1 through N must be in the ON state.
2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS3 control method is executed to set the device into the D3hot device state.

Arguments:
None

Return Value:
A variable-length Package containing alist of Referencesto power resources

_PR3 must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

Interaction between PR3 and entry to D3/D3hot (only applicable if platform and OSPM have performed
the necessary handshake via_OSC):

3. Platform/drivers must assume that the device will have power completely removed when the
deviceisplaceinto “D3” via_PS3

4. Itisupto OSPM to determine whether to use D3 or D3hot. If thereisa_PR3 for the device, it is
up to OSPM to decided whether or not to keep those power resources on/off after executing _PS3.
The decision may be based on other factors (e.g. being armed for wake, etc).

7.2.11 _PRW (Power Resources for Wake)

This object evaluatesto alist of power resources that are dependent on this device and additional
information needed for wake, including wake GPE and sleep state information. _PRW isonly required for
devices that have the ability to wake the system from a system sleeping state.

Two types of general purpose events are supported:
1. GPEsthat are defined by a GPE block described within the FADT.
2. GPEsthat are defined by a GPE Block Device.

The two types of GPEs are differentiated by the type of the Gpelnfo object in the returned package. For
FADT-based GPEs, Gpelnfo isan Integer containing a bit index. For Block Device-based GPEs, Gpelnfo
isa Package containing a Reference to the parent block device and an Integer containing a bit index.

Arguments:
None

Return Value:
A variable-length Package containing wake information and a list of Refer ences to power resources

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 291

Return Value Infor mation

Package {
Goel nfo /1 1Integer or Package
Lowest Sl eepSt at e /1 I nteger
Power Resour ce [0] /1 Reference
i’o{Ae.rResource [n] /'l Reference

}
If Gpelnfo isaPackage, it contains GPE block device information as described below:

Package {
GpeDevi ceNane /'l Reference
Bi t | ndex /1 | nteger

}
Gpelnfo may be either an Integer or a Package, depending on the GPE type:

If it isan Integer, then it contains the bit index of the wake GPE within the FADT-based GPE enable
register.

If it is a Package, then the package contains GPE info for a event within a GPE block device. It
contains a Refer ence to the GPE block device and an Integer containing the bit index of the wake
GPE within the Block Device-based GPE enable register.

LowestSeepSate is an | nteger that contains the lowest power system sleeping state that can be entered
while still providing wake functionality.

Power Resource 0-n are References to required power resource objects.

Additional Information

For OSPM to have the defined wake capability properly enabled for the device, the following must occur:
1. All Power Resources referenced by elements 2 through N are put into the ON state.
2. If present, the_PSW control method is executed to set the device-specific registersto enable the
wake functionality of the device.
3. The D-state being entered must be at least that specified in the _SxD state but no greater than that
specified in the _SxW state.

Then, if the system enters a dleeping state OSPM must ensure:
1. Interruptsare disabled.
2. The deeping state being entered must be less than or equal to the power state declared in element
1 of the _PRW object.
3. The proper general-purpose register bits are enabled.

The system sleeping state specified must be a state that the system supports (in other words, a
corresponding _Sx object must exist in the namespace).

_PRW must return the same data each time it is evaluated. All power resources referenced must exist in the
namespace.

7.2.12 _PSW (Power State Wake)

In addition to the _PRW control method, this control method can be used to enable or disable the device's
ability to wake a sleeping system. This control method can only access Operation Regions that are either
always available while in a system working state or that are available when the Power Resources references
by the PRW object are all ON. For example, do not put a power plane control for a bus controller within
configuration space located behind the bus.

Compatibility Note: The PSW method is deprecated in ACPI 3.0. OSPM must use_DSW if it is present.
Otherwise, it may use _PSW.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

292 Advanced Configuration and Power Interface Specification

Arguments: (1)
Arg0 — AnInteger containing a wake capability control

0 — Disable the device' s wake capahilities
1 — Enable the device' s wake capabilities

Return Value:
None

7.2.13 _IRC (In Rush Current)

Indicates that this device can cause a significant in-rush current when transitioning to state DO.

Arguments:
None

Return Value:
None

The presence of this object signifies that transitioning the device to its DO state causes a system-significant
in-rush current load. In general, such operations need to be serialized such that multiple operations are not
attempted concurrently. Within ACPI, this type of serialization can be accomplished with the
ResourceOrder parameter of the device's Power Resources, however, this does not serialize ACPI-
controlled devices with non-ACPI controlled devices. _IRC isused to signify this fact outside of OSPM to
OSPM such that OSPM can serialize al devicesin the system that have in-rush current serialization
requirements.

OSPM can only transition one device containing an _IRC object within its device scope to the DO state at a
time.

It isimportant to note that OSPM does not evaluate the IRC object. It has no defined input arguments nor
does it return any value. OSPM derives meaning simply from the existence of the IRC object.

7.2.14 _S1D (S1 Device State)

This object evaluates to an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this devicein the S1 system sleeping state. S1D must return the same integer each timeit is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:
An Integer containing the highest D-state supported in state S1

If the device can wake the system from the S1 system sleeping state (see _PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S1
system sleeping state is supported in any lower D-state unless specified by a corresponding _S1W object.
The table below provides a mapping from Desired Actionsto Resultant D-state entered based on the values
returned fromthe _S1D, PRW, and _S1W objectsif they exist . (D/C means Don’'t Care — evaluation is
irrelevant, and N/A means Non Applicable — object does not exist).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management

Table7-5 S1 Action / Result Table

293

Desired Action _S1D _PRW _S1IW Resultant D-state
Enter S1 D/C D/C D/C OSPM decides
Enter S1, No Wake 2 D/C D/C Enter D2 or D3
Enter S1, Wake 2 1 N/A Enter D2

Enter S1, Wake 2 1 3 Enter D2 or D3
Enter S1, Wake N/A 1 2 Enter DO,D1 or D2

7.2.15 _S2D (S2 Device State)

This object evaluates to an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this devicein the S2 system sleeping state. S2D must return the same integer each timeit is
evaluated. This value overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:

An Integer containing the highest D-state supported in state S2

If the device can wake the system from the S2 system sleeping state (see _ PRW) then the device must

support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S2

system sleeping state is supported in any lower D-state unless specified by a corresponding _S2W object.
The table below provides a mapping from Desired Actionsto Resultant D-state entered based on the values
returned fromthe _S2D, PRW, and _S2W objectsiif they exist . (D/C means Don’'t Care — evaluation is
irrelevant, and N/A means Non Applicable — object does not exist).

Table7-6 S2 Action / Result Table

Desired Action _S2D _PRW _S2W Resultant D-state
Enter S2 D/C D/C D/C OSPM decides
Enter S2, No Wake 2 D/C D/C Enter D2 or D3
Enter S2, Wake 2 2 N/A Enter D2

Enter S2, Wake 2 2 3 Enter D2 or D3
Enter S2, Wake N/A 2 2 Enter DO,D1 or D2

7.2.16 _S3D (S3 Device State)

This object evaluatesto an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this device in the S3 system sleeping state. _S3D must return the same integer each timeit is
evaluated. Thisvalue overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:

An Integer containing the highest D-state supported in state S3

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

294 Advanced Configuration and Power Interface Specification

If the device can wake the system from the S3 system sleeping state (see _ PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the S3
system dleeping state is supported in any lower D-state unless specified by a corresponding _S3W object.
The table below provides a mapping from Desired Actionsto Resultant D-state entered based on the values
returned from the _S3D, PRW, and _S3W objectsif they exist . (D/C means Don’t Care — evaluation is
irrelevant, and N/A means Non Applicable — object does not exist).

Table7-7 S3 Action / Result Table

Desired Action _S3D _PRW _S3W Resultant D-state
Enter S3 N/A D/IC N/A OSPM decides
Enter S3, No Wake 2 D/IC D/IC Enter D2 or D3
Enter S3, Wake 2 3 N/A Enter D2

Enter S3, Wake 2 3 3 Enter D2 or D3
Enter S3, Wake N/A 3 2 Enter DO, D1 or D2

7.2.17 _SA4D (S4 Device State)

This object evaluatesto an integer that conveysto OSPM the highest power (lowest number) D-state
supported by this device in the $4 system sleeping state. _SAD must return the same integer each timeit is
evaluated. Thisvalue overrides an S-state to D-state mapping OSPM may ascertain from the device's
power resource declarations. See Table 7-3 for valid return values.

Arguments:
None

Return Value:
An Integer containing the highest D-state supported in state $4

If the device can wake the system from the S4 system sleeping state (see _ PRW) then the device must
support wake in the D-state returned by this object. However, OSPM cannot assume wake from the $4
system sleeping state is supported in any lower D-state unless specified by a corresponding _SAW object.
The table below provides a mapping from Desired Actionsto Resultant D-state entered based on the values
returned from the _SAD, PRW, and _SAW objectsif they exist . (D/C means Don’'t Care — evaluation is
irrelevant, and N/A means Non Applicable — object does not exist).

Table7-8 $4 Action / Result Table

Desired Action 4D _PRW AW Resultant D-state
Enter 4 N/A D/IC N/A OSPM decides
Enter 4, No Wake 2 D/IC D/IC Enter D2 or D3
Enter $4, Wake 2 N/A Enter D2

Enter 4, Wake 2 3 Enter D2 or D3
Enter $4, Wake N/A 4 2 Enter DO, D1 or D2

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 295

7.2.18 _SOW (SO Device Wake State)

This object evaluatesto an integer that conveysto OSPM the lowest power (highest number) D-state
supported by this device in the SO system sleeping state wher e the device can wake itself.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state SO

_SOW must return the same integer each timeit is evaluated. This value allows OSPM to choose the lowest
power D-state and still achieve wake functionality. If object evaluates to zero, then the device cannot wake
itself from any lower sleeping state.

7.2.19 _S1W (S1 Device Wake State)

This object evaluates to an integer that conveysto OSPM the lowest power (highest number) D-state
supported by this device in the S1 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S1

_SIW must return the same integer each time it is evaluated. This value allows OSPM to choose alower S-
state to D-state mapping than specified by _S1D. Thisvalue must always be greater than or equal to _S1D,
if _S1D is present.

7.2.20 _S2W (S2 Device Wake State)

This object evaluates to an integer that conveysto OSPM the lowest power (highest number) D-state
supported by this device in the S2 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S2

_S2W must return the same integer each time it is evaluated. This value allows OSPM to choose alower S-
state to D-state mapping than specified by _S2D. This value must always be greater than or equal to _S2D,
if _S2D ispresent.

7.2.21 _S3W (S3 Device Wake State)

This object evaluatesto an integer that conveysto OSPM the lowest power (highest number) D-state
supported by this device in the S3 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state S3

_S3W must return the same integer each time it is evaluated. This value allows OSPM to choose alower S-
state to D-state mapping than specified by _S3D. Thisvalue must always be greater than or equal to _S3D,
if _S3D ispresent.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

296 Advanced Configuration and Power Interface Specification

7.2.22 _S4W (S4 Device Wake State)

This object evaluatesto an integer that conveysto OSPM the lowest power (highest number) D-state
supported by this device in the $4 system sleeping state which can wake the system.

Arguments:
None

Return Value:
An Integer containing the lowest D-state supported in state $4

_ AW must return the same integer each time it is evaluated. This value allows OSPM to choose alower S-
state to D-state mapping than specified by S4D. Thisvalue must always be greater than or equal to _$4D,
if 4D ispresent.

7.3 OEM-Supplied System-Level Control Methods

An OEM-supplied Definition Block provides some number of controls appropriate for system-level
management. These are used by OSPM to integrate to the OEM-provided features. The following table lists
the defined OEM system controls that can be provided.

Table 7-9 BIOS-Supplied Control M ethodsfor System-Level Functions

Object Description

\ BFS Control method executed immediately following a wake event.

\ PTS Control method used to notify the platform of impending sleep transition.

\ GTS Control method executed just prior to setting the sleep enable (SLP_EN) bit.

\ SO Package that defines system \ SO state mode.
\ S1 Package that defines system \ S1 state mode.
\ 2 Package that defines system \ S2 state mode.
\ S3 Package that defines system \ S3 state mode.
\ A Package that defines system \ $4 state mode.
\ S5 Package that defines system _S5 state mode.

\ TTS Control method used to prepare to sleep and run once awakened

\ WAK | Control method run once awakened.

7.3.1 \ BFS (Back From Sleep)

_BFSisan optional control method. If it exists, OSPM must execute the BFS method immediately
following wake from any sleeping state S1, S2, S3, or S4. _BFS allows ACPI system firmware to perform
any required system specific functions when returning a system sleep state. OSPM will executethe BFS
control method before performing any other physical 1/O or enabling any interrupt servicing upon returning
from a sleeping state. A value that indicates the sleeping state from which the system was awoken (in other
words, 1=S1, 2=S2, 3=S3, 4=54) is passed as an argument to the _BFS control method.

Arguments (1):
Arg0 — AnInteger containing the value of the previous deeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 297

7.3.2 _PTS (Prepare To Sleep)

The _PTS control method is executed by the OS during the sleep transition process for S1, S2, S3, $4, and
for orderly S5 shutdown. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5 soft-off state) is
passed to the PTS control method. This method is called after OSPM has notified native device drivers of
the sleep state transition and before the OSPM has had a chance to fully prepare the system for a deep state
transition. Thus, this control method can be executed arelatively long time before actually entering the
desired deeping state. If OSPM aborts the sleep state transition, OSPM should run the . WAK method to
indicate this condition to the platform.

Arguments (1):
Arg0— AnInteger containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

The _PTS control method cannot modify the current configuration or power state of any devicein the
system. For example, _PTSwould simply store the sleep type in the embedded controller in sequencing the
system into a sleep state when the SLP_EN bit is set.

The platform must not make any assumptions about the state of the machine when _PTS s called. For
example, operation region accesses that require devices to be configured and enabled may not succeed, as
these devices may be in a non-decoding state due to plug and play or power management operations.

7.3.3 _GTS (Going To Sleep)

_GTSisan optional control method. If it exists, OSPM must execute the _GTS control method just prior to
setting the sleep enable (SLP_EN) bit in the PM 1 control register when entering the S1, S2, S3, and $4
deeping states and when entering S5 for orderly shutdown. _GTS allows ACPI system firmware to perform
any required system specific functions prior to entering a system sleep state. OSPM will set the sleep
enable (SLP_EN) hit in the PM 1 control register immediately following the execution of the _GTS control
method without performing any other physical I/O or allowing any interrupt servicing. The sleeping state
value (1, 2, 3, 4, or 5) is passed as an argument to the _GTS control method. The _GTS method must not
attempt to directly place the system into a sleeping state. OSPM performs this function by setting the sleep
enable bit upon return from _GTS. In the case of entry into the S5 soft off state however, GTS may indeed
perform operations that place the system into the S5 state as OSPM will not regain control.

Arguments (1):
Arg0—AnInteger containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

The _GTS method must be self-contained (not call other methods). Additionally, _GTS may only access
OpRegions that are currently available (see the _ REG method for details).

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

298 Advanced Configuration and Power Interface Specification

7.3.4 System \ Sx states

All system states supported by the system must provide a package containing the DWORD value of the
following format in the static Definition Block. The system states, known as SO-S5, are referenced in the
namespace as_S0-\ S5 and for clarity the short Sx names are used unless specifically referring to the
named _Sx object. For each Sx state, there is a defined system behavior.

Arguments:
None

Return Value:
A Package containing an I nteger containing register values for sleeping

Table 7-10 System State Package

Byte Byte

Length [Offset Description

1 0 Value for PM1a CNT.SLP_TYP register to enter this system state.

1 1 Valuefor PM1b_CNT.SLP_TYP register to enter this system state. To enter any

given state, OSPM must write the PM1a CNT.SLP_TY P register before the
PM1b _CNT.SLP_TYPregister.

2 2 Reserved

States S1-S4 represent some system sleeping state. The SO state is the system working state. Transition into
the SO state from some other system state (such as sleeping) is automatic, and, by virtue that instructions
are being executed, OSPM assumes the system to be in the SO state. Transition into any system sleeping
state is only accomplished by the operating software directing the hardware to enter the appropriate state,
and the operating software can only do this within the requirements defined in the Power Resource and
Bus/Device Package objects.

All run-time system state transitions (for example, to and from the SO state), except $4 and S5, are done
similarly such that the code sequence to do thisis the following:

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 299

/*
* |Intel Architecture Set Sl eepi ngState exanple
*/

ULONG

Set Syst ent| eepi ng (
IN ULONG NewState
)

{
PROCESSOR_CONTEXT Cont ext ;

ULONG Power Segeunce;
BOOLEAN Fl ushCaches;
USHORT Sl pTyp;

/'l Required environnent: Executing on the system boot
/1 processor. Al other processors stopped. Interrupts
/1 disabled. Al Power Resources (and devices) are in
/1 corresponding device state to support NewState.

/1l Get h/w attributes for this systemstate
Fl ushCaches = Sl eepType[NewsSt at e] . Fl ushCache;

Sl pTyp = Sl eepType[NewSt ate] . SI pTyp & SLP_TYP_MASK;

_asm {

| ea eax, OsResuneCont ext

push eax ; Build real node handl er the resune
push of fset sp50 ; context, with eip = sp50

cal | SaveProcessor St at e

nov eax, ResuneVector ; set firmware’'s resume vector
nmv [eax], offset OsReal ModeResunmeCode

nmov edx, PMla_STS ; Make sure wake status is clear
nmov ax, WAK STS ; (cleared by asserting the bit
out dx, ax ; in the status register)

nmov edx, PMLb_STS ;

out dx, ax ;

and eax, not SLP_TYP_NMASK

or eax, Sl pTyp ; set SLP_TYP

or ax, SLP_EN ; set SLP_EN

cnp Fl ushCaches, 0

jz short spl0 ; | f needed, ensure no dirty data in

cal | Fl ushProcessor Caches ; the caches whil e sleeping
splo: nmv edx, PMla_SLP_TYP ; get address for PMla_SLP_TYP

out dx, ax ; start h/w sequencing

nmov edx, PMLb_SLP TYP ; get address for PMLb_SLP_TYP

out dx, ax ; start h/w sequencing

nmov edx, PMla_STS ; get address for PMLx_STS

nmov ecx, PMLb_STS

sp20: in ax, dx ; wait for WAK status
xchg edx, ecx
test ax, WAK_STS

jz short sp20
sp50:
}
/1 Done..
*ResumeVect or = NULL;
return O;

}

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

300 Advanced Configuration and Power Interface Specification

7.3.4.1 System \ SO State (Working)

While the system isin the SO state, it isin the system working state. The behavior of this state is defined as:

e Theprocessorsareinthe CO, C1, C2, or C3 states. The processor-complex context is maintained and
instructions are executed as defined by any of these processor states.

e Dynamic RAM context is maintained and is read/write by the processors.

e Devices states are individually managed by the operating software and can be in any device state (DO,
D1, D2, D3hoat, or D3).

e Power Resources are in a state compatible with the current device states.

Transition into the SO state from some system sleeping state is automatic, and by virtue that instructions are
being executed OSPM, assumes the system to be in the SO state.

7.3.4.2 System _S1 State (Sleeping with Processor Context Maintained)

While the system isin the S1 dleeping state, its behavior isthe following:

e The processors are not executing instructions. The processor-complex context is maintained.

e Dynamic RAM context is maintained.

e Power Resources are in a state compatible with the system S1 state. All Power Resources that supply a
System-Level reference of SO are in the OFF state.

o Deuvices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the deviceis in the D3 (off) state™.

e Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to SO. This transition causes the processor to
continue execution where it left off.

To transition into the S1 state, the OSPM must flush all processor caches.

7.3.4.3 System \ S2 State

The S2 deeping state islogically lower than the S1 state and is assumed to conserve more power. The

behavior of this state is defined as:

e The processors are not executing instructions. The processor-complex context is not maintained.

e Dynamic RAM context is maintained.

e Power Resources are in a state compatible with the system S2 state. All Power Resources that supply a
System-Level reference of SO or S1 are in the OFF state.

e Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the deviceisin the D3 (off) state.

e Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to SO. This transition causes the processor to
begin execution at its boot location. The BIOS performsinitialization of core functions as needed to
exit an S2 state and passes control to the firmware resume vector. See section 15.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires that
the operating software flush all dirty cache to dynamic RAM (DRAM).

Y Oritisat least assumed to be in the D3 state by its device driver. For example, if the device doesn’t
explicitly describe how it can stay in some state non-off state while the system isin a sleeping state, the
operating software must assume that the device can lose its power and state.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 301

7.3.4.4 System \ S3 State

The S3 stateislogically lower than the S2 state and is assumed to conserve more power. The behavior of

this state is defined as follows:

e The processors are not executing instructions. The processor-complex context is not maintained.

e Dynamic RAM context is maintained.

e Power Resources are in a state compatible with the system S3 state. All Power Resources that supply a
System-Level reference of SO, S1, or S2 are in the OFF state.

e Devices states are compatible with the current Power Resource states. Only devices that solely
reference Power Resources that are in the ON state for a given device state can be in that device state.
In all other cases, the deviceisin the D3 (off) state.

e Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event that transitions the system state to SO. This transition causes the processor to
begin execution at its boot location. The BIOS performsinitialization of core functions as necessary to
exit an S3 state and passes control to the firmware resume vector. See section 15.3.2, “BIOS
Initialization of Memory,” for more details on BIOS initialization.

From the software viewpoint, this state is functionally the same as the S2 state. The operational difference
can be that some Power Resources that could be left ON to be in the S2 state might not be available to the
S3 state. As such, additional devices may need to bein alogically lower DO, D1, D2, or D3 state for S3
than S2. Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires that
the operating software flush all dirty cacheto DRAM.

7.3.4.5 System \ S4 State

While the system isin this state, it isin the system S4 dleeping state. The state islogically lower than the

S3 state and is assumed to conserve more power. The behavior of this state is defined as follows:

e The processors are not executing instructions. The processor-complex context is not maintained.

e DRAM context is not maintained.

e Power Resources are in a state compatible with the system $4 state. All Power Resources that supply a
System-Level reference of SO, S1, S2, or S3 are in the OFF state.

e Devices states are compatible with the current Power Resource states. In other words, all devicesarein
the D3 state when the system state is 4.

e Devicesthat are enabled to wake the system and that can do so from their device state in $4 can initiate
a hardware event that transitions the system state to SO. This transition causes the processor to begin
execution at its boot location.

After OSPM has executed the PTS control method and has put the entire system state into main memory,
there are two ways that OSPM may handle the next phase of the $4 state transition; saving and restoring
main memory. The first way isto use the operating system’s drivers to access the disks and file system
structures to save a copy of memory to disk and then initiate the hardware S4 sequence by setting the
SLP_EN register bit. When the system wakes, the firmware performs a normal boot process and transfers
control to the OS viathe firmware _waking_vector loader. The OS then restores the system’s memory and
resumes execution.

The alternate method for entering the $4 stateis to utilize the BIOS viathe $4BIOS transition. The BIOS
uses firmware to save a copy of memory to disk and then initiates the hardware $4 sequence. When the
system wakes, the firmware restores memory from disk and wakes OSPM by transferring control to the
FACS waking vector.

The S4BIOS transition is optional, but any system that supports this mechanism must support entering the
4 state via the direct OS mechanism. Thus the preferred mechanism for S4 support is the direct OS
mechanism as it provides broader platform support. The aternate S4BI1OS transition provides away to
achieve $4 support on operating systems that do not have support for the direct method.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

302 Advanced Configuration and Power Interface Specification

7.3.4.6 System \ S5 State (Soft Off)

The S5 state is similar to the $4 state except that OSPM does not save any context. The system isin the
soft off state and requires a complete boot when awakened (BIOS and OS). Software uses a different state
value to distinguish between this state and the $4 state to allow for initial boot operations within the BIOS
to distinguish whether or not the boot is going to wake from a saved memory image. OSPM does not
disable wake events before setting the SLP_EN bit when entering the S5 system state. This provides
support for remote management initiatives by enabling Remote Start capability. An ACPI-compliant OS
must provide an end user accessible mechanism for disabling all wake devices, with the exception of the
system power button, from asingle point in the user interface.

7.3.5 _SWS (System Wake Source)

This object provides a means for OSPM to definitively determine the source of an event that caused the
system to enter the SO state. General-purpose event and fixed-feature hardware registers containing wake
event sources information are insufficient for this purpose as the source event information may not be
available after transitions to the SO state from all other system states (S1-S5).

To determine the source event that caused the system to transition to the SO state, OSPM will evaluate the
_SWSobject, when it exists, under the\ GPE scope (for all fixed-feature general-purpose events from the
GPE Blocks), under the\ SB scope (for fixed-feature hardware events), and within the scope of a GPE
Block device (for GPE events from this device). _SWS objects may exist in any or all of these locations as
necessary for the platform to determine the source event that caused the system to transition to the SO state.

Arguments:
None

Return Value:
An Integer containing the Source Event as described below

The value of the Source Event is dependent on the location of the SWS object:

1. If _SWSisevaluated under the\ GPE scope, Source Event is the index of the GPE that caused
the system to transition to SO.

2. If _SWSisevaluated within the scope of a GPE block device, Source Event is the index of the
GPE that caused the system to transition to SO. In this case, the index is relative to the GPE block
device and is not unique system-wide.

3. If _SWSisevaluated under the\ SB scope, Source Event isthe the index in the PM1 status
register that caused the system to transition to SO.

In all cases above, if the cause of the SO transition cannot be determined, _SWS returns Ones (-1).

To enable OSPM to determine the source of the SO state transition viathe _SWS object,the hardware or
firmware should detect and save the event that caused the transition so that it can be returned during _SWS
object evaluation. The single wake source for the system may be latched in hardware during the transition
so that no false wake events can be returned by _ SWS. An implementation that does not use hardware to
latch a single wake source for the system and instead uses firmware to save the wake source must do so as
quickly as possible after the wakeup event occurs, so that _ SWS does not return values that correspond to
events that occurred after the slegp-to-wake transition. Such an implementation must also take care to
ensure that events that occur subsequent to the wakeup source being saved do not overwrite the original
wakeup source.

The source event data returned by _ SWS must be determined for each transition into the SO state. The value
returned by _ SWS must also be persistent during the system’ s residency in the SO state as OSPM may
evaluate SWS multiple times. In this case, the platform must return the same source event information for
each invocation.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Power and Performance Management 303

After evaluating an _SWS object within the _ GPE scope or within the scope of a GPE block device,

OSPM will invoke the _Wxx control method corresponding to the GPE index returned by _ SWSif it exists.
This allows the platform to further determine source event if the GPE is shared among multiple devices.
See Section 5.6.2.2.5 for details.

7.3.6 _TTS (Transition To State)

The _TTS control method is executed by the OSPM at the beginning of the eep transition process for S1,
S2, S3, 4, and orderly S5 shutdown. OSPM will invoke TTS before it has notified any native mode
device drivers of the deep state transition. The sleeping state value (For example, 1, 2, 3, 4 or 5 for the S5
soft-off state) is passed to the _TTS control method.

The _TTS control method is also executed by the OSPM at the end of any sleep transition process when the
system transitions to SO from S1, S2, S3, or 4. OSPM will invoke _TTS after it has notified any native
mode device drivers of the end of the sleep state transition. The working state value (0) is passed to the
_TTS control method.

Arguments: (1)
Arg0— AnInteger containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
None

If OSPM aborts the sleep transition process, OSPM will still run_TTSfor an SO transition to indicate the
OSPM has returned to the SO state. The platform must assume that if OSPM invokesthe TTS control
method for an S1, S2, S3, or $4 transition, that OSPM will invoke TTS control method for an SO
transition before returning to the SO state.

The platform must not make any assumptions about the state of the machine when TTSiscalled. For
example, operation region accesses that require devices to be configured and enabled may not succeed, as
these devices may be in a non-decoding state due to plug and play or power management operations.

7.3.7 _WAK (System Wake)

After the system wakes from a sleeping state, it will invoke the\ WAK method and pass the sleeping state
value that has ended. This operation occurs asynchronously with other driver notifications in the system
and is not the first action to be taken when the system wakes. The AML code for this control method issues
device, thermal, and other notifications to ensure that OSPM checks the state of devices, thermal zones, and
so on, that could not be maintained during the system sleeping state. For example, if the system cannot
determine whether a device was inserted or removed from a bus while in the S2 state, the . WAK method
would issue a devicecheck type of notification for that bus when issued with the sleeping state value of 2
(for more information about types of notifications, see section 5.6.5, “Device Object Notifications’). Notice
that a device check notification from the_SB node will cause OSPM to re-enumerate the entire tree™.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method
must return status concerning the last sleep operation initiated by OSPM. The return values can be used to
provide additional information to OSPM or user.

Arguments: (1)
Arg0— AnInteger containing the value of the sleeping state (1 for S1, 2 for S2, etc.)

Return Value:
A Package containing two I nteger s containing status and the power supply S-state

1 Only buses that support hardware-defined enumeration methods are done automatically at run-time. This
would include ACPI-enumerated devices.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

304 Advanced Configuration and Power Interface Specification

Return Value I nfor mation

_WAK returns a package with the following format:

Element 0 — An Integer containing a bitfield that represents conditions that occurred during sleep.
0x00000000— Wake was signaled and was successful
0x00000001 — Wake was signaled but failed due to lack of power
0x00000002 — Wake was signaled but failed due to thermal condition
Other values— Reserved

Element 1 — An Integer containing the power supply S-state.
If non-zero, thisisthe effective S-state the power supply that was actually entered. Thisvalue is used
to detect when the targeted S-state was not entered because of too much current being drawn from the
power supply. For example, this might occur when some active device's current consumption pushes
the system’ s power requirements over the low power supply mark, thus preventing the lower power
mode from being entered as desired.

7.4 OSPM usage of GTS, PTS, TTS, WAK, and BFS

OSPM will invoke _GTS, _PTS, TTS, WAK, and BFSin the following order:
1. OSPM decides (through a policy scheme) to place the system into a sleeping state
_TTS(SX) isrun, where Sx isthe desired deep state to enter
OSPM notifies al native device drivers of the sleep state transition
_PTSisrun
OSPM readies system for the sleep state transition
_GTSisrun
OSPM writes the sleep vector and the system enters the specified Sx deep state
System Wakes up
_BFSisrun
10. OSPM readies system for the return from the deep state transition
11. WAK isrun
12. OSPM netifies all native device drivers of the return from the sleep state transition
13. _TTS0) isrunto indicate the return to the SO state

© N O~ wWDN

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Working State

Power and Performance Management 305

Working State

_TTS()

Sleeping State

Sleeping State

Figure7-1 Working/ Sleeping State object evaluation flow

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

306 Advanced Configuration and Power Interface Specification

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 307

8 Processor Configuration and Control

This section describes the configuration and control of the processor’s power and performance states. The
major controls over the processors are:

e Processor power states: CO, C1, C2,C3, ... Cn

e Processor clock throttling

e Processor performance states: PO, P1, ... Pn

These controls are used in combination by OSPM to achieve the desired balance of the following
sometimes conflicting goals:

e Performance

e Power consumption and battery life

e Thermal requirements

¢ Noise-level requirements

Because the goalsinteract with each other, the operating software needs to implement a policy asto when
and where tradeoffs between the goals are to be made™. For example, the operating software would
determine when the audible noise of the fan is undesirable and would trade off that requirement for lower
thermal requirements, which can lead to lower processing performance. Each processor configuration and
control interface is discussed in the following sections along with how controls interacts with the various
goals.

8.1 Processor Power States

ACPI defines the power state of system processors while in the GO working state®® as being either active
(executing) or sleeping (not executing). Processor power states include are designated CO, C1, C2, C3,
...Cn. The CO power state is an active power state where the CPU executes instructions. The C1 through
Cn power states are processor sleeping states where the processor consumes less power and dissipates less
heat than leaving the processor in the CO state. While in a deeping state, the processor does not execute any
instructions. Each processor sleeping state has a latency associated with entering and exiting that
corresponds to the power savings. In general, the longer the entry/exit latency, the greater the power
savings when in the state. To conserve power, OSPM places the processor into one of its supported
deeping states when idle. While in the CO state, ACPI allows the performance of the processor to be altered
through a defined “throttling” process and through transitions into multiple performance states (P-states). A
diagram of processor power statesis provided below.

12 A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce
performance), but a critical thermal alert does not occur.

3 Notice that these CPU states map into the GO working state. The state of the CPU is undefined in the G3
sleeping state, the Cx states only apply to the GO state.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

308 Advanced Configuration and Power Interface Specification

THT_EN=1

and
DTY=value

Performance
State Px 0

THT_EN=0

Interrupt or
BM Access

P_LVL2 Interrupt
Interrupt P_LVL3,

ARB_DIS=1

GO
Working

Figure8-1 Processor Power States

ACPI defineslogic on a per-CPU basisthat OSPM uses to transition between the different processor power
states. Thislogic is optional, and is described through the FADT table and processor objects (contained in
the hierarchical namespace). The fields and flags within the FADT table describe the symmetrical features
of the hardware, and the processor object contains the location for the particular CPU’s clock logic
(described by the P_BLK register block and _CST objects).

TheP_LVL2 and P_LVL3 registers provide optional support for placing the system processors into the C2
or C3 states. The P_L VL2 register is used to sequence the selected processor into the C2 state, and the
P_LVL3register isused to sequence the selected processor into the C3 state. Additional support for the C3
state is provided through the bus master status and arbiter disable bits (BM_STSinthe PM1_STSregister
and ARB_DISinthe PM2_CNT register). System software readsthe P_LVL2 or P_LVL3 registersto enter
the C2 or C3 power state. The Hardware must put the processor into the proper clock state precisely on the
read operation to the appropriate P_LVLX register. The platform may alternatively define interfaces
allowing OSPM to enter C-states using the _CST object, which isdefined in Section 8.4.2.1,“ CST (C
States)”.

Processor power state support is symmetric when presented viathe FADT and P_BLK interfaces; OSPM
assumes all processorsin a system support the same power states. If processors have non-symmetric power
state support, then the BIOS will choose and use the lowest common power states supported by all the
processors in the system through the FADT table. For example, if the CPUO processor supports all power
states up to and including the C3 state, but the CPU1 processor only supports the C1 power state, then
OSPM will only place idle processors into the C1 power state (CPUO will never be put into the C2 or C3
power states). Notice that the C1 power state must be supported. The C2 and C3 power states are optional
(seethe PROC_Cl1 flag inthe FADT table description in section 5.2.6, “ System Description Table
Header”).

The following sections describe processor power statesin detail.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 309

8.1.1 Processor Power State CO

While the processor isin the CO power state, it executes instructions. While in the CO power state, OSPM
can generate a policy to run the processor at less than maximum performance. The clock throttling
mechanism provides OSPM with the functionality to perform thistask in addition to thermal control. The
mechanism allows OSPM to program a value into aregister that reduces the processor’s performanceto a
percentage of maximum performance.

duty Va“_Je >< clock off time——>
clock on time
< duty width >
P_CNT duty value

—duty offset—><——duty width——

Figure8-2 Throttling Example

The FADT contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of bits used by
the duty value (which determines the granularity of the throttling logic). The performance of the processor
by the clock logic can be expressed with the following equation:

dutysetting

dutywidth
2 y

% Performance = *100%

Equation 1 Duty Cycle Equation

Nominal performance is defined as “close as possible, but not below the indicated performance level.”
OSPM will use the duty offset and duty width to determine how to access the duty setting field. OSPM wiill
then program the duty setting based on the thermal condition and desired power of the processor object.
OSPM calculates the nominal performance of the processor using the equation expressed in Equation 1.
Notice that a dutysetting of zero isreserved.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

310 Advanced Configuration and Power Interface Specification

For example, the clock logic could use the stop grant cycle to emulate a divided processor clock frequency
on an |A processor (through the use of the STPCLK# signal). Thissignal internally stops the processor’s
clock when asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK#
pin could be asserted as follows (to emulate the different frequency settings):

< Duty Width (3-bits) »

.o , 1 , 2 4, 3 , 4 , 5 , 6 | 7
| 1 1 1 1 1 1 1

dutysetting
0 - Reserved Value

CPU Clock Stopped

STPCLK# Signal
w

4 A CPU Clock Running

i
L—I—I—I—I—I—I

Figure8-3 Example Control for the STPCLK#

To start the throttling logic OSPM sets the desired duty setting and then setsthe THT_EN bit HIGH. To
change the duty setting, OSPM will first reset the THT_EN bit LOW, then write another value to the duty
setting field while preserving the other unused fields of this register, and then set the THT_EN bit HIGH

again.
The example logic model is shown below:

P_LVL3 P_LVL2 BM_RLD ARB_DIS BM_STS
RT R\efd PM1x_CNT.1 PM2_CNT PMlx STS4
" System
Clock Logic DD

()g ()gd uty width

THT_EN THTL_DTY
P_CNT4 P_CNTx

Figure8-4 ACPI Clock Logic (One per Processor)

Implementation of the ACPI processor power state controls minimally requires the support a single CPU
deeping state (C1). All of the CPU power states occur in the GO/SO system state; they have no meaning
when the system transitions into the sleeping state(S1-S4). ACPI defines the attributes (semantics) of the
different CPU states (defines four of them). It is up to the platform implementation to map an appropriate
low-power CPU state to the defined ACPI CPU state.

ACPI clock control is supported through the optional processor register block (P_BLK). ACPI requires that
there be a unique processor register block for each CPU in the system. Additionally, ACPI requires that the
clock logic for multiprocessor systems be symmetrical when using the P_BLK and FADT interfaces; if the
PO processor supportsthe C1, C2, and C3 states, but P1 only supports the C1 state, then OSPM will limit
all processorsto enter the C1 state whenidle.

The following sections define the different ACPI CPU sleeping states.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 311

8.1.2 Processor Power State C1

All processors must support this power state. This state is supported through a native instruction of the
processor (HLT for |A 32-bit processors), and assumes no hardware support is needed from the chipset.
The hardware latency of this state must be low enough that OSPM does not consider the latency aspect of
the state when deciding whether to use it. Aside from putting the processor in a power state, this state has
no other software-visible effects. In the C1 power state, the processor is able to maintain the context of the
system caches.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor.

8.1.3 Processor Power State C2

This processor power state is optionally supported by the system. If present, the state offersimproved
power savings over the C1 state and is entered by using the P_LVL2 command register for the local
processor or an alternative mechanism asindicated by the CST object. The worst-case hardware latency
for this state isdeclared in the FADT and OSPM can use this information to determine when the C1 state
should be used instead of the C2 state. Aside from putting the processor in a power state, this state has no
other software-visible effects. OSPM assumes the C2 power state has lower power and higher exit latency
than the C1 power state.

The C2 power state isan optional ACPI clock state that needs chipset hardware support. This clock logic
consists of an interface that can be manipulated to cause the processor complex to precisely transition into a
C2 power state. In a C2 power state, the processor is assumed capable of keeping its caches coherent; for
example, bus master and multiprocessor activity can take place without corrupting cache context.

The C2 state puts the processor into alow-power state optimized around multiprocessor and bus master
systems. OSPM will cause an idle processor complex to enter a C2 state if there are bus masters or Multiple
processor activity (which will prevent OSPM from placing the processor complex into the C3 state). The
processor complex is able to snoop bus master or multiprocessor CPU accesses to memory while in the C2
state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt isto
be presented to the processor.

8.1.4 Processor Power State C3

This processor power state is optionally supported by the system. If present, the state offersimproved
power savings over the C1 and C2 state and is entered by using the P_LV L3 command register for the local
processor or an alternative mechanism asindicated by the CST object. The worst-case hardware latency
for this state isdeclared in the FADT, and OSPM can use this information to determine when the C1 or C2
state should be used instead of the C3 state. While in the C3 state, the processor’ s caches maintain state but
the processor is not required to snoop bus master or multiprocessor CPU accesses to memory.

The hardware can exit this state for any reason, but must always exit this state when an interrupt is to be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain accessto
memory.

OSPM isresponsible for ensuring that the caches maintain coherency. In a uniprocessor environment, this
can be done by using the PM2_CNT.ARB_DIS bus master arbitration disable register to ensure bus master
cycles do not occur while in the C3 state. In a multiprocessor environment, the processors caches can be
flushed and invalidated such that no dynamic information remains in the caches before entering the C3
state.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

312 Advanced Configuration and Power Interface Specification

There are two mechanisms for supporting the C3 power state:

e Having OSPM flush and invalidate the caches prior to entering the C3 state.

e Providing hardware mechanisms to prevent masters from writing to memory (uniprocessor-only
support).

In the first case, OSPM will flush the system caches prior to entering the C3 state. Asthereisnormally
much latency associated with flushing processor caches, OSPM islikely to only support thisin
multiprocessor platforms for idle processors. Flushing of the cache is accomplished through one of the
defined ACPI mechanisms (described below in section 8.2, “Flushing Caches”).

In uniprocessor-only platforms that provide the needed hardware functionality (defined in this section),
OSPM will attempt to place the platform into a mode that will prevent system bus masters from writing
into memory while the processor isin the C3 state. Thisis accomplished by disabling bus masters prior to
entering a C3 power state. Upon a bus master requesting an access, the CPU will awaken from the C3 state
and re-enable bus master accesses.

OSPM usesthe BM_STS hit to determine the power state to enter when considering atransition to or from
the C2/C3 power state. The BM_STSis an optional bit that indicates when bus masters are active. OSPM
uses this bit to determine the policy between the C2 and C3 power states: alot of bus master activity
demotes the CPU power state to the C2 (or C1 if C2 is not supported), no bus master activity promotes the
CPU power state to the C3 power state. OSPM keeps a running history of the BM_STS bit to determine
CPU power state policy.

The last hardware feature used in the C3 power stateisthe BM_RLD bit. This bit determines if the Cx
power state is exited as aresult of bus master requests. If set, then the Cx power state is exited upon a
request from a bus master. If reset, the power state is not exited upon bus master requests. In the C3 state,
bus master requests need to transition the CPU back to the CO state (as the system is capable of maintaining
cache coherency), but such atransition is not needed for the C2 state. OSPM can optionally set this bit
when using a C3 power state, and clear it when using a C1 or C2 power state.

8.1.5 Additional Processor Power States

ACPI introduced optional processor power states beyond C3 starting in ACPI 2.0. These power states,
C4... Cn, are conveyed to OSPM through the CST object defined in section 8.4.2.1, “_CST (C-States).”
These additional power states are characterized by equivalent operational semantics to the C1 through C3
power states, as defined in the previous sections, but with different entry/exit latencies and power savings.
See section 8.4.2.1, “_CST (C-States),” for more information.

8.2 Flushing Caches

To support the C3 power state without using the ARB_DI S feature, the hardware must provide

functionality to flush and invalidate the processors’ caches (for an |A processor, this would be the

WBINVD instruction). To support the S1, S2 or S3 seeping states, the hardware must provide functionality

to flush the platform caches. Flushing of caches is supported by one of the following mechanisms:

e Processor instruction to write back and invalidate system caches (WBINVD instruction for |A
processors).

e Processor instruction to write back but not invalidate system caches (WBINVD instruction for 1A
processors and some chipsets with partial support; that is, they don't invalidate the caches).

The ACPI specification expects all platformsto support the local CPU instruction for flushing system
caches (with support in both the CPU and chipset), and provides some limited “best effort” support for
systems that don't currently meet this capability. The method used by the platform isindicated through the
appropriate FADT fields and flags indicated in this section.

ACPI specifies parametersin the FADT that describe the system’s cache capabilities. If the platform
properly supports the processor’s write back and invalidate instruction (WBINVD for A processors), then
this support isindicated to OSPM by setting the WBINVD flag in the FADT.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 313

If the platform supports neither of the first two flushing options, then OSPM can attempt to manually flush

the cache if it meets the following criteria:

e A cache-enabled sequential read of contiguous physical memory of not more than 2 MB will flush the
platform caches.

There are two additional FADT fields needed to support manual flushing of the caches:
o FLUSH_SIZE, typically twice the size of the largest cache in the system.
e FLUSH_STRIDE, typically the smallest cache line size in the system.

8.3 Power, Performance, and Throttling State Dependencies

Cost and complexity trade-off considerations have driven into the platform control dependencies between
logical processors when entering power, performance, and throttling states. These dependencies exist in
various forms in multi-processor, multi-threaded processor, and multi-core processor-based platforms.
These dependencies may also be hierarchical. For example, a multi-processor system consisting of
processors containing multiple cores containing multiple threads may have various dependencies as a result
of the hardware implementation.

Unless OSPM is aware of the dependency between the logical processors, it might lead to scenarios where
one logical processor isimplicitly transitioned to a power, performance, or throttling state wheniit is
unwarranted, leading to incorrect / non-optimal system behavior. Given knowledge of the dependencies,
OSPM can coordinate the transitions between logical processors, choosing to initiate the transition when
doing so does not lead to incorrect or non-optimal system behavior. This OSPM coordination is referred to
as Software (SW) Coordination. Alternately, it might be possible for the underlying hardware to coordinate
the state transition requests on multiple logical processors, causing the processors to transition to the target
state when the transition is guaranteed to not lead to incorrect or non-optimal system behavior. This
scenario is referred to as Hardware (HW) coordination. When hardware coordinates transitions, OSPM
continues to initiate state transitions as it would if there were no dependencies. However, inthiscaseit is
required that hardware provide OSPM with a means to determine actual state residency so that correct /
optimal control policy can be realized.

Platforms containing logical processors with cross-processor dependencies in the power, performance, or
throttling state control areas use ACPI defined interfaces to group logical processorsinto what is referred to
as adependency domain. The Coordination Type characteristic for adomain specifies whether OSPM or
underlying hardware is responsible for the coordination. When OSPM coordinates, the platform may
require that OSPM transition ALL (OxFC) or ANY ONE (0xFD) of the processors belonging to the domain
into a particular target state. OSPM may choose at its discretion to perform coordination even though the
underlying hardware supports hardware coordination. In this case, OSPM must transition all logical
processors in the dependency domain to the particular target state.

There are no dependenciesimplied between a processor’s C-states, P-states or T-states. Hence, for example
it is possible to use the same dependency domain number for specifying dependencies between P-states
among one set of processors and C-states among another set of processors without any dependencies being
implied between the P-State transitions on a processor in the first set and C-state transitions on a processor
in the second set.

8.4 Declaring Processors

Each processor in the system must be declared in the ACPI namespace in either the_SB or \ PR scope but
not both. Declaration of processorsin the\ PR scope isrequired for platforms desiring compatibility with
ACPI 1.0-based OSPM implementations. Processors are declared either viathe ASL Processor statement
or the ASL Device statement. A Processor definition declares a processor object that provides processor
configuration information and points to the processor register block (P_BLK). A Device definition for a
processor is declared using the ACPI0007 hardware identifier (HID). In this case, processor configuration
information is provided exclusively by objects in the processor device's object list.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

314 Advanced Configuration and Power Interface Specification

When the platform uses the APIC interrupt model, OSPM associates processors declared in the namespace
with entriesin the MADT. Prior to ACPI 3.0, this was accomplished using the processor object’s
Processor| D and the ACPI Processor ID fieldsin MADT entries. UID fields were added to MADT entries
in ACPI 3.0. By expanding processor declaration using Device definitions, UID object values under a
processor device are used to associate processor devices with entriesin the MADT. Thisremovesthe
previous 256 processor declaration limit.

The platform may declare processors with IDs in the range of 0-254 for APIC/x2APIC implementations
and 0-255 for SAPIC implementations using either the ASL Processor statement or the ASL Device
statement but not both. Processors with 1Ds outside these ranges must be declared using the ASL Device
Statement.

Processor-specific objects may be included in the processor object’s optional object list or declared within
the processor device's scope. These objects serve multiple purposes including providing alternative
definitions for the registers described by the processor register block (P_BLK) and processor performance
state control. Other ACPI-defined device-related objects are also allowed in the processor object’s object
list or under the processor device's scope (for example, the unique identifier object _UID).

With device-like characteristics attributed to processors, it isimplied that a processor device driver will be
loaded by OSPM to, at a minimum, process device notifications. OSPM will enumerate processorsin the
system using the ACPI Namespace, processor-specific native identification instructions, and optionally the
_HID method.

OSPM will ignore definitions of ACPI-defined objectsin an object list of a processor object declared under
the\ PR scope.

For more information on the declaration of the processor object, see section 18.5.93, “Processor (Declare
Processor).” Processor-specific objects are described in the following sections.

8.4.1 _PDC (Processor Driver Capabilities)

This optional object isamethod that is used by OSPM to communicate to the platform the level of
processor power management support provided by OSPM. This object is a child object of the processor.
OSPM evaluates PDC prior to evaluating any other processor power management objects returning
configuration information.

The PDC object provides OSPM a mechanism to convey to the platform the capabilities supported by
OSPM for processor power management. This allows the platform to modify the ACPI namespace objects
returning configuration information for processor power management based on the level of support
provided by OSPM. Using this method provides a mechanism for OEMs to provide support for new
technologies on legacy OSes, while also allowing OSPM to leverage new technologies on platforms
capable of supporting them. This method is eval uated once during processor device initialization, and will
not be re-evaluated during resume from a sleep state transition. The platform must preserve state
information across S1-S3 sleep state transitions.

Arguments: (1)

Arg0 — A variable-length Buffer containing alist of capabilities as described below
Return Value:

None
The buffer argument contains alist of DWORDs in the following format:

Revisionld — Revision of the buffer format

Count — The number of capability valuesin the capabilities array

Capabilitie Count] — Capabilities array

Each DWORD entry in the capabilities array is a bitfield that defines capabilities and features supported by
OSPM for processor configuration and power management as specified by the CPU manufacturer.

The use of _PDC is deprecated in ACPI 3.0 in favor of _OSC. For backwards compatibility, PDC may be
implemented using _OSC as follows:

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 315

Met hod(_PDC, 1)

{

CreateDWordField (Argo, 0, REVS)

CreateDWordField (Arg0o, 4, SlIZE)

/1

/1 Local 0 = Nunber of bytes for ArgO

/1

Store (SizeOF (Arg0), Local 0)

/1

/1 Locall = Nunber of Capabilities bytes in Arg0

/1

Store (Subtract (Local 0, 8), Locall)

/1

/! TEMP = Tenporary field hol ding Capability DWORDs

/1

CreateField (Arg0, 64, Miltiply (Locall, 8), TEMP)

/1

/!l Create the Status (STSO) buffer with the first DWORD = 0

/1 This is required to return errors defined by _GSC.

/1

Narme (STSO, Buffer () {0x00, 0x00, 0x00, 0x00})

/1

/1 Concatenate the _PDC capabilities bytes to the STSO Buffer

/! and store themin a local variable for calling GOSC

/1

Concat enate (STSO, TEMP, Local 2)

/1

/1 Note: The UUID passed into _OSC is CPU vendor specific. Consult CPU

/1 vendor docunentation for UUID and Capabilities Buffer bit definitions

/1

_OSC (ToUU D("4077A616- 290C- 47BE- 9EBD- D87058713953"), REVS, SIZE, Local 2)
}

Section 6.2.9, “_OSC (Operating System Capabilities)”, describes the OSC object, which can be used to
convey processor related OSPM capabilities to the platform. Consult CPU vendor specific documentation
for the UUID and Capabilities Buffer bit definitions used by _OSC for a specific processor.

8.4.2 Processor Power State Control
ACPI defines two processor power state (C state) control interfaces. These are:

1) The Processor Register Block’s (P_BLK'S) P_LVL2 and P_LVL3 registers coupled with FADT
P_LVLX_LAT valuesand

2) The_CST object in the processor’s object list.

P_BLK based C state controls are described in Section 4, “ACPI Hardware Specification” and Section 8.1,
“Processor Power States’. _CST based C state controls expand the functionality of the P_BLK based
controls allowing the number and type of C states to be dynamic and accommodate CPU architecture
specific C state entry and exit mechanisms as indicated by registers defined using the Functional Fixed
Hardware address space.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

316 Advanced Configuration and Power Interface Specification

8.4.2.1 _CST (C States)

_CST isan optional object that provides an alternative method to declare the supported processor power
states (C States). Values provided by the _CST object override P_LVLx valuesin P_BLK and

P_LVLX LAT valuesinthe FADT. The _CST object allows the number of processor power states to be
expanded beyond C1, C2, and C3 to an arbitrary number of power states. The entry semantics for these
expanded states, (in other words), the considerations for entering these states, are conveyed to OSPM by
the C-state Type field and correspond to the entry semantics for C1, C2, and C3 as described in sections
8.1.2 through 8.1.4. CST defines ascending C-states characterized by lower power and higher entry/exit

latency.

Arguments:
None

Return Value:

A variable-length Package containing alist of C-state information Packages as described below

Return Value Infor mation

_CST returns a variable-length Package that contains the following elements:
Count An Integer that contains the number of CState sub-packages that follow
CStateg] A list of Count CState sub-packages

Package {
Count
CsSt at es[0]

é;Stat es[Count - 1]
}

/1 1 nteger
/| Package

/| Package

Each fixed-length Cstate sub-Package contains the elements described below:

Package {
Regi st er
Type
Lat ency
Power

/1 Buffer (Resource Descriptor)
/1 Integer (BYTE)
/1 1 nteger (WORD)
/1 | nteger (DWORD)

Table8-1 Cstate Package Values

Element | Object Type

Description

Register | Buffer

Contains a Resource Descriptor with a single Register () descriptor that
describes the register that OSPM must read to place the processor in the
corresponding C state.

Type I nteger
(BYTE)

The C State type (1=C1, 2=C2, 3=C3, etc.). Thisfield conveysthe
semanticsto be used by OSPM when entering/exiting the C state. Zero is not
avalid value.

Latency I nteger

The worst-case latency to enter and exit the C State (in microseconds).

(WORD) There are no latency restrictions.
Power I nteger The average power consumption of the processor when in the corresponding
(DWORD) C State (in milliwatts).

The platform must expose a_CST object for either al or none of its processors. If the CST object exists,
OSPM uses the C state information specified inthe CST objectinlieuof P LVL2 and P_LVL3 registers
definedin P_BLK andthe P_LVLx_LAT values defined in the FADT. Also notice that if the CST object
existsand the PTC object does not exist, OSPM will use the Processor Control Register defined in
P_BLK and the C_State Register registersinthe CST object.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 317

The platform may change the number or type of C States available for OSPM use dynamically by issuing a
Notify event on the processor object with a notification value of 0x81. This will cause OSPM to re-evaluate
any CST object residing under the processor object notified. For example, the platform might notify
OSPM that the number of supported C States has changed as a result of an asynchronous AC insertion /
removal event.

The platform must specify unique C_State Register addresses for all entries within agiven _CST object.

_CST eliminates the ACPI 1.0 restriction that all processors must have C State parity. With _CST, each
processor can have its own characteristics independent of other processors. For example, processor 0 can
support C1, C2 and C3, while processor 1 supportsonly C1.

Thefieldsin the processor structure remain for backward compatibility.

Example
Processor (
\ _SB. CPWO, /1 Processor Name
1, /1 ACPlI Processor nunber
0x120, /1 PBlk system|O address
6) /1 PBl kLen
{
Name(_CST, Package()
{
4, /1 There are four G states defined here with three semantics
/1 The third and fourth C states defined have the same C3 entry senantics
Package() { Resour ceTenpl at e() { Regi st er (FFi xedHwW 0, 0, 0)}, 1, 20, 1000},

Package() { ResourceTenpl ate() { Regi ster(System O, 8, 0, 0x161)}, 2, 40, 750},
Package() { Resour ceTenpl ate() { Regi ster(System O, 8, 0, 0x162)}, 3, 60, 500},
Package() { ResourceTenpl at e() { Regi ster(System O, 8, 0, 0x163)}, 3, 100, 250}

19
}

Notice in the example above that OSPM should anticipate the possibility of a_CST object providing more
than one entry with the same C_State Type value. In this case OSPM must decide which C_State Register
it will useto enter that C state.

Example

Thisis an example usage of the CST object using the typical values as defined in ACPI 1.0.

Processor (

\ _SB. CPWO, /1 Processor Nanme

1, /1 ACPlI Processor nunber
0x120, /1 PBLK system | O address
6) /1 PBLK Len

Name(_CST, Package()

{
2 /1l There are two C-states defined here — C2 and C3

P:ackage(){ResourceTerrpI ate(){Register(System O, 8, 0, 0x124)}, 2, 2, 750},
Package() { Resour ceTenpl at e() { Regi ster(Systeml O, 8, 0, 0x125)}, 3, 65, 500}

19
}

The platform will issue a Notify(_SB.CPUO, 0x81) to inform OSPM to re-eval uate this object when the
number of available processor power states changes.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

318 Advanced Configuration and Power Interface Specification

8.4.2.2 _CSD (C-State Dependency)

This optional object provides C-state control crosslogical processor dependency information to OSPM.
The _CSD object evaluates to a packaged list of information that correlates with the C-state information
returned by the _CST object. Each packaged list entry identifies the C-state for which the dependency is
being specified (asan index into the _CST object list), a dependency domain number for that C-state, the
coordination type for that C-state and the number of logical processors belonging to the domain for the
particular C-state. It is possible that a particular C-state may belong to multiple domains. That is, it is
possible to have multiple entriesin the _CSD list with the same CStatelndex value.

Arguments:
None

Return Value:

A variable-length Package containing alist of C-state dependency Packages as described below.

Return Value I nfor mation

Package {

Cst at eDependency| 0]

CSt at eDependency|[n]

}

/| Package

/| Package

Each CstateDependency sub-Package contains the elements described below:

Package {
NunEntri es /'l | nteger
Revi si on /1 Integer (BYTE)
Domai n /1 1nteger (DWORD)
Coor dType /1 | nteger (DWORD)
NunPr ocessor s /1 1nteger (DWORD)
I ndex /1 I nteger (DWORD)
}
Table8-2 CStateDependency Package Values
Element Object Type | Description
NumEntries | Integer The number of entriesin the Cst at eDependency package including this
field. Current value s 6.
Revision I nteger The revision number of the Cst at eDependency package format. Current
(BYTE) valueisO.
Domain Integer The dependency domain number to which this C state entry belongs.
(DWORD)
CoordType | Integer The type of coordination that exists (hardware) or is required (software) as
(DWORD) aresult of the underlying hardware dependency. Could be either OXFC
(SW_ALL), OXFD (SW_ANY) or OXFE (HW_ALL) indicating whether
OSPM isresponsible for coordinating the C-state transitions among
processors with dependencies (and needs to initiate the transition on all or
any processor in the domain) or whether the hardware will perform this
coordination.
Num I nteger The number of processors belonging to the domain for the particular C-
Processors | (DWORD) state. OSPM will not start performing power state transitionsto a
particular C-state until this number of processors belonging to the same
domain for the particular C-state have been detected and started.
Index I nteger Indicates the index of the C-State entry in the _CST object for which the
(DWORD) dependency applies.
Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 319

Given that the number or type of available C States may change dynamically, ACPI supports Notify events
on the processor object, with Notify events of type 0x81 causing OSPM to re-evaluate any _CST objects
residing under the particular processor object notified. On receipt of Notify events of type 0x81, OSPM
should re-evaluate any present _CSD objects also.

Example

Thisis an example usage of the _CSD structure in a Processor structure in the namespace. The example
represents a two processor configuration. The C1-type state can be independently entered on each
processor. For the C2-type state, there exists dependence between the two processors, such that one
processor transitioning to the C2-type state, causes the other processor to transition to the C2-type state. A
similar dependence exists for the C3-type state. OSPM will be required to coordinate the C2 and C3
transitions between the two processors. Also OSPM can initiate a transition on either processor to cause
both to transition to the common target C-state.

Processor (
\ _SB. CPWO, /1 Processor Name
1, /1 ACPl Processor nunber
0x120, /1 PBlk system|O address
6) /1 PBl kLen

Name (_CST, Package()

{
3, /] There are three C-states defined here with three semantics
Package() { Resour ceTenpl at e() { Regi st er (FFi xedHwW 0, 0, 0)}, 1, 20, 1000},
Package() { ResourceTenpl ate() { Regi ster(System O, 8, 0, Ox161)}, 2, 40, 750},
Package() { Resour ceTenpl at e() { Regi ster(Systeml O, 8, 0, 0x162)}, 3, 60, 500}

1)
Name(_CSD, Package()

Package(){6, 0, 0, OxFD, 2, 1}, // 6 entries, Revision O, Domai n 0, OSPM Coordi nat e
/1 Initiate on Any Proc,2 Procs, Index 1 (C2-type)

Package(){6, 0, 0, OxFD, 2, 2} // 6 entries,Revision 0 Domain 0, OSPM Coor di nat e
/1 Initiate on Any Proc, 2 Procs, Index 2 (C3-type)

19
}

Processor (
\ _SB. CPUL, /1 Processor Name
2, /1 ACPl Processor nunber
, /1 PBlk system | O address
) /1 PBl kLen

Name(_CST, Package()

{
3, /] There are three C-states defined here with three semantics
Package() { Resour ceTenpl at e() { Regi st er (FFi xedHwW 0, 0, 0)}, 1, 20, 1000},
Package() { ResourceTenpl ate() { Regi ster(System O, 8, 0, Ox161)}, 2, 40, 750},
Package() { Resour ceTenpl at e() { Regi ster(Systeml O, 8, 0, 0x162)}, 3, 60, 500}

1)
Name(_CSD, Package()

Package(){6, 0, 0, OxFD, 2, 1}, // 6 entries, Revision 0, Domai n 0, OSPM Coor di nat e
/1 Initiate on any Proc,2 Procs, Index 1 (C2-type)

Package(){6, 0, 0, OxFD, 2, 2} // 6 entries, Revision 0, Domain 0, OSPM Coor di nat e
/1 Initiate on any Proc, 2 Procs, I ndex 2 (C3-type)

19
}

When the platform issues a Notify(\ SB.CPUO, 0x81) to inform OSPM to re-evaluate _CST when the
number of available processor power states changes, OSPM should also evaluate _CSD.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

320 Advanced Configuration and Power Interface Specification

8.4.3 Processor Throttling Controls
ACPI defines two processor throttling (T state) control interfaces. These are:
1) The Processor Register Block’s (P_BLK's) P_CNT register, and
2) Thecombined PTC, TSS, and _TPC objectsin the processor’s object list.

P_BLK based throttling state controls are described in Section 4, “ ACPI Hardware Specification” and
Section 8.1.1, “Processor Power State CO”. Combined PTC, TSS, and _TPC based throttling state
controls expand the functionality of the P_BLK based control allowing the number of T statesto be
dynamic and accommodate CPU architecture specific T state control mechanisms as indicated by registers
defined using the Functional Fixed Hardware address space. While platform definition of the PTC, TSS,
and _TPC objectsisoptional, al three objects must exist under a processor for OSPM to successfully
perform processor throttling via these controls.

8.4.3.1 _PTC (Processor Throttling Control)

_PTCisan optional object that defines a processor throttling control interface alternative to the 1/0O address
spaced-based P_BLK throttling control register (P_CNT) described in section 4, “ACPI Hardware
Specification”. The processor throttling control register mechanism remains as defined in section 8.1.1,
“Processor Power State CO.”

OSPM performs processor throttling control by writing the Control field value for the target throttling state
(T-state), retrieved from the Throttling Supported States object (_TSS), to the Throttling Control Register
(THROTTLE_CTRL) defined by the PTC object. OSPM may select any processor throttling state
indicated as available by the value returned by the _TPC control method.

Success or failure of the processor throttling state transition is determined by reading the Throttling Status
Register (THROTTLE_STATUS) to determine the processor’s current throttling state. If the transition was
successful, the value read from THROTTLE_STATUS will match the “ Status” field inthe _TSS entry that
corresponds to the targeted processor throttling state.

Arguments:
None

Return Value:
A Package as described below

Return Value Infor mation

Package
Contr ol Regi ster /1 Buffer (Resource Descriptor)
St at usRegi st er /1 Buffer (Resource Descriptor)

Table8-3 _PTC Package Values

Element Object Type | Description

Control Buffer Contains a Resource Descriptor with a single Register () descriptor that
Register describes the throttling control register.

Status Buffer Contains a Resource Descriptor with a single Register () descriptor that
Register describes the throttling status register.

The platform must expose a_PTC object for either all or none of its processors. Notice that if the PTC
object exists, the specified register is used instead of the P_CNT register specified in the Processor term.
Also notice that if the PTC object exists and the _CST object does not exist, OSPM will use the processor
control register fromthe PTC object and the P_LVLx registers from the P_BLK.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 321

Example
Thisis an example usage of the PTC object in a Processor object list:

Processor (

\ _SB. CPWO, /1 Processor Name

1, /1 ACPlI Processor nunber

0x120, /1 PBlk system|O address

6) /1 PBl kLen

{ /1 Object List

Name(_PTC, Package () /1 Processor Throttling Control object

{
Resour ceTenpl at e() { Regi st er (FFi xedHW 0, 0, 0)}, /1 Throttling_CTRL
Resour ceTenpl at e() { Regi st er (FFi xedHW 0, 0, 0)} /1 Throttling_STATUS

}) /1 End of _PTC object
} /1 End of nject List
Example

Thisis an example usage of the PTC object using the values defined in ACPI 1.0. Thisisanillustrative
example to demonstrate the mechanism with well-known values.

Processor (
_SB. CPW, // Processor Name

1, /1 ACPl Processor nunber
0x120, /1 PBLK system | O address
6) /1 PBLK Len

{ /1 Object List

Name(_PTC, Package () /1 Processor Throttling Control object —
/132 bit wide | O space-based register at the <P_BLK> address
{

Resour ceTenpl at e() { Regi ster(System O, 32, 0, 0x120)}, // Throttling CTRL
Resour ceTenpl at e() { Regi ster (System O, 32, 0, 0x120)} /1 Throttling_STATUS
}) /1 End of _PTC object
} /1 End of nject List

8.4.3.2 _TSS (Throttling Supported States)

This optional object indicatesto OSPM the number of supported processor throttling states that a platform
supports. This object evaluates to a packaged list of information about available throttling states including
percentage of maximum internal CPU core frequency, maximum power dissipation, control register values
needed to transition between throttling states, and status register values that allow OSPM to verify
throttling state transition status after any OS-initiated transition change request. Thelist is sorted in
descending order by power dissipation. As aresult, the zeroth entry describes the highest performance
throttling state (no throttling applied) and the ‘nth’ entry describes the lowest performance throttling state
(maximum throttling applied).

When providing the _TSS, the platform must supply a_TSS entry whose Percent field value is 100. This
provides a means for OSPM to disable throttling and achieve maximum performance.

Arguments:
None

Return Value:
A variable-length Package containing a list of Tstate sub-packages as described below

Return Value I nformation

Package {
TState [O] /1 Package — Throttling state 0
"Ii;State[n] /| Package — Throttling state n

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

322 Advanced Configuration and Power Interface Specification

Each Tstate sub-Package contains the elements described below:

Package {
Per cent /1 1 nteger (DWORD)
Power /1 | nteger (DWORD)
Lat ency /1 | nteger (DWORD)
Contr ol /1 1nteger (DWORD)
St at us /1 1nteger (DWORD)

Table8-4 TState Package Values

Element | Object Type | Description

Percent | Integer Indicates the percent of the core CPU operating frequency that will be
(DWORD) available when this throttling state isinvoked. The range for thisfield is 1-
100. This percentage applies independent of the processor’ s performance state
(P-state). That is, thisthrottling state will invoke the percentage of maximum
frequency indicated by thisfield as applied to the CoreFrequency field of the
_PSS entry corresponding to the P-state for which the processor is currently
resident.

Power I nteger Indicates the throttling state’ s maximum power dissipation (in milliWatts).
(DWORD) OSPM ignores this field on platforms the support P-states, which provide
power dissipation information viathe _PSS object.

Latency | Integer Indicates the worst-case latency in microseconds that the CPU is unavailable
(DWORD) during atransition from any throttling state to this throttling state.

Control | Integer Indicates the value to be written to the Processor Control Register
(DWORD) (THROTTLE_CTRL) in order to initiate a transition to this throttling state.

Status I nteger Indicates the value that OSPM will compare to a value read from the Throttle
(DWORD) Status Register (THROTTLE_STATUS) to ensure that the transition to the
throttling state was successful. OSPM may always place the CPU in the
lowest power throttling state, but additional states are only available when
indicated by the TPC control method. A value of zero indicates the transition
to the Throttling state is asynchronous, and as such no status value
comparison is required.

8.4.3.3 _TPC (Throttling Present Capabilities)

This optional object isamethod that dynamically indicates to OSPM the number of throttling states
currently supported by the platform. This method returns a number that indicatesthe TSS entry number of
the highest power throttling state that OSPM can use at a given time. OSPM may choose the corresponding
state entry inthe _TSS asindicated by the value returned by the TPC method or any lower power (higher
numbered) state entry inthe TSS.

Arguments:
None

Return Value:

An Integer containing the number of states supported:
0—states 0 ... n" state available (all states available)
1-statel ... n" state available
2—gate 2 ... n" state available

n — state n available only

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 323

In order to support dynamic changes of _TPC abject, Notify events on the processor object of type 0x82
will cause OSPM to reevaluate any _ TPC object in the processor’s object list. Thisallows AML codeto
notify OSPM when the number of supported throttling states may have changed as aresult of an
asynchronous event. OSPM ignores _TPC Notify events on platforms that support P-states unless the
platform has limited OSPM’s use of P-states to the lowest power P-state. OSPM may choose to disregard
any platform conveyed T-state limits when the platform enables OSPM usage of other than the lowest
power P-state.

8.4.3.4 _TSD (T-State Dependency)

This optional object provides T-state control cross logical processor dependency information to OSPM.
The _TSD object evaluates to a packaged list of information that correlates with the T-state information
returned by the _TSS object. Each packaged list entry identifies a dependency domain number for the
logical processor’s T-states, the coordination type for that T-state, and the number of logical processors
belonging to the domain.

Arguments:
None

Return Value:
A variable-length Package containing alist of T-state dependency Packages as described below.

Return Value Infor mation

Package {
TSt at eDependency] 0] /| Package

TSt at eDependency| n] /| Package
}

Each T StateDependency sub-Package contains the elements described below:

Package {
NunEntri es /1 |nteger
Revi si on /1 Integer (BYTE)
Domai n /1 1 nteger (DWORD)
Coor dType /1 | nteger (DWORD)
NunPr ocessor s /1 Integer (DWORD)

Table8-5 TStateDependency Package Values

Element Object Type | Description

NumEntries | Integer The number of entriesin the TSt at eDependency package including this
field. Current valueis5.
Revision I nteger The revision number of the TSt at eDependency package format. Current
(BYTE) valueisO.
Domain I nteger The dependency domain number to which this T state entry belongs.
(DWORD)
CoordType | Integer The type of coordination that exists (hardware) or is required (software) as

(DWORD) aresult of the underlying hardware dependency. Could be either OXFC
(SW_ALL), OXFD (SW_ANY) or OxFE (HW_ALL) indicating whether
OSPM isresponsible for coordinating the T-state transitions among
processors with dependencies (and needs to initiate the transition on all or
any processor in the domain) or whether the hardware will perform this
coordination.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

324 Advanced Configuration and Power Interface Specification

Element Object Type | Description

Num I nteger The number of processors belonging to the domain for thislogica
Processors | (DWORD) processor’s T-states. OSPM will not start performing power state
transitions to a particular T-state until this number of processors belonging
to the same domain have been detected and started.

Example

Thisis an example usage of the _TSD structure in a Processor structure in the namespace. The example
represents a two processor configuration with three T-states per processor. For all T-states, there exists
dependence between the two processors, such that one processor transitioning to a particular T-state, causes
the other processor to transition to the same T-state. OSPM will be required to coordinate the T-state
transitions between the two processors and can initiate atransition on either processor to cause both to
transition to the common target T-state.

Processor (

\ _SB. CPWO, /1 Processor Name

1, /1 ACPlI Processor nunber
0x120, /1 PBlk system|O address
6) /1 PBl kLen

{ /1 Object List

Name(_PTC, Package () /1 Processor Throttling Control object —
/132 bit wide | O space-based register at the <P_BLK> address
{

Resour ceTenpl at e() {Regi ster(System O, 32, 0, 0x120)}, // Throttling_CTRL
Resour ceTenpl at e() { Regi ster(System O, 32, 0, 0x120)} // Throttling_STATUS
}) /1 End of _PTC object
Name (_TSS, Package()

Package() {

0x64, /'l Frequency Percentage (100% Throttling OFF state)
0x0, /1 Power
0x0, /1 Transition Latency
0x7, /] Control THT_EN:. O THTL_DTY: 111
0x0, /] Status

}

Package() {
0x58, /1 Frequency Percentage (87.5%
0x0, /1 Power
0x0, /1 Transition Latency
OxF, /1 Control THT_EN:1 THTL_DTY: 111
0x0, /1 Status

}

Package() {
0x4B, /1 Frequency Percentage (75%
0x0, /1 Power
0x0, /1 Transition Latency
OxE, /1 Control THT_EN: 1 THTL_DTY: 110
0x0, /1 Status

}

})
Name (_TSD, Package()
Package(){5, 0, 0, OxFD, 2} /1 5 entries, Revision 0, Domain O,

/1 OSPM Coordi nate, 2 Procs
}) // End of _TSD object

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 325

Met hod (_TPC, 0) [/ Throttling Present Capabilities nethod
If (_SB. AC)
Ret ur n(0) /1l Al Throttle States are available for use.
El se
Ret urn(2) /1 Throttle States 0 an 1 won’t be used.

} /1 End of _TPC nethod
} /1 End of processor object Iist

Processor (

\ _SB. CPUL, /1 Processor Name
2, /1 ACPl Processor nunber
, /1 PBlk system|O address

) /1 PBl kLen
{ /1 Object List

Name(_PTC, Package () // Processor Throttling Control object —
/1 32 bit wide | O space-based register at the
/1 <P_BLK> address
Resour ceTenpl at e() {Regi ster(System O, 32, 0, 0x120)}, // Throttling_CTRL
Resour ceTenpl at e() { Regi ster(System O, 32, 0, 0x120)} // Throttling_STATUS
}) /1 End of _PTC object
Name (_TSS, Package()

Package() {

0x64, /'l Frequency Percentage (100% Throttling OFF state)
0x0, /1 Power
0x0, /1 Transition Latency
0x7, /1 Control THT_EN: O THTL_DTY: 111
0x0, /] Status

}

Package() {
0x58, /'l Frequency Percentage (87.5%
0x0, /1 Power
0x0, /1 Transition Latency
OxF, /1 Control THT_EN:1 THTL_DTY: 111
0x0, /] Status

}

Package() {
0x4B, /'l Frequency Percentage (75%
0x0, /1 Power
0x0, /1 Transition Latency
OxE, /1 Control THT_EN:1 THTL_DTY: 110
0x0, /] Status

}

19

Name (_TSD, Package()
Package(){5, 0, 0, OxFD, 2} /1 5 entries, Revision 0, Domain O,

/1 OSPM Coordi nate, 2 Procs
}) // End of _TSD object

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

326 Advanced Configuration and Power Interface Specification

Met hod (_TPC, 0) [/ Throttling Present Capabilities nethod
If (_SB. AC)
Ret ur n(0) /1l Al Throttle States are available for use.
El se
Ret urn(2) /1 Throttle States 0 an 1 won’t be used.

} /1 End of _TPC nethod
} /1 End of processor object Iist

8.4.3.5 _TDL (T-state Depth Limit)

This optional object evaluates to the _TSS entry number of the lowest power throttling state that OSPM
may use. _TDL enables the platform to limit the amount of performance reduction that OSPM may invoke
using processor throttling controls in an attempt to alleviate an adverse thermal condition. OSPM may
choose the corresponding state entry in the _TSS asindicated by the value returned by the _TDL object or a
higher performance (lower numbered) state entry inthe _TSS down to and including the _TSS entry
number returned by the _TPC object or thefirst entry inthe table (if _TPC is not implemented). The value
returned by the TDL object must be greater than or equal to the value returned by the TPC object or the
corresponding value to the last entry inthe _TSSif _TPC is not implemented. In the event of a conflict
between the values returned by the evaluation of the_ TDL and _TPC objects, OSPM gives precedence to
the _TPC object, limiting power consumption.

Arguments:
None

Return Value:
An Integer containing the Throttling Depth Limit _TSS entry number:
0 —throttling disabled.
1 —state 1 isthe lowest power T-state available.
2 —state 2 isthe lowest power T-state available.

n — state n is the lowest power T-state available.

In order for the platform to dynamically indicate the limit of performance reduction that is available for
OSPM use, Notify events on the processor object of type 0x82 will cause OSPM to reevaluate any _TDL
object in the processor’s object list. This allows AML code to notify OSPM when the number of supported
throttling states may have changed as a result of an asynchronous event. OSPM ignores_TDL Notify
events on platforms that support P-states unless the platform has limited OSPM’ s use of P-statesto the
lowest power P-state. OSPM may choose to disregard any platform conveyed T-state depth limits when the
platform enables OSPM usage of other than the lowest power P-state.

8.4.4 Processor Performance Control

Processor performance control isimplemented through three optional objects whose presence indicates to
OSPM that the platform and CPU are capable of supporting multiple performance states. The platform
must supply all three objects if processor performance control isimplemented. The platform must expose
processor performance control objects for either all or none of its processors. The processor performance
control objects define the supported processor performance states, allow the processor to be placed in a
specific performance state, and report the number of performance states currently available on the system.

In a multiprocessing environment, all CPUs must support the same number of performance states and each
processor performance state must have identical performance and power-consumption parameters.
Performance objects must be present under each processor object in the system for OSPM to utilize this
feature.

Processor performance control objectsincludethe® PCT’ package, ‘PSS package, and the‘ PPC’
method as detailed below.

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

Processor Configuration and Control 327

8.4.4.1 PCT (Performance Control)

This optional object declares an interface that allows OSPM to transition the processor into a performance
state. OSPM performs processor performance transitions by writing the performance state—specific control
value to a Performance Control Register (PERF_CTRL).

OSPM may select a processor performance state asindicated by the performance state val ue returned by
the _PPC method, or any lower power (higher numbered) state. The control value to writeis contained in
the corresponding PSS entry’s“ Control” field.

Success or failure of the processor performance transition is determined by reading a Performance Status
Register (PERF_STATUS) to determine the processor’s current performance state. If the transition was
successful, the value read from PERF_STATUS will match the “ Status” field in the PSS entry that
corresponds to the desired processor performance state.

Arguments:
None

Return Value:
A Package as described below

Return Value Infor mation

Package

{
Cont r ol Regi ster /1 Buffer (Resource Descriptor)
St at usRegi st er /1 Buffer (Resource Descriptor)

Table8-6 _PCT Package Values

Element Object Type | Description

Control Buffer Contains a Resource Descriptor with a single Register () descriptor that
Register describes the performance control register.

Status Buffer Contains a Resource Descriptor with a single Register () descriptor that
Register describes the performance status register.

Example

Name (_PCT, Package()

{
ResourceTenpl ate() {Perf_Ctrl _Register}, /] CGeneric Register Descriptor

Resour ceTenpl at e() { Perf _Stat us_Regi ster} /] CGeneric Register Descriptor
}) /1 End of _PCT

8.4.4.2 PSS (Performance Supported States)

This optional object indicatesto OSPM the number of supported processor performance states that any
given system can support. This object evaluates to a packaged list of information about available
performance states including internal CPU core frequency, typical power dissipation, control register
values needed to transition between performance states, and status register values that allow OSPM to
verify performance transition status after any OS-initiated transition change request. The list is sorted in
descending order by typical power dissipation. As aresult, the zeroth entry describes the highest
performance state and the ‘nth’ entry describes the lowest performance state.

Arguments:
None

Return Value:
A variable-length Package containing alist of Pstate sub-packages as described below

Hewlett-Packar d/I ntel/Micr osoft/Phoenix/T oshiba

328 Advanced Configuration and Power Interface Specification

Return Value I nfor mation

Package {

PState [0]

IS;State [n]

/| Package — Performance state 0

/'l Package — Performance state n

Each Pstate sub-Package contains the elements described bel ow:

Package {

Cor eFr equency

Power
Lat ency

BusMast er Lat ency

/1 1nteger (DWORD)
/1 I nteger (DWORD)
/1 1nteger (DWORD)
/1 | nteger (DWORD)

Control /1 | nteger (DWORD)
St at us /1 1nteger (DWORD)
}
Table8-7 PState Package Values
Element Object Type | Description
Core I nteger Indicates the core CPU operating frequency (in MHz).
Frequency | (DWORD)
Power I nteger Indicates the performance state’ s maximum power dissipation (in
(DWORD) mil